Software Security 101

Erik Poll

Digital Security
Radboud University Nijmegen



Two ways to create security problems:

1. ‘hack’ the computer

ie. find a weakness in the software
eg. exploit a zero-day

2. ‘hack’ the user
incl. social engineering, eg. phishing

Pointing the finger at the user is nearly always victim blaming and a
badly designed interface is the real cause

Not just end-users are users, so are sys-admins and developers

So even in 2nd case software is to blame!



Improving security

We do not know how to make systems secure
but we do know how to make them (a bit) more secure

1st step: Awareness

Realising that security might be an issue

2"d step: Knowledge

Improving knowledge about security
— LOTS of info available nowadays

— Beware: it depends heavily on platform, programming
language, APls, technology stack, type of application, ...

3rd, 4th, . steps: Putting this into practice
Building attention to security into development process



Security in Software Development Lifecycle

Security-by-Design D e ittty
Privacy-by-Design Shifting Left
Threat ini Bug bount
, Training ug bounty
Modelling . Risk Coding program
Analysis guidelines Patch
Management
Security System
Requirements Patch
Abuse Static Security Pen Security
Cases Analysis tests testing incidents
| I I | —>
Requirements Design Coding Testing Deployment

and use cases



DAST, IAST, SAST, RASP

Security people keep inventing new acronyms

« DAST
— Dynamic Application Security Testing
— ie. testing

 |AST

— Interactive Application Security Testing

— ie. manual testing by eg pen-tester, maybe using DAST tools
« SAST

— Static Application Security Testing

— ie. static analysis
- RASP

— Run-time Application Security Protection

— ie. monitoring



Plenty of methodologies

THE SECURITY
DEVELOPMENT

LIFECYCLE

Microsoft SDL

with extension for Secure DevOps (DevSecOps)
BSIMM (Building Security In Maturity Model)
Grip op SSD

Ongoing initiative by Dutch government organisations
https:/Iwww.cip-overheid.nl/en/category/products/secure-software/

These all come with best practices, checklists, methods for
assessments, roadmaps for improvements, ...



Microsoft SDL

Requirements

Implementation

Establish Security
Requirements

Establish Design Use Approved
Requirements Tools

Dynamic
Analysis

Core Security
Training

Create Quality
Gates [ Bug Bars

Analyze Attack
Surface

Deprecate Unsafe Fuzz
Functions Testing

Security & Privacy Threat Static Attack Surface
Risk Assessment Modeling Analysis Review

The four security maturity levels of the SDL Optimization Model

Advanced Dynamic
Security is Securityis
integrated specialized
Customer risk is Customer
controlled im

Verification

Release

Incident
Response Plan

Final Secunty
Review

Release
Archive

= _" U
Im enter’s guide
% m !Ba?é:'nsmndar ized g

Implementer’s guide
standardized—Advanced

Implementer's guide
Advanced=Dynamic



BSIMM (Building Security In Maturity Model)

Framework to compare your software security efforts with

other organisations

Governance Intelligence

Strategy and Metrics

Compliance and Policy

Training

https:/Iwww.bsimm.com/framework/

SSDL Touchpoints

Architecture Analysis

Code Review

Security Testing

Deployment

Penetration Testing

Software Environment

Configuration Management
and Vulnerability Manage-

ment




BSIMM: comparing your security maturity

Strategy & Melrics

0.

Configuration Mgmt. & Vuinerabllity Mgmt.

Software Environment p

Penetration Testing

Compliance & Policy

, Training

Security Testing .

Architecture Analysis

 Attack Models

* Security Features & Design

'Sundards & Requirements



% of CVEs

Good practice no 1: use Rust instead of C(++)!

Memory corruption still main source of problems, so using a

memory-safe programming language prevents MANY problems!

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Patch Year

B Memory safety B Not memory safety

10



Good practice no 2: use a fuzzer!

If you have any C(++) code, say in libraries, or unsafe Rust,
use a fuzzer! Eg afl++

american fuzzy lop 2.52b (server)

5 timing

0 days, 3 hrs, 55 min, Z
0 days, 2 hrs, 35 min, 2
@ days, 1 hrs, 19 min, 3
0 days, 3 hrs, 51 min,

157* (15.04%) 0.23% / 1.02%
0 (0.00%) 1.36 bits/tuple
S findings in depth
lice 8 124 {11.88%)

{96.88%) 128 (12.26%)
13.8M (1 unique)
193k (8 uni :

fuzzing stra path g
0]
0]
54
0/0, 0/0, 0/794k n/a
27/5.38M, 1/8.38N
1.18%/11.5k, 8.37%

11



The kind of bugs a fuzzer can find

Security Update for Foxit PDF Reader Fixes 118 Vulnerabilities

By Lawrence Abrams

Root cause: PDF spec is horrendously complex

These bugs are mainly memory corruption flaws that allow remote
code execution

« so high impact and easy to exploit with email attachments

A/l PDF viewers suffer from such problems

https:/Icve.mitre.org/cgi-bin/cvekey.cgi?keyword=PDF

12



Audience poll: useful OWASP products
 Who here knows the OWASP Top Ten?

« Who here knows the OWASP ASVS?

ASVS (Application Security Verification Standard)
takes a more ‘constructive’ approach than the Top 10
by pointing out things you should do

rather than things that you should notf do

13



The many standard security flaws

OWASP Top 10 [2017]

Injection

Broken Authentication
Sensitive Data Exposure
XML External Entities (XXE)
Broken Access Control
Security Misconfiguration
Cross-Site Scripting (XSS)

Insecure Deserialization

© ® N Ok Db

Using Components with
Known Vulnerabilities

-
i

Insufficient
Logging & Monitoring

SANS/CWE TOP 25 [2019]

1.

Improper Restriction of Operations within the

Bounds of a Memory Buffer

2.

Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting’)

ONO O W

. Improper Input Validation
. Information exposure

. Buffer overread

. SQL Injection

. Use After Free

. Integer Overflow

9. CSRF

10.

12.
13.
14.
15.

17.
18.
19.
20.
21.
22.
23.
24.
25.

Path Traversal

. OS Command Injection

Out-of-bounds Write

Improper Authentication

NULL Pointer Dereference

Incorrect Permission Assignment

. Unrestricted Upload of File with Dangerous Type
Improper Restriction of XML External Entity
Code Injection

Use of Hard-coded Credentials
Uncontrolled Resource Consumption
Missing Release of Resource

Untrusted Search Path

Deserialization of Untrusted Data

Improper Privilege Management

Improper Certificate Validation

CWE TOP 924

14



Design vs Implementation flaws

Useful, high level classification

0%

O buffer overflow
37% H input validation
B code defect

[ design defect

O crypto

20%

Flaws found in Microsoft's first security bug fix month



The one standard security flaw: ‘MP“T handling

. malicious IMF“T application

Garbage In, Garbage Out
quickly becomes
Malicious Garbage In, Security Incident Out

16



Attack surface

P
/

App Server _; 0S }

NS file system }

Data is parsed/decoded/interpreted/... as it moves up the technology
stack

17



Attack surface

HTML

renderer e B
App Server
image
e library
D, N /

pdf
viewer

Data is parsed/decoded/interpreted/... as it moves up the technology
stack

18



Most input problems: FARS’NG problems

: { malicious '"F“T application

Input only become dangerous when you start Fhﬂﬁmq it.

« Your parser could buggy
— esp. ifitis written in C(++)
— esp. if the input language/format is complex

* You could be parsing & then processing user input
(= attacker input!) in ways that is dangerous

— eg parsing user input as HTML, giving rise to XSS

19



Root cause: complexity & expressivity in formats/languages

Windows supports many notations for file names

 classic MS-DOS notation C:\MyData\file.txt
 file URLs file:///Cl/MyData/file.txt
« UNC (Uniform Naming Convention) \\192.1.1.\MyData\file.txt

which can be combined in fun ways, eg file://///192.1.1.1/MyData/file.txt
Some cause vnexpected behaviour by involving other protocols, eg
« UNC paths to remote servers are handled by SMB protocol

« SMB sends password hash to remote server to authenticate:
pass the hash

This can be exploited by SMB relay attacks
- CVE-2000-0834 in Windows telnet
- CVE-2008-4037 in Windows XP/Server/Vista
- CVE-2016-5166 in Chromium
- CVE-2017-3085 & CVE-2016-4271 in Adobe Flash

- ZDI1-16-395 in Foxit PDF viewer 20



Two types of INPUT problems

1. Processing Flaws

malicious . .
application

INPUT
¥ =0

eg buffer overflow in
PDF viewer

2. Forwarding/Injection Flaws (abuse of)
- afeature! ([ )
malicious
INPUT Kapplication\ back-end
g _ ervice

- J )

eg SQLi, XSS, Word macros,

21



Two types of INPUT problems

1. Buggy parsing & processing

Bug in processing input causes application to go of the rails

— Classic example: buffer overflow in a PDF viewer, leading to remote
code execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

Input is forwarded to back-end servicelsystem/API, to cause
damage there

— Classic examples: SQL injection, path traversal, XSS, Word macros

This is intended behaviour of the back-end, introduced
deliberately, but exposed by mistake by the front-end

22



Remedies? sanitisation # validation

Often confused but are very different:

Sanitisation aka escaping aka encoding:
‘fixing’ data to make it ‘harmless’

Eg replacing < with &lt; toprevent XSS
or ' with \’ toprevent SQL injection
Need to sanitise comes from weakness in back-end interface
Need is external to the use case, but depends on technologies/APIs used

Validation: rejecting data because it is invalid
Eg rejecting 31/11/2021 as a valid date
Need to reject invalid data stems from the use case/application

Validation of input is needed irrespective of whether backend APIs are
immune to injection attacks

Need is inherent to the use case

23



Input validation & output sanitisation

Input validation is good approach

Input sanitisation (aka escaping aka encoding) less so

— Because at the point of input, the context in which input is used (eg. in
SQL query or HTML or file name ... ) is unclear, and different contexts
require different sanitisations.

24



More back-ends, more languages, more problems

SQL
sQL [ database }

gm\lp‘t[ ,4 ==

web ommand
injection .
# file
’ pat system

XSS format
web :
string attack [ C library J

traversal
browser

server

25



Input validation & output sanitisation

Input validation is good approach

Input sanitisation less so

— Because at the point of input, the context in which input is used (eg. in
SQL query or HTML or file name ... ) is unclear, and different contexts
require different sanitisations.

Output sanitisation does makes sense, because there context is
known

application 4 back-end
g —/' ‘ service
input validation - \ N /
rejecting invalid input output sanitisation

aka ‘fixing’ output to make it harmless
for this particular back-end

26



Strings
Stringis a useful datatype because it is so versatile

Eg. a string can be

« ausername

« adate

« an email address
« aURL
 asnhippet of HTML
« asnippet of SQL

« path name

« directory name



Strings in web-applications

Here a string can be

a URL

a URL that is pointing to a ‘trusted’ domain from which it is safe to download &
excute JavaScript

a URL for which parameters have been HTML-encoded so they do not do contain
JavaScript

a snippet of HTML

a snippet of HTML that we know does not contain JavaScript (eg because it has
been HTML-encoded)

a ‘trusted’ snippet of HTML that may contain JavaScript but is safe to execute
(because it comes from a trusted source)

text that is JavaScript-literal-encoded, so that is safe to use as JavaScript string
parameter

text that has been first HTML-encoded and then JS-string-literal-encoded
text that has been first JS-string-literal-encoded and then HTML-encoded

28



Anti-pattern: ﬁTN"Gﬁ FAAN

Strings are dangerous in programs because you have no clue

« jfastringis meant to be a username, email address, file name, path
name, URL, shell command, bit of SQL, HTML, ..

« ifitis has been validated, sanatised/escaped, URL/HTML/JS-string-
literal/lbased64/...-encoded, ...

« ifitis or contains user-controlled input that makes it dangerous to
feed it to some of the many back-ends

Better solution: use different TYPES for data of different kinds and of
different trust levels

Eg. Google Trusted Types API that replaces the string-based DOM API

[Wang et al., If It's Not Secure, It Should Not Compile:
Preventing DOM-Based XSS in Large-Scale Web Development with APl Hardening, ICSE'21]

29



Software security: DoO’s

Know the typical problems in your technology stack
Check best practices of SDL, BSIMM, ... that work for you
Use memory safe languages

Use fuzzers

Be careful with parsing

2 S

Validate inputs & sanitise outputs

better still, have ‘safe’ interfaces with back-ends that do not
require sanitisation to be used safely

7. Don’t use strings, but types that distinguish languages & trust
levels

Steps 3-7 catch low-hanging fruit,
not the ‘deeper’, application-specific bugs ... ®

30



Thanks for your attention!

llf-ﬁ’fi’ Hiq 4

..'p'.

- /‘
| -
F %

S TR INGS A ‘

CONSIDERED

I HARMFuL.

31



