
Secure input handling

-

insights from the last decade

Erik Poll

Digital Security

Radboud University, Nijmegen, the Netherlands

10 years ago

Sergey Bratus & Meredith Patterson present LangSec at CCC 2012

• LangSec = Language-Theoretic Security

Highlighting the role of input languages in security

‘The science of insecurity’

http://www.youtube.com/watch?v=3kEfedtQVOY

Erik Poll Radboud University 2

Software is the root cause of security problems

Things can be hacked because (and if?) there is software in them

Last Tuesday: 127 CVEs. This year > 45,000.

Radboud University Erik Poll 3

Software engineers

don’t understand security!

Radboud University Erik Poll 4

What we tell software engineers:

OWASP Top 10 [2017]

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities

10. Insufficient

Logging & Monitoring

CWE TOP 25 [2022]

1 Out-of-bounds Write

2 Cross-site Scripting

3 SQL Injection

4 Improper Input Validation

5 Out-of-bounds Read

6 OS Command Injection

7 Use After Free

8 Path Traversal

9 Cross-Site Request Forgery (CSRF)

10 Unrestricted Upload of File with Dangerous Type

11 NULL Pointer Dereference

12 Deserialization of Untrusted Data

13 Integer Overflow or Wraparound

14 Improper Authentication

15 Use of Hard-coded Credentials

16 Missing Authorization

17 Command Injection

18 Missing Authentication for Critical Function

19 Improper Restriction of Bounds of Memory Buffer

20 Incorrect Default Permissions

21 Server-Side Request Forgery (SSRF)

22 Race Condition

23 Uncontrolled Resource Consumption

24 Improper Restriction of XML External Entity Reference

25 Code Injection

Radboud University 5

CWE TOP 1000
CWE-14

Compiler Removal of Code to Clear Buffers

CWE-20 ☉
Improper Input Validation

CWE-22 ☉
Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-23 ☉
Relative Path Traversal

CWE-24 ☉
Path Traversal: '../filedir'

CWE-25 ☉
Path Traversal: '/../filedir'

CWE-26 ☉
Path Traversal: '/dir/../filename'

CWE-27 ☉
Path Traversal: 'dir/../../filename'

CWE-28 ☉
Path Traversal: '..\filedir'

CWE-29 ☉
Path Traversal: '\..\filename'

CWE-30 ☉
Path Traversal: '\dir\..\filename'

CWE-31 ☉
Path Traversal: 'dir\..\..\filename'

CWE-32 ☉
Path Traversal: '...' (Triple Dot)

CWE-33 ☉
Path Traversal: '....' (Multiple Dot)

CWE-34 ☉
Path Traversal: '....//'

CWE-35 ☉
Path Traversal: '.../...//'

CWE-36 ☉
Absolute Path Traversal

CWE-37 ☉
Path Traversal: '/absolute/pathname/here'

CWE-38 ☉
Path Traversal: '\absolute\pathname\here'

CWE-39 ☉
Path Traversal: 'C:dirname'

CWE-40 ☉
Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

CWE-41 ☉
Improper Resolution of Path Equivalence

CWE-51 ☉
Path Equivalence: '/multiple//internal/slash'

CWE-55 ☉
Path Equivalence: '/./' (Single Dot Directory)

CWE-57 ☉
Path Equivalence: 'fakedir/../realdir/filename'

CWE-59 ☉
Improper Link Resolution Before File Access ('Link Following')

CWE-61
UNIX Symbolic Link (Symlink) Following

CWE-62
UNIX Hard Link

CWE-73
External Control of File Name or Path

CWE-74
Improper Neutralization of Special Elements in Output Used by a Downstream Component('Injection')

CWE-75
Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CWE-76
Improper Neutralization of Equivalent Special Elements

CWE-77
Improper Neutralization of Special Elements used in a Command ('Command Injection')

CWE-78
Improper Neutralization of Special Elements used in an OS Command ('OS CommandInjection')

CWE-79
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-88
Argument Injection or Modification

CWE-89
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-90
Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

CWE-91
XML Injection (aka Blind XPath Injection)

CWE-93
Improper Neutralization of CRLF Sequences ('CRLF Injection')

CWE-94
Improper Control of Generation of Code ('Code Injection')

CWE-95
Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

CWE-96
Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

CWE-97
Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

CWE-99
Improper Control of Resource Identifiers ('Resource Injection')

CWE-114
Process Control

CWE-116
Improper Encoding or Escaping of Output

CWE-117
Improper Output Neutralization for Logs

CWE-123
Write-what-where Condition

CWE-134
Use of Externally-Controlled Format String

CWE-135
Incorrect Calculation of Multi-Byte String Length

CWE-138
Improper Neutralization of Special Elements

CWE-140
Improper Neutralization of Delimiters

CWE-141
Improper Neutralization of Parameter/Argument Delimiters

CWE-142
Improper Neutralization of Value Delimiters

CWE-143
Improper Neutralization of Record Delimiters

CWE-144
Improper Neutralization of Line Delimiters

CWE-145
Improper Neutralization of Section Delimiters

CWE-146
Improper Neutralization of Expression/Command Delimiters

CWE-147
Improper Neutralization of Input Terminators

CWE-148
Improper Neutralization of Input Leaders

CWE-149
Improper Neutralization of Quoting Syntax

CWE-150
Improper Neutralization of Escape, Meta, or Control Sequences

CWE-151
Improper Neutralization of Comment Delimiters

CWE-152
Improper Neutralization of Macro Symbols

CWE-153
Improper Neutralization of Substitution Characters

CWE-154
Improper Neutralization of Variable Name Delimiters

CWE-155
Improper Neutralization of Wildcards or Matching Symbols

CWE-156
Improper Neutralization of Whitespace

CWE-157
Failure to Sanitize Paired Delimiters

CWE-158
Improper Neutralization of Null Byte or NUL Character

CWE-159
Failure to Sanitize Special Element

CWE-160
Improper Neutralization of Leading Special Elements

CWE-161
Improper Neutralization of Multiple Leading Special Elements

CWE-162
Improper Neutralization of Trailing Special Elements

CWE-163
Improper Neutralization of Multiple Trailing Special Elements

CWE-164
Improper Neutralization of Internal Special Elements

CWE-165
Improper Neutralization of Multiple Internal Special Elements

CWE-166
Improper Handling of Missing Special Element

CWE-167
Improper Handling of Additional Special Element

CWE-168
Improper Handling of Inconsistent Special Elements

CWE-172
Encoding Error

CWE-173
Improper Handling of Alternate Encoding

CWE-174
Double Decoding of the Same Data

CWE-175
Improper Handling of Mixed Encoding

CWE-176
Improper Handling of Unicode Encoding

CWE-177
Improper Handling of URL Encoding (Hex Encoding)

CWE-178
Improper Handling of Case Sensitivity

CWE-179
Incorrect Behavior Order: Early Validation

CWE-180
Incorrect Behavior Order: Validate Before Canonicalize

CWE-181
Incorrect Behavior Order: Validate Before Filter

CWE-182
Collapse of Data into Unsafe Value

CWE-184 ☉
Incomplete Blacklist

CWE-185
Incorrect Regular Expression

CWE-186
Overly Restrictive Regular Expression

CWE-187
Partial Comparison

CWE-188 ☉
Reliance on Data/Memory Layout

CWE-200
Information Exposure

CWE-201
Information Exposure Through Sent Data

CWE-203
Information Exposure Through Discrepancy

CWE-204
Response Discrepancy Information Exposure

CWE-209
Information Exposure Through an Error Message

CWE-210
Information Exposure Through Self-generated Error Message

CWE-211
Information Exposure Through Externally-generated Error Message

CWE-212
Improper Cross-boundary Removal of Sensitive Data

CWE-215
Information Exposure Through Debug Information

CWE-216
Containment Errors (Container Errors)

CWE-227 ☉
Improper Fulfillment of API Contract ('API Abuse')

CWE-241
Improper Handling of Unexpected Data Type

CWE-252
Unchecked Return Value

CWE-253
Incorrect Check of Function Return Value

CWE-273
Improper Check for Dropped Privileges

CWE-311
Missing Encryption of Sensitive Data

CWE-319
Cleartext Transmission of Sensitive Information

CWE-354
Improper Validation of Integrity Check Value

CWE-364 ◄
Signal Handler Race Condition

CWE-365 ◄
Race Condition in Switch

CWE-374
Passing Mutable Objects to an Untrusted Method

CWE-375
Returning a Mutable Object to an Untrusted Caller

CWE-378
Creation of Temporary File With Insecure Permissions

CWE-379
Creation of Temporary File in Directory with Incorrect Permissions

CWE-390
Detection of Error Condition Without Action

CWE-391
Unchecked Error Condition

CWE-394
Unexpected Status Code or Return Value

CWE-405 ◄
Asymmetric Resource Consumption (Amplification)

CWE-406
Insufficient Control of Network Message Volume (Network Amplification)

CWE-407 ☉
Algorithmic Complexity

CWE-408 ◄
Incorrect Behavior Order: Early Amplification

CWE-409
Improper Handling of Highly Compressed Data (Data Amplification)

CWE-410
Insufficient Resource Pool

CWE-412 ◄
Unrestricted Externally Accessible Lock

CWE-413 ◄
Improper Resource Locking

CWE-414 ◄
Missing Lock Check

CWE-430
Deployment of Wrong Handler

CWE-431
Missing Handler

CWE-432 ◄
Dangerous Signal Handler not Disabled During Sensitive Operations

CWE-447 ☉
Unimplemented or Unsupported Feature in UI

CWE-453
Insecure Default Variable Initialization

CWE-454
External Initialization of Trusted Variables or Data Stores

CWE-455
Non-exit on Failed Initialization

CWE-456
Missing Initialization of a Variable

CWE-460
Improper Cleanup on Thrown Exception

CWE-462
Duplicate Key in Associative List (Alist)

CWE-463
Deletion of Data Structure Sentinel

CWE-464
Addition of Data Structure Sentinel

CWE-470
Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

CWE-472
External Control of Assumed-Immutable Web Parameter

CWE-474 ☉
Use of Function with Inconsistent Implementations

CWE-479 ◄
Signal Handler Use of a Non-reentrant Function

CWE-488 ◄
Exposure of Data Element to Wrong Session

CWE-489 ☉
Leftover Debug Code

CWE-493 ☉
Critical Public Variable Without Final Modifier

CWE-494
Download of Code Without Integrity Check

CWE-496
Public Data Assigned to Private Array-Typed Field

CWE-497
Exposure of System Data to an Unauthorized Control Sphere

CWE-498 ☉
Cloneable Class Containing Sensitive Information

CWE-500 ☉
Public Static Field Not Marked Final

CWE-502 ☉
Deserialization of Untrusted Data

CWE-506 ☉
Embedded Malicious Code

CWE-507 ☉
Trojan Horse

CWE-508
Non-Replicating Malicious Code

CWE-509 ☉
Replicating Malicious Code (Virus or Worm)

CWE-510
Trapdoor

CWE-511 ☉
Logic/Time Bomb

CWE-512 ☉
Spyware

CWE-524 ☉
Information Exposure Through Caching

CWE-526
Information Exposure Through Environmental Variables

CWE-538
File and Directory Information Exposure

CWE-539 ☉
Information Exposure Through Persistent Cookies

CWE-543 ◄
Use of Singleton Pattern Without Synchronization in a Multithreaded Context

CWE-544
Missing Standardized Error Handling Mechanism

CWE-546 ☉
Suspicious Comment

CWE-548 ☉
Information Exposure Through Directory Listing

CWE-584
Return Inside Finally Block

CWE-587
Assignment of a Fixed Address to a Pointer

CWE-591
Sensitive Data Storage in Improperly Locked Memory

CWE-595
Comparison of Object References Instead of Object Contents

CWE-598
Information Exposure Through Query Strings in GET Request

CWE-605
Multiple Binds to the Same Port

CWE-622 ☉
Improper Validation of Function Hook Arguments

CWE-636 ☉
Not Failing Securely ('Failing Open')

CWE-637 ☉
Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

CWE-638
Not Using Complete Mediation

CWE-641
Improper Restriction of Names for Files and Other Resources

CWE-643
Improper Neutralization of Data within XPath Expressions ('XPath Injection')

CWE-652
Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

CWE-663 ◄
Use of a Non-reentrant Function in a Concurrent Context

CWE-664
Improper Control of a Resource Through its Lifetime

CWE-666 ☉
Operation on Resource in Wrong Phase of Lifetime

CWE-674 ☉
Uncontrolled Recursion

CWE-688
Function Call With Incorrect Variable or Reference as Argument

CWE-694
Use of Multiple Resources with Duplicate Identifier

CWE-754
Improper Check for Unusual or Exceptional Conditions

CWE-759
Use of a One-Way Hash without a Salt

CWE-761
Free of Pointer not at Start of Buffer

CWE-765 ◄
Multiple Unlocks of a Critical Resource

CWE-767
Access to Critical Private Variable via Public Method

CWE-773 ◄
Missing Reference to Active File Descriptor or Handle

CWE-774 ◄
Allocation of File Descriptors or Handles Without Limits or Throttling

CWE-777
Regular Expression without Anchors

CWE-785
Use of Path Manipulation Function without Maximum-sized Buffer

CWE-789
Uncontrolled Memory Allocation

Erik Poll

We do not make it to easy enough for

software engineers to get security right!

Radboud University Erik Poll 6

There’s only ONE main problem: input handling

Garbage In, Garbage Out

becomes Malicious Garbage In, Security Incident Out

or Garbage In, Evil Out

7

application
malicious input

I/O

Erik Poll Radboud University

input problems are parsing problems

Input is parsed (aka decoded / interpreted/...) in many places.

Involving many languages (aka protocols / formats / ...)

Radboud University Erik Poll 8

HTML

renderer

pdf

viewer

Ethernet

TCP/IP

HTTP

TLS

Wifi / 4G

TCP/IP

HTTP

TLS

Application

database

OS

file system

JavaScript

engine

graphics

library

Two types of input flaws: bugs & features

9

(abuse of) a feature !
2. Injection Flaws

back-end

service

malicious

input application

a bug !
application

malicious

input

1. Processing Flaws

eg. buffer overflow

in PDF viewer

Erik Poll Radboud University

eg. SQL injection, XSS

In terms of parsing: buggy & unintended parsing

10

(abuse of) a feature !
2. Unintended parsing

back-end

service

malicious

input application

a bug !
application

malicious

input

1. Insecure, buggy parsing

eg. buffer overflow

in PDF viewer

Erik Poll Radboud University

eg. SQL injection, XSS

Tackling buggy parsing:

using the LangSec approach

Example security flaws due to buggy parsing

CVE-2022-43667

Stack-based buffer overflow vulnerability in CX-Programmer may lead to

information disclosure and/or arbitrary code execution by having a user to open

a specially crafted CXP file.

Published: December 06, 2022; 11:15:10

CVE-2022-41325

An integer overflow in VideoLAN VLC Media Player allows attackers, by tricking a

user into opening a crafted playlist or connecting to a rogue VNC server,

to crash VLC or execute code ...

Published: December 06, 2022; 11:15:11

CVE-2022-40918

Buffer overflow in in Force 1 Discovery U818A HD+ FPV Drone allows attacker to

gain remote code execution as root via a specially crafted UDP packet.

Published: December 06, 2022; 7:15:10

Radboud University Erik Poll 12

Root causes of buggy parsing

1. Many input languages / formats:

CXP, VLC playlist, VNC/VLC format, UDP packet,

Wifi, Ethernet, Bluetooth, GSM/3G, 4G, 5G, ...

HTTP(S), TLS, SSH, OpenVPN, ...

URLs, X509 certificates, domain names, ...

JPG, MP3, MPEG, ...

HTML, PDF, Word, Excel, Powerpoint

2. Often these are complex and/or poorly specified

3. Hand-written parser code, often in unsafe languages like C(++)

Fuzzing – aka fuzz testing – is a great way to find these bugs!

Radboud University Erik Poll 13

LangSec: tackling buggy parsing

Solution

1. Provide clear, formal spec of input language

eg as regular expression or BNF grammar

2. Generate parser code

using a parser generator tool

For more: see langsec.org

Radboud University Erik Poll 14

application

p
a

rs
e

r

Tackling unintended parsing

(ie injection attacks)

use types!

[Strings considered harmful , USENIX :login; 2019]

Example unintended parsing – ie injection flaws

• CVE-2022-45217

Cross-site scripting (XSS) in Book Store Management System allows attackers

to execute arbitrary web scripts or HTML via a crafted payload injected into

the Level parameter under the Add New System User module.

Published: December 06, 2022; 9:15:10

• CVE-2022-33875

SQL Injection vulnerability in Fortinet FortiADC allows an attacker to execute

unauthorized code or commands via specifically crafted HTTP requests.

Published: December 06, 2022; 12:15:10

• CVE-2022-45025

Markdown Preview Enhanced for VSCode and Atom contains a

command injection vulnerability via the PDF file import function.

Published: December 06, 2022; 9:15:10

Radboud University Erik Poll 16

Many back-ends, with input languages,

more problems with unintended parsing …

17

SQL

databasemalicious

input

web

application

web

browser

HTML

injection

SQLi

Erik Poll

file

systempath

traversal

PDF viewer

OS

Radboud University

CVE-2022-45025

OS command injection

via PDF file import

JavaScript

engine

XSS

Root causes of unintended parsing

1. Many languages: e.g HTML, SQL, PDF, OS commands

• Also as output language as well as input languages

• Combined in complex way, e.g OS commands inside PDF (?)

2. Complex data flows where user input can end up being interpreted as

one of these languages

3. Very powerful, expressive languages

JavaScript in HTML, JavaScript or ActionScript in PDF,

SQL commands, OS commands, ...

Radboud University Erik Poll 18

Anti-pattern: strings

Strings are useful, because you use them to represent many things:

eg. user name, file name, email address, URL, shell command,

snippet of SQL, HTML, or JavaScript, ...

• Not just String but also char*, char[], StringBuilder, ...

This also make strings dangerous:

1. A string is unstructured & unparsed data, and processing it often

involves some interpretation - incl. parsing

2. The same string may be handled & interpreted in many – possibly

unexpected – ways

3. A string parameter in an API call can – and often does – hide a very

expressive & powerful language

19Erik Poll Radboud University

Solutions: output encoding or safe APIs

20

back-end

service

$uname

$pwd
application

output encoding
of $uname and $pwd

Erik Poll Radboud University

SELECT * FROM Users WHERE name = " + $uname

+ "AND password = " + $pwd

safe API
(eg Parameterised Queries)

back-end

service

$uname

$pwd
application

SELECT * FROM Users WHERE name = ?1

AND password = ?2

$uname, $pwd

BUT: keeping track of input flows

through the application remains a nightmare!

Remedy: Types (1) to distinguish languages

Instead of using strings for everything,

use different types to distinguish different kinds of data

Eg different string-like wrapper types for HTML, URLs, file names, user

names, paths, …

• Advantage: no ambiguity about the intended use of data

21Erik Poll Radboud University

Remedy: Types (2) to distinguish trust levels

Use types to track origin and control destination of data

• Eg trusted HTML that contains JavaScript we’re happy to execute

vs untrusted HTML that needs validation or encoding before it reaches

a browser engine

• Typical distinction: user input vs compile-time constants

22Erik Poll Radboud University

Example: Trusted Types DOM API in Chrome browser

Trusted Types initiative to root out DOM-based XSS

replaces string-based DOM API with typed API

• Type checking ensures that untrusted data can only reach dangerous

APIs after passing (carefully vetted) validation or encoding operations

TrustedHTML htmlEncode(String str)

TrustedHTML create(@Compiletimeconstant String str)

[https://github.com/WICG/trusted-types]

23Erik Poll Radboud University

Conclusions

• Most security flaws are input processing flaws

• These flaws involve parsing one of many input languages / formats

• LangSec provides a way to tackle Buggy PARSING

• by generating parser code from unambiguous, formal spec

• Using types (and avoiding the use of strings) we can prevent

UNINTENDED PARSING parsing – and so-called injection attacks

• using types to distinguish languages / formats and trust levels

Radboud University Erik Poll 24

Further reading/watching

• On LangSec:

• Sergey Bratus & Meredith Patterson, The science of insecurity,

CCC 2012, http://www.youtube.com/watch?v=3kEfedtQVOY

• Much more on langsec.org

• On avoiding strings and using (trusted) types

• Christoph Kern, Preventing Security Bugs through Software Design,

AppSec California 2016, https://www.youtube.com/watch?v=ccfEu-Jj0as

• Wang et al., If It’s Not Secure, It Should Not Compile: Preventing DOM-

Based XSS in Large-Scale Web Development with API Hardening,

ICSE’2021

• Erik Poll, Strings considered harmful , USENIX :login; , 2019

• Or, if you have more time, read my lecture notes on Secure Input Handling

Radboud University Erik Poll 25

