
Attacking sessions (continued),

at application level 

&   

at HTTPS/TLS level

Güne&scedil; Acar & Erik Poll 

Digital Security group

Radboud University Nijmegen

websec 1



Recap: sessions at application level

websec 2

<a href=“https://bank.nl/pay?...”>pay</a>
bank.nl

server

https://bank.nl/page.html 1. page.html

2. pay request

Pay request needs to include session information aka session token(s)

Two ways to do this:

1. Bank provides page.html that includes this info 

as URL parameter (eg below) or in body of  HTTP request

 https://bank.nl/pay?sessionID=XYZ123&amount=1.00&dest=12.34.56

2. Bank sets a cookie and browser automatically adds this info



NB: identification vs authentication

Session information serves two distinct purposes:

1. identification

who is the web server talking to

2. authentication

verifying that this person is who they claim to be

Could Brightspace use your student-nr for this? 

For 1, but not for 2

Different pieces of  information can be used for 1 and for 2

websec 3



Attack 1)  CSRF - the downside of  cookies

websec 4

<a href=“https://bank.nl/pay?...”>pay</a>

bank.nl

server

https://bank.nl

pay request

<a href=“https://bank.nl/pay?...”>pay</a>

https://mafia.com

pay request

Browser attaches cookie to cross-domain requests from any site



Countermeasure: (anti)CSRF token

websec 5

<a href=“https://bank.nl/

                 pay?token=32451...”>pay</a>

bank.nl

server

https://bank.nl

pay request

        plus fresh token

<a href=“https://bank.nl/pay?...”>pay</a>

https://mafia.com

pay request

page.html with fresh token



Other countermeasures against CSRF

• Let client re-authenticate before important actions

– eg. when resetting their password, or making big bank transfer

• Set SameSite flag for the cookie  (since 2017)

– strict cookie never attached to cross-site requests

– lax cookie only attached to top-level GET requests

i.e. GET requests which change the address bar to bank.nl                           

(so not for loading an iframe from bank.nl on mafia.com)
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

• Check  Refer(r)er or Origin headers

Browser includes these in HTTP requests to indicate where  

request is made from (eg mafia.com or bank.nl), so bank.nl can 

check which webpage made the request

Origin is just the domain,   Referer the domain plus the path

• Let browser add Sec-Fetch-Site header to distinguish cross site 

requests (since 2019)

websec 6



Refer(r)er and   Origin

These headers may be absent  :

• Browser can be configured not to include these header, for privacy 

reasons

• Website can specify Referrer Policy to tell browser not to include 

them under certain conditions (eg when making HTTP request from HTTPS 

context, only for requestions within the same site, ...)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

websec 7



Sec-Fetch-Site

Browser includes  Sec-Fetch-Site:<value> in HTTP requests

where <value> is

– none if  user types in URL or selects bookmark 

– cross-site if  user clicks link to bank.nl on page from say 

mafia.com

– same-site or same-origin if  user clicks link to bank.nl on 

page from bank.nl

• same-site if  scheme (ie https vs http) and domain are the same;  

same-origin if  port number is also the same

Similar to Referer or Origin, but without privacy drawbacks 

Check if  your browser support this on                                                                              
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Site

websec 8



Attack 2)  Stealing cookies with scripts (XSS)

• If  attacker can malicious JavaScript into pages of  bank.nl website, 

this code can inspect the cookies and send them anywhere on the 

internet, including to https://mafia.com 

• Such an attack, called Cross Site Scripting (XSS) attacks will be 

discussed in next weeks

• Solution: cookie has be declared as HttpOnly

– This means the cookie is only used for sending along with HTTP 

requests & not accessible to scripts in the webpage

websec 9



HTTPS prevents eavesdropper from observing cookies 

(and other session info)

But: active MitM attacker can so more...  

How can you do a MitM attack?

1. attacker on (wired/wireless) network 

2. ISP

3. fake website   eg. bank.ni

Attack 3)  Stealing cookies as MitM  

websec 10

bank.nl

HTTPS



HTTP

Stealing cookies as MitM

1. User logs on to https://bank.nl

2. Server sets session ID for bank.nl in cookie

– which is encrypted in HTTPS-traffic, so attacker cannot steal it

3. User does their banking                                                                                   
….

4. User asks for unencrypted HTTP link (eg http://nu.nl)

5. MitM attacker replies with a redirect to http://bank.nl

6. Browser follows redirect and sends the bank’s cookie over HTTP

7. Bingo! Attacker has the cookie

Solution: set secure flag for cookie which disallows browser to 

ever send it over HTTP

websec 11

bank.nl

HTTPS



Recap: cookie flags

The three cookie flags

1. secure only ever sent cookie over HTTPS, never over HTTP

Encrypting the cookie itself, when it is sent over HTTP, is pointless.

Why?

Attackers can simply replay a stolen encrypted cookie!

2. HTTPonly inaccessible to scripts 

Confusing name: HTTP(S)Onlywould be better

3. SameSite not added to links from different sites

protect against three different attacker models

1. protects against eavesdropping and MitM

2. protects against client-side scripts injected into the ‘real’ 

website  (discussed in later lecture)

3. protects against malicious sites that link to a benign site 

(CSRF)

websec 12



Attacking HTTPS

websec 13



What are we trusting? And for what?

websec 14

bank.nl

Certificate

Authority 

(CA)

eg

Certificate             
for domain bank.nl 

issued by CA

to bank.

Public key XYZ  

Certificate             

CRL

(certificate 

revocation list)            



TCB

• TCB = Trusted Computing Base

• TCB of  a security control or security guarantee                                     
is everything (people, software, computers, ...) that we have to 

trust for that control or guarantee

• There will be different TCBs for different controls/guarantees

websec 15



DV, OV and EV SSL certificates

Certicate Authority (CA) can validate who is requesting a 

certificate for a domain in different ways:

• DV (Domain Validation) certificates

– Email check to validate that this is the owner of  that domain,                        

using whois information (eg via https://www.sidn.nl/whois) 

– Free via Let'sEncypt since 2016

• OV (Organisation Validation) certificates

– Additional check on identity & existence of  the organisation

eg against Chamber of  Commerce records

• EV (Extended Validation) certificates

– More rigorous check on identity of  the organisation

– How much extra security EV gives over OV brings is debatable...

Certificates can be wild-card certificates,                                                                                  

eg for  *.ru.nl instead of  www.ru.nl

websec 16



Things that go wrong ... 

Certificate Authority DigiNotar

was hacked in 2011. 

Fake certificates for google.com 

were issued, presumably for

use in Iran

DigiNotar provided all the 

certificates for the NL government...

Problem detected because the Chrome browser checks for 
suspicious certificates for google.com

Darknet Diaries has a great podcast episode on this:

https://darknetdiaries.com/episode/3/

sws2 17



Things that go wrong

https://www.washingtonpost.com/technology/2022/11/08/trustcor-internet-addresses-government-connections/

websec 18



Certificate Transparency (CT)

Solution to detect mis-issued certificates

issued by corrupt insider, by hacked CA, or by mistake

• CT is public append-only ledger of  all issued certificates by all CAs

– See https://crt.sh

• Organisations can spot if  a rogue certificate is issued in their name

i.e. someone at Radboud could/should periodically check there are no 

rogue certificates issued for ru.nl

• Certificate submitted for inclusion in CT log get a signed timestamp 

to prove it has been included. So browser can check this.  CT log

– Different browsers use different policies to accept or warn about 

certificates that miss such a proof

websec 19

https://crt.sh/


Mixing http & https

A web page can mix http & https content, but this is a bad idea!

• Why would you never want to have an frame loaded via http inside a 
webpage loaded via https?  

Web browsers nowadays warn about or block mixed http/https 

content.

Demo: check out how this works in your browser, by visiting
http://www.cs.ru.nl/~erikpoll/websec/demo/mixed_content.html

https://www.cs.ru.nl/~erikpoll/websec/demo/mixed_content.html

This demo no longer works in Firefox, but it does in Chrome

websec 20



Simple SSL stripping :  HTTP + HTTPS

The idea: the attacker forces the browser to fall back to HTTP and 

hopes the user won’t notice the missing s

When can the attacker do this? If  the user

a) types in rabobank.nl, without https in front of  it

b) begins a HTTPS session by clicking on a link in a webpage 

that was retrieved with HTTP

websec 21

bank.nl

HTTP HTTPS



Normal start of  HTTPS session via HTTP request

user                                                                                         website

websec 22

user connected
with HTTPS

user types in

rabobank.nl
request for

http://rabobank.nl

redirect (302) to

https://rabobank.nl

browser

follows redirect https://rabobank.nl



MitM attack on such a session

user                                         MitM                                        website

websec 23

careful user will
notice missing s in 

browser toolbar

request for

http://rabobank.nl

redirect (302) to

https://rabobank.nl

change HTTPS links

to HTTP links

https://rabobank.nl

server thinks
there is 
nothing 
wrong!

user types in

rabobank.nl

attacker follows 

redirect  



• The MitM attacker 

– strips S from HTTPS in links in traffic from server to user

– puts this S back in traffic from the user to the server

• The result

• The attacker can now intercept a username and password that 
the user sends

• After intercepting this information, the attacker could stop the
MitM attack 

– and the user can then no longer see anything wrong!

• Attacker could also make arbitrary alterations to the web page

SSL stripping 

websec 24

bank.nl

HTTP HTTPS



Spotting this attack?

Modern browsers will warn about “insecure website”

In older browsers, only very careful users would spot this attack 

by noticing that the URL misses an s in https

websec 26



Countermeasures to SSL stripping

• HTTPS Everywhere browser plugin

– ie. simply never use HTTP

https://www.eff.org/deeplinks/2021/09/https-actually-everywhere

• HSTS (HTTP Strict Transport Security)

websec 27



HTTP Strict Transport Security (HSTS)  [RFC6797]

Protection against SSL stripping 

1. website (e.g. bank.nl) tells browser that it only ever wants to 

use HTTPS, in HTTP response header

Strict-Transport-Security: max-age=15768000; 

includeSubDomain

2. the browser remembers this, and turn future http requests for 

that domain into https requests

Eg browser will turn  http://bank.nl/rekening/...                         

into   https://bank.nl/rekening/...

HSTS is now supported by all browsers. 

websec 28



On very first visit to bank.nl, the browser stores some 

information, recording that bank.nl wants to talk HTTPS only. 

For subsequents visits

bank.nl

HSTS

websec 29

user connected
with HTTPS

user types in bank.nl, 

or clicks http link
request for

https://bank.nl

browser changes 

this to HTTPS



Checking for HSTS usage

• In browser

– In Firefox: 

type about:support in the address bar. In the Application Basics 

section, you will see Profile Folder. Click Open Folder, an look for 
file SiteSecurityServiceState.txt

– In Chrome:                                                                    

type  chrome://net-internals/#hsts in address bar 

• In HTTP traffic:                                                                                                  
look for HSTS field in HTTP header, of  the form  

Strict-Transport-Security: max-age=15552000; preload

On Linux, with curl -si "https://www.ru.nl" | grep Strict

websec 30



Remaining problem with HSTS

• Remaining risk with very first  request to a site

– a MitM attacker could SSL strip that first request, and 

remove the HSTS header in the HTTP response

• Solution: HSTS preload list included in browser that specifies 

HSTS for some sites, so even first request cannot be with HTTP

Check https://hstspreload.org/

• New privacy risk with HSTS: HSTS info stored in your browser 

can reveal which sites have been visited… 

even if  you do this in private browsing mode?

websec 31



Recap

• HTTPS protection fails if  attacker can obtain mis-issued 

certificate

– CT (Certificate Transparency) can help to detect this

• Active MitM attacker could SSL strip

– Tricky in modern browsers given all the warnings

– HTTPS-only and HSTS prevent this

• Without being on HSTS preload list an HSTS website could still 

be SSL stripped on a very first visit. 

– Support for HSTS mandatory for Dutch government websites 

since July 1st, 2023 (Wet digitale overheid)

websec 32


	Slide 1
	Slide 2: Recap: sessions at application level
	Slide 3: NB: identification vs authentication
	Slide 4: Attack 1)  CSRF -  the downside of cookies
	Slide 5: Countermeasure: (anti)CSRF token
	Slide 6: Other countermeasures against CSRF
	Slide 7: Refer(r)er   and   Origin
	Slide 8: Sec-Fetch-Site  
	Slide 9:  Attack 2)  Stealing cookies with scripts (XSS)
	Slide 10: Attack 3)  Stealing cookies as MitM  
	Slide 11: Stealing cookies as MitM
	Slide 12: Recap: cookie flags
	Slide 13: Attacking HTTPS
	Slide 14: What are we trusting? And for what?
	Slide 15: TCB
	Slide 16: DV, OV and EV SSL certificates
	Slide 17: Things that go wrong ... 
	Slide 18: Things that go wrong
	Slide 19: Certificate Transparency (CT)
	Slide 20: Mixing http & https
	Slide 21: Simple SSL stripping :  HTTP + HTTPS
	Slide 22: Normal start of HTTPS session via HTTP request  
	Slide 23: MitM attack on such a session
	Slide 24: SSL stripping 
	Slide 26: Spotting this attack?
	Slide 27: Countermeasures to SSL stripping
	Slide 28: HTTP Strict Transport Security (HSTS)  [RFC6797]
	Slide 29: HSTS
	Slide 30: Checking for HSTS usage
	Slide 31: Remaining problem with HSTS
	Slide 32: Recap

