Secure input handling

insights from the last decade

Erik Poll

Digital Security
Radboud University, Nijmegen, the Netherlands

10 years ago

Sergey Bratus & Meredith Patterson present LangSec at CCC 2012
« LangSec = Language-Theoretic Security

Highlighting the role of input languages in security

=

\
-. :
o)
8 () -~

; behind enemy lines

‘The science of insecurity’

http://lwww.youtube.com/watch?v=3kEfedtQVOY

Erik Poll Radboud University - o 2

Software is the root cause of security problems

Things can be hacked because (and if?) there is software in them

Last Tuesday: 127 CVEs. This year > 45,000.

Information Technology Laboratory

NATIONAL VULNERABILITY DATABASE lerl D

Search Parameters: There are 127 matching records. 2 slalslel7lalm
Displaying matches 1 through 20.

Results Type: Overview

Search Type: Search All

CPE Name Search: false
Published Start Date: 12/06/2022
Published End Date: 12/06/2022

Vuln ID X Summary @ CVSS Severity S

CVE-2022-45122 Cross-site scripting vulnerability in Movable Type Movable Type 7 .5301 and earlier (Movable Type 7 Series), Movable V3.x:(not available)
Type Advanced 7 r.5301 and earlier (Movable Type Advanced 7 Series), Movable Type 6.8.7 and earlier (Movable Type 6 V2.0:(not available)
Series), Movable Type Advanced 6.8.7 and earlier (Movable Type Advanced 6 Series), Movable Type Premium 1.53 and
earlier, and Movable Type Premium Advanced 1.53 and earlier allows a remote unauthenticated attacker to inject an

arbitrary script.

Published: December 06, 2022; 11:15:11 PM -0500

CVE-2022-45113 Improper validation of syntactic correctness of input vulnerability exist in Movable Type series. Having a user to access /3.x:(not available)
Eri k PO" a specially crafted URL may allow a remote unauthenticated attacker to set a specially crafted URL to the Reset 12.0:(not available)
Password page and conduct a phishing attack. Affected products/versions are as follows: Movable Type 7 r.5301 and
earlier (Movable Type 7 Series), Movable Type Advanced 7 r.5301 and earlier (Movable Type Advanced 7 Series),
Movable Type 6.8.7 and earlier (Movable Type 6 Series), Movable Type Advanced 6.8.7 and earlier (Movable Type

Software engineers
don’t understand security!

Erik Poll Radboud University

What we tell software engineers:

OWASP Top 10 (20171

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)
5. Broken Access Control

6. Security Misconfiguration
7. Cross-Site Scripting (XSS)
8. Insecure Deserialization

9. Using Components with
Known Vulnerabilities

10. Insufficient
Logging & Monitoring

Erik Poll

CWE TOP 25 [2022] CWE TOP 1000

CONOOOAPDLWN-=

Out-of-bounds Write
Cross-site Scripting
SQL Injection
Improper Input Validation
Out-of-bounds Read
OS Command Injection
Use After Free
Path Traversal
Cross-Site Request Forgery (CSRF)
Unrestricted Upload of File with Dangerous Type
NULL Pointer Dereference
Deserialization of Untrusted Data
Integer Overflow or Wraparound
Improper Authentication
Use of Hard-coded Credentials
Missing Authorization
Command Injection
Missing Authentication for Critical Function
Improper Restriction of Bounds of Memory Buffer
Incorrect Default Permissions
Server-Side Request Forgery (SSRF)
Race Condition
Uncontrolled Resource Consumption
Improper Restriction of XML External Entity Referenc
Code Injection

Radboud University

We do not make it to easy enough for
software engineers to get security right!

Erik Poll Radboud University

There’s only ONE main problem: '"P“T handling

malicious |NPUT
)
g CE—— Vo

application

Garbage In, Garbage Out
becomes Malicious Garbage In, Security Incident Out

or Garbage In, Evil Out

Erik Poll Radboud University

'“F“T problems are PAR:'NG problems

Input is parsed (aka decoded / interpreted/...) in many places.

Involving many languages (aka protocols / formats /...) *

<

JavaScript
engine

o5 |

file system]

=

pdf
viewe

graphics
librar

Application

Erik Poll Radboud University

Two types of input flaws: bugs & features

1. Processing Flaws

2 a bug!
m'a’;ﬁ"?rus Kapplication\
g & eg. buffer overflow
_ _ in PDF viewer

2. Injection Flaws
(abuse of) a feature !

malicious

'"P“T /application back-end\
g ervice

- J
eg. SQL injection, XSS

Erik Poll Radboud University

In terms of parsing: buggy & unintended parsing

1. Insecure, buggy parsing

- a bug!
m'a’;ﬁ"?rus Kapplication\
g & eg. buffer overflow
_ _ in PDF viewer

2. Unintended parsing
(abuse of) a feature !

malicious

'"P“T /application back-end\
g ervice

- J
eg. SQL injection, XSS

Erik Poll Radboud University 10

Tackling buggy parsing:

using the LangSec approach

Example security flaws due to buggy parsing

CVE-2022-43667

Stack-based buffer overflow vulnerability in CX-Programmer may lead to
information disclosure andlor arbitrary code execution by having a user to open
a specially crafted

Published: December 06, 2022; 11:15:10

CVE-2022-41325

An integer overflow in VideoLAN VLC Media Player allows attackers, by tricking a
user into opening a crafted | list or connecting to a rogue \ ,

to crash VLC or execute code ...

Published: December 06, 2022; 11:15:11

CVE-2022-40918
Buffer overflowin in Force 1 Discovery U818A HD+ FPV Drone allows attacker to
gain remote code execution as root via a specially crafted

Published: December 06, 2022; 7:15:10

Erik Poll Radboud University 12

Root causes of buggy parsing

1. Many input languages / formats:

CXP, VLC playlist, VNC/VLC format, UDP packet,
Wifi, Ethernet, Bluetooth, GSM/3G, 4G, 5G, ...
HTTP(S), TLS, SSH, OpenVPN, ...

URLs, X509 certificates, domain names, ...

JPG, MP3, MPEG, ...

HTML, PDF, Word, Excel, Powerpoint

2. Often these are complex and/or poorly specified

3. Hand-written parser code, often in unsafe languages like C(++)

Fuzzing - aka fuzz testing - is a great way to find these bugs!

Erik Poll Radboud University

13

LangSec: tackling buggy parsing

Solution

1. Provide clear, formal spec of input language

eg as regular expression or BNF grammar

2. Generate parser code

using a parser generator tool

T

application \

—

Jossed |

- /

For more: see langsec.org

Erik Poll Radboud University 14

Tackling unintended parsing
(ie injection attacks)

use types!

[Strings considered harmful , USENIX :login; 2019]

Example unintended parsing - ie injection flaws

« CVE-2022-45217
Cross-site scripting (XSS) in Book Store Management System allows attackers
to execute arbitrary web scripts or HTML via a crafted payload injected into
the Level parameter under the Add New System User module.

Published: December 06, 2022; 9:15:10

« CVE-2022-33875
SQL Injection vulnerability in Fortinet FortiADC allows an attacker to execute
unauthorized code or commands via specifically crafted HTTP requests.

Published: December 06, 2022; 12:15:10

« CVE-2022-45025
Markdown Preview Enhanced for VSCode and Atom contains a
command injection vulnerability via the PDF file import function.

Published: December 06, 2022; 9:15:10

Erik Poll Radboud University 16

Many back-ends, with input languages,
more problems with unintended parsing ...

[sQL }
g malicious SQLi database
Qtf

web

application
HTML) [e
injectioy\ / path system
traversal
web l

browser

[PDF viewer J

’ CVE-2022-45025
OS command injection

[0oS JviaPDFfiIeimport

JavaScript
engine

Erik Poll Radboud University 17

Root causes of unintended parsing

1. Many languages: e.g HTML, SQL, PDF, OS commands

« Also as output language as well as input languages
« Combined in complex way, e.g OS commands inside PDF (?)

2. Complex data flows where user input can end up being interpreted as
one of these languages

3. Very powerful, expressive languages

JavaScript in HTML, JavaScript or ActionScript in PDF,
SQL commands, OS commands, ...

Erik Poll Radboud University 18

Anti-pattern: STRINGS A

Strings are useful/, because you use them to represent many things:

eg. user name, file name, email address, URL, shell command,
snippet of SQL, HTML, or JavaScript, ...

* Notjust String butalso char*, char[], StringBuilder,
This also make strings dangerous:

1. A stringis unstructured & unparsed data, and processing it often
involves some interpretation -incl. parsing

2. The same string may be handled & interpreted in many — possibly
unexpected — ways

3. A string parameter in an API call can — and often does - hide a very
expressive & powerful language

Erik Poll Radboud University

19

Solutions: output encoding or safe APIs

$uname f \

$pwd application |sg| gcT* FROM Users WHERE name = " + $uname
+ "AND password =" + $pwd

g‘) |, ck-end

N output encoding service
of $uname and $pwd
Suname fapplication\

$pwd SELECT * FROM Users WHERE name = 71

g~ AND password = 72 back-end

$uname, $pwd

J— SerVice
L N

safe API
(eg Parameterised Queries)

BUT: keeping track of input flows
through the application remains a nightmare!

Erik Poll Radboud University 20

Remedy: Types (1) to distinguish /anguages

Instead of using strings for everything,
use different types to distinguish different kinds of data

Eg different string-like wrapper types for HTML, URLs, file names, user
names, paths, ...

« Advantage: no ambiguity about the intended use of data

O > =

T T

Erik Poll Radboud University 21

Remedy: Types (2) to distinguish frust /evels

Use types to track origin and control destination of data

4)

A

« Egtrusted HTML that contains JavaScript we’re happy to execute
vs untrusted HTML that needs validation or encoding before it reaches

a browser engine

« Typical distinction: user input vs compile-time constants

Erik Poll Radboud University 22

Example: Trusted Types DOM API in Chrome browser

Trusted Types initiative to root out DOM-based XSS
replaces string-based DOM API with typed API

« Type checking ensures that untrusted data can only reach dangerous
APls after passing (carefully vetted) validation or encoding operations

TrustedHTML htmlEncode (String str)
TrustedHTML create (@Compiletimeconstant String str)

[https://github.com/WICG/trusted-types]

Erik Poll Radboud University 23

Conclusions

« Most security flaws are '"F“T processing flaws

« These flaws involve FAR&'"G one of many input languages / formats
« LangSec provides a way to tackle B“qqy FARS'NG
* by generating parser code from unambiguous, formal spec

« Using types (and avoiding the use of ﬁ]‘m"q) we can prevent

UNINTENPER PARSING parsing — and so-called injection attacks

using types to distinguish languages / formats and trust levels

STRINGS! '

CONSIDERED
;.& HARMF Ll o

24

Erik Poll

Further reading/watching

« On LangSec:

 Sergey Bratus & Meredith Patterson, The science of insecurity,
CCC 2012, http://www.youtube.com/watch?v=3kEfedtQVOY

 Much more on langsec.org
« On avoiding strings and using (trusted) types

» Christoph Kern, Preventing Security Bugs through Software Design,
AppSec California 2016, https://Iwww.youtube.com/watch?v=ccfEu-Jj0as

« Wangetal,, IfIt’s Not Secure, It Should Not Compile: Preventing DOM-
Based XSS in Large-Scale Web Development with APl Hardening,
ICSE’2021

* Erik Poll, Strings considered harmful , USENIX :login; , 2019

 Or, if you have more time, read my lecture notes on Secure Input Handling

Erik Poll Radboud University

25

