
Some Security by Construction

thanks to LangSec

Erik Poll

Digital Security

Radboud University Nijmegen

My personal take on LangSec

Erik Poll

Digital Security

Radboud University Nijmegen

LangSec (Language-Theoretic Security, see langsec.org)

• Interesting look at root causes of large class of security problems,

namely problems with input

• Useful suggestions for dos and don’ts

• The ‘Lang’ in ‘LangSec’ refers to input languages,

not programming languages.

Sergey Bratus & Meredith Patterson

‘The science of insecurity’

CCC 2012

Erik Poll Radboud University Nijmegen 3

‘Cybersecurity needs abstract thinking’- Giampaolo Bella

We face a never-ending stream of security vulnerabilities

CVE-1999-0001: remote attacker can cause a denial of service via crafted
packets to ip_input.c in BSD-derived TCP/IP implementations

. . .

CVE-2021-44228 aka Log4Shell: remote attacker can execute arbitrary code
by abusing JDNI features via LDAP injection in Apache Log4j2 <=2.14.1

These can be funny, interesting, clever, scary … or just depressing

How to see the wood for the trees?

4Erik Poll Radboud University Nijmegen

Making sense of all these problems?

One approach: an ever-expanding list of categories of flaws

CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

. . .

CWE-121: Stack-based buffer overflow

. . .

CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold
Environments.

The OWASP Top 10 and SANS/CWE Top 25 are useful,

but what about the other 1300+ (!) categories of flaws?

5Erik Poll Radboud University Nijmegen

There’s only ONE main problem: input

• Aka the I/O attacker model

• Attacker’s goal:

Compromising integrity and/or availability of the application’s

behaviour in any way (aka ‘hacking’)

• Garbage In, Garbage Out

quickly becomes Malicious Garbage In, Security Incident Out

aka Garbage In, Evil Out

6

application
malicious input

I/O

Erik Poll Radboud University Nijmegen

HTML

renderer

pdf

viewer

Note that input is parsed aka decoded aka interpreted aka

deserialised aka … as it moves up the technology stack

input problems

7

Wifi / 4G

TCP/IP

HTTP

TLS

Ethernet

TCP/IP

HTTP

TLS

Application

database

OS

file system

JavaScript

engine

Erik Poll Radboud University Nijmegen

LangSec: root causes & remedies

Input languages (aka protocols, file formats, encodings, …) play a central

role in causing security flaws In entire protocol stack,

eg. IPv4/v6, Wifi, Ethernet, Bluetooth, USB, GSM/3G/4G/5G, TLS, SSH,

OpenVPN, HTTP(S), X509, HTML5, URLs, email addresses, S/MIME, HTML,

XML, XXE, LDAP, JDNI, PDF, JPG, MP3, mpeg, .docx, …

Root causes of security problems here:

• Overly complex, poorly specified, and overly expressive input

languages, and too many of them

• Handwritten parser code then results in lots of weird behaviour – bugs

or ambiguities - for I/O attacker to have ‘fun’ with

Remedies:

• simpler languages with clearer (formal!) specs

• generated parser code

8Erik Poll Radboud University Nijmegen

Most input problems are PARSING problems

See just about all the CVEs from last week, eg

• CVE-2021-43533 When parsing internationalized domain names, high bits of

the characters in the URLs were sometimes stripped, resulting in

inconsistencies that could lead to user confusion or attacks such as

phishing. This vulnerability affects Firefox < 9

• CVE-2021-44044 An out-of-bounds write vulnerability exists when a JPG file

using Open Design Alliance Drawings SDK before 2022.11. The specific issue

exists with parsing JPG files. Crafted data in a JPG (4 extraneous bytes

before the marker 0xca) can trigger a write operation past the end of an

allocated buffer. An attacker can leverage this vulnerability to execute code.

Erik Poll 9Radboud University Nijmegen

Two types of parsing flaws: processing vs forwarding

10

(abuse of) a feature !
2. Forwarding/Injection Flaws

back-end

service

malicious

input application

a bug !
application

malicious

input

1. Processing Flaws

eg. buffer overflow

in PDF viewer

Erik Poll Radboud University Nijmegen

eg. SQLi, XSS, or

.docx with macros

There are only two main types of input problems

1. Buggy processing & parsing

• Bug in processing input causes application to go of the rails

• Classic example: buffer overflow in a PDF viewer, leading to remote code

execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

• Input is forwarded to back-end service/system/API, to cause damage there

• Classic examples: * injection, XSS, format string attack, Word macros

This is intended behaviour of the back-end, introduced deliberately,

but exposed by mistake

It is unwanted parsing, rather than buggy parsing

11Erik Poll Radboud University Nijmegen

More back-ends, more languages,

more problems with unintended parsing …

12

SQL

databasemalicious

input

web

application

OS

web

browser

XSS

command

injection

SQLi

Erik Poll

file

systempath

traversal

format

string

attack

C library
LDAP server

JDNI

Radboud University Nijmegen

Log4Shell

How & where to tackle input problems?

13

application
malicious

input

Tackling processing flaws

p
a

rs
e

r

back-end

service

malicious

input

application

p
a

rs
e

r

?

?

Tackling forwarding flaws?

?

?

validation, sanitisation,

filtering, escaping, encoding?

LangSec remedies:

1. Simple & clear language spec;

2. generated parser code;

3. complete parsing before any

further processing

Erik Poll Radboud University Nijmegen

Anti-patterns

in tackling forwarding flaws

[LangSec revisited: input security flaws of the second kind, LangSec’2018]

[Strings considered harmful , USENIX :login;]

Anti-pattern: input escaping

• Input escaping, eg. processing inputs to escape dangerous

meta-characters, is a bad idea

• at the point of input, the context in which inputs will be used (eg as

path name, in SQL query, or as HTML) is unclear, and different contexts

require different sanitisations

• classic anti-example: PHP magicquotes

• Output escaping makes more sense, because there context is known

15

No input escaping
only input validation,

(ie rejecting invalid input)

back-end

service

application

p
a

rs
e

r

output escaping/encoding
to make output harmless

Erik Poll Radboud University Nijmegen

Anti-pattern: string concatenation

• Standard recipe for security disaster: concatenating several pieces of

data, some of them user input, and passing the result on to some API

• Classic example: SQL injection

• Note: string concatenation is inverse of parsing

16Erik Poll Radboud University Nijmegen

Anti-pattern: strings

More generally, the use of strings in itself is already troublesome

incl. char*, char[], String, string, StringBuilder, ...

• Strings are useful, because you use them to represent many things:

eg. name, file name, email address, URL, shell command, snippet of SQL,

HTML,…

• This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing often

involve some interpretation (incl. parsing)

2. The same string may be handled & interpreted in many

– possibly unexpected – ways

3. A string parameter in an API call can – and often does – hide a

very expressive & powerful language

17Erik Poll Radboud University Nijmegen

Remedies

to tackle forwarding flaws

Recall: Avoiding SQL injection with Prepared Statements

Instead of a raw string as single input (aka dynamic SQL)

"SELECT * FROM Account WHERE Username = " + $username

+ "AND Password = " + $password;

give a string with placeholders and the parameters as separate inputs

"SELECT * FROM Account WHERE Username = ? AND Password = ?" ,

$username ,

$password

19Erik Poll Radboud University Nijmegen

Recall: Avoiding SQL injection with Prepared Statements

Note that prepared statements (aka parametrised queries)

• reduce the expressive power of the interface to the back-end

• avoid unparsing in front-end

• (hence) avoid the need for parsing in the back-end

20Erik Poll Radboud University Nijmegen

Remedy: Types (1) to distinguish languages

• Instead of using strings for everything,

use different types to distinguish different kinds of data

Eg different types for HTML, URLs, file names, user names, paths, …

• Advantages

• Types provide structured data

• No ambiguity about the intended use of data

21Erik Poll Radboud University Nijmegen

Remedy: Types (2) to distinguish trust levels

• Use information flow types to track the origins of data

and/or to control destinations

• Ancient idea, going back to [Denning 1976]

• Eg untrusted user input vs compile-time constants

The two uses of types, to distinguish (1) languages or (2) trust levels,

are orthogonal and can be combined.

22Erik Poll Radboud University Nijmegen

Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving hard to get rid of, and hard to spot

Trusted Types initiative [https://github.com/WICG/trusted-types]

replaces string-based APIs with typed APIs to structurally root out XSS

• using TrustedHtml, TrustedUrl, TrustedScriptUrl,

TrustedJavaScript,…

• ‘safe’ APIs for back-ends that auto-escape untrusted inputs

[Wang et al., If It’s Not Secure, It Should Not Compile: Preventing DOM-Based XSS in

Large-Scale Web Development with API Hardening, ICSE’2021]

23Erik Poll Radboud University Nijmegen

Conclusions

• Most flaws are input flaws and most input flaws involve parsing

• Distinction between parsing vs forwarding flaws

……………… ..(- ie. buggy parsing vs unwanted parsing -

is a useful to analyse input problems

• Most of the LangSec efforts tackle buggy parsing,

but what about unwanted parsing? Remedies include:

• Don’t use strings

• Do use types, to distinguish

1) different languages, and/or

2) different trust levels

Output escaping then becomes safe(r) & sane(r)

These do’s are (programming) language-based security …… . ………

….as much as (input) language-theoretic security (ie LangSec)

Radboud University NijmegenErik Poll 24

Thanks for your attention

Submit your papers to LangSec’21 !

25Erik Poll Radboud University Nijmegen

