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LangSec (Language-Theoretic Security, see langsec.org) 

• Interesting look at root causes of large class of security problems, 

namely problems with input

• Useful suggestions for dos and don’ts

• The ‘Lang’ in ‘LangSec’ refers to input languages,                                        

not programming languages.

Sergey Bratus & Meredith Patterson 

‘The science of  insecurity’

CCC 2012
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‘Cybersecurity needs abstract thinking’- Giampaolo Bella

We face a never-ending stream of security vulnerabilities 

CVE-1999-0001: remote attacker can cause a denial of service via crafted 
packets to ip_input.c in BSD-derived TCP/IP implementations 

. . .

CVE-2021-44228 aka Log4Shell: remote attacker can execute arbitrary code 
by abusing JDNI features via LDAP injection in Apache Log4j2 <=2.14.1

These can be funny, interesting, clever, scary … or just depressing

How to see the wood for the trees?   
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Making sense of all these problems?

One approach: an ever-expanding list of categories of flaws

CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

. . . 

CWE-121: Stack-based buffer overflow

. . . 

CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold 
Environments.

The OWASP Top 10 and SANS/CWE Top 25 are useful, 

but what about the other 1300+ (!) categories of flaws?
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There’s only ONE main problem: input

• Aka the I/O attacker model

• Attacker’s goal:

Compromising integrity and/or availability of the application’s 

behaviour in any way  (aka ‘hacking’)

• Garbage In, Garbage Out  

quickly becomes  Malicious Garbage In, Security Incident  Out

aka   Garbage In, Evil Out
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HTML

renderer

pdf

viewer

Note that input is parsed aka decoded aka interpreted aka

deserialised aka …   as it moves up the technology stack

input problems
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LangSec: root causes & remedies

Input languages (aka protocols, file formats, encodings, … ) play a central 

role in causing security flaws In entire protocol stack, 

eg. IPv4/v6, Wifi, Ethernet, Bluetooth, USB, GSM/3G/4G/5G, TLS, SSH, 

OpenVPN, HTTP(S), X509, HTML5, URLs, email addresses, S/MIME, HTML, 

XML, XXE, LDAP, JDNI, PDF, JPG, MP3,  mpeg, .docx, …

Root causes of security problems here: 

• Overly complex,  poorly specified, and overly expressive input 

languages, and too many of them

• Handwritten parser code then results in lots of weird behaviour – bugs 

or ambiguities - for I/O attacker to have ‘fun’ with

Remedies: 

• simpler languages with clearer (formal!) specs

• generated parser code

8Erik Poll Radboud University Nijmegen



Most input problems are PARSING problems  

See just about all the CVEs from last week, eg

• CVE-2021-43533 When parsing internationalized domain names, high bits of 

the characters in the URLs were sometimes stripped, resulting in 

inconsistencies that could lead to user confusion or attacks such as 

phishing. This vulnerability affects Firefox < 9

• CVE-2021-44044 An out-of-bounds write vulnerability exists when a JPG file 

using Open Design Alliance Drawings SDK before 2022.11. The specific issue 

exists with parsing JPG files. Crafted data in a JPG (4 extraneous bytes 

before the marker 0xca) can trigger a write operation past the end of an 

allocated buffer. An attacker can leverage this vulnerability to execute code.
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Two types of parsing flaws: processing vs forwarding
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There are only two main types of  input problems 

1. Buggy processing  & parsing

• Bug in processing input causes application to go of the rails

• Classic example: buffer overflow in a PDF viewer, leading to remote code 

execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

• Input is forwarded to back-end  service/system/API, to cause damage there

• Classic examples: * injection, XSS, format string attack, Word macros

This is intended behaviour of the back-end, introduced deliberately, 

but exposed by mistake

It is unwanted parsing, rather than buggy parsing
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More back-ends, more languages,                          

more problems with unintended parsing …
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How & where to tackle input problems?
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LangSec remedies:

1. Simple & clear language spec;

2. generated parser code;

3. complete parsing before any 

further processing 
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Anti-patterns

in tackling forwarding flaws

[LangSec revisited: input security flaws of the second kind, LangSec’2018]

[Strings considered harmful , USENIX :login;]



Anti-pattern:  input escaping

• Input escaping, eg. processing inputs to escape dangerous            

meta-characters, is a bad idea

• at the point of input, the context in which inputs will be used           (eg as 

path name, in SQL query, or as HTML) is unclear, and different contexts 

require different sanitisations

• classic anti-example: PHP magicquotes

• Output escaping makes more sense, because there context is known
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Anti-pattern:  string concatenation

• Standard recipe for security disaster: concatenating several pieces of 

data, some of them user input,  and passing the result on to some API

• Classic example: SQL injection

• Note: string concatenation is inverse of parsing
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Anti-pattern:  strings

More generally, the use of strings in itself is already troublesome

incl. char*, char[], String, string, StringBuilder, ...

• Strings are useful, because you use them to represent many things:            

eg. name, file name, email address, URL, shell command, snippet of SQL, 

HTML,…

• This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing often 

involve some interpretation (incl. parsing) 

2. The same string may be handled & interpreted in many                              

– possibly unexpected – ways

3. A string parameter in an API call can – and often does – hide a 

very expressive & powerful language
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Remedies

to tackle forwarding flaws



Recall: Avoiding SQL injection with Prepared Statements

Instead of a raw string as single input (aka dynamic SQL)

"SELECT * FROM Account WHERE Username = " + $username 

+ "AND Password = " + $password; 

give  a string with placeholders and the parameters as separate inputs

"SELECT * FROM Account WHERE Username = ? AND Password = ?" ,  

$username ,

$password   
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Recall: Avoiding SQL injection with Prepared Statements

Note that prepared statements (aka parametrised queries)

• reduce the expressive power of the interface to the back-end

• avoid unparsing in front-end  

• (hence) avoid the need for parsing in the back-end
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Remedy: Types (1) to distinguish languages

• Instead of using strings for everything, 

use different types to distinguish different kinds of data

Eg different types for HTML, URLs, file names, user names, paths, …

• Advantages

• Types provide structured data

• No ambiguity about the intended use of data
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Remedy: Types (2) to distinguish trust levels 

• Use information flow types to track the origins of data                                        

and/or to control destinations

• Ancient idea, going back to [Denning 1976]

• Eg untrusted user input vs compile-time constants

The two uses of types, to distinguish (1) languages or (2) trust levels,    

are orthogonal and can be combined.
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Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving hard to get rid of, and hard to spot

Trusted Types initiative  [https://github.com/WICG/trusted-types]

replaces string-based APIs with typed APIs to structurally root out XSS

• using TrustedHtml, TrustedUrl, TrustedScriptUrl, 

TrustedJavaScript,…

• ‘safe’ APIs for back-ends that auto-escape untrusted inputs  

[Wang et al., If It’s Not Secure, It Should Not Compile: Preventing DOM-Based XSS in 

Large-Scale Web Development with API Hardening, ICSE’2021]
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Conclusions

• Most flaws are input flaws and most input flaws involve parsing

• Distinction between parsing vs forwarding flaws                                                                      

………………       ..( - ie. buggy parsing vs unwanted parsing -

is a useful to analyse input problems  

• Most of the LangSec efforts tackle buggy parsing,                                       

but what about unwanted parsing? Remedies include:

• Don’t use strings

• Do use types, to distinguish 

1) different languages, and/or 

2) different trust levels

Output escaping then becomes safe(r) & sane(r)

These do’s are  (programming)  language-based security       ……       .  ………                                                  

….as much as  (input)  language-theoretic security (ie LangSec) 
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Thanks for your attention

Submit your papers to LangSec’21 !
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