
Web Security

Server-side security risks

(esp. injection attacks)

websec 1

Attacker models

1. Man-in-the-Middle
attacker

2. Spoofed/fake website

3. Attacks on web servers

 (this week)

4. Attacks on browsers
& users

 (next weeks)

websec 2

web

server
browser

web

server

browser

browser
web

server

malicious input

Don’t let the cute emoji fool you!

There can be really nasty people & organisations hiding behind it

Omri Lacie & Shalev Hulio

of NSO Group

One of the makes of the Mirai botnet

https://en.wikipedia.org/wiki/List_of_computer_criminals

https://www.fbi.gov/wanted/cyber

https://krebsonsecurity.com

Security concerns with

static web pages

websec 4

Security worries for static HTML

Recall the first stage of the evolution of the web: static HTML

Security risk:

• Accidentally exposing parts of the file system on the internet

 http://www.cs.ru.nl/~erikpoll/websec/exam/exam2024.pdf

• Such files can even be indexed by search engines

Countermeasures

• The OS (Operating System) imposes access control on the

web server

• .htaccess file can be used to configure which files are

exposed to the internet by the web server.

• Access restrictions for automated web crawlers, as used by
search engines, can be specified in robots.txt files,

– but it is up to the client to respect these - or not…

websec 5

Security concerns with

dynamically created web pages

websec 6

Most web pages you see are dynamically created

Recall: dynamically created web pages

websec 7

execution to dynamically

create a webpage

web

server
browser

dynamically

generated HTML

CGI (Common Gateway Interface)

Old-fashioned way to have dynamically generated web pages

Given an HTTP request to a cgi executable

http://bla.com/cgi-bin/my_script?yr=2014&str=a%20name

the web server executes the program my_script

passing parameters as input, and

returning the (HTML) output to client.

For the URL above, the web server would execute

cgi-bin/my_script 2014 "a name"

The executable my_script can be in any programming language

websec 8

Example: CGI perl script

#!/usr/bin/perl

print "Content-type: text/html\n\n";

print <<HTML;

<html>

<head> <title>My first perl CGI script </title>

</head>

<body> <p>Hello World</p>

</body>

</html>

HTML

exit;

websec 9

Languages & frameworks for the web

CGI is simple but very clumsy

Therefore people made:

• dedicated programming languages for web applications

PHP, Ruby on Rails, Adobe ColdFusion, ...

• web frameworks offering a lot of standard software

components

Drupal (PHP), Spring (Java),

React, Angular, AngularJS (JavaScript),

ASP.NET (Microsoft CLR/.NET), …

websec 10

Example PHP script

<html> <title>A simple PHP script </title>

<body>

The number you choose was

<?php echo $x = $_GET['number']; ?>

This number squared plus 1 is

<?php $y = $x*$x; $y++; echo $y; ?>

Btw, I know that your IP address is

<?php echo $_SERVER['REMOTE_ADDR']; ?>

<script> alert('Hello World!'); </script>

</body>

</html>

This looks just like an HTML page, with pieces of PHP code in it.

PHP code is executed server-side ; browser only sees the resulting HTML

JavaScript code in the HTML is executed client-side.

websec 11

Security worries with dynamically

created web pages

websec 12

Command injection (in a CGI script)

A CGI bash script might contain

cat thefile | mail clientaddress

to email a file to a user-supplied email address.

How would you attack this?

erik@cs.ru.nl ; rm –fr /

What happens then ?

cat thefile | mail erik@cs.ru.nl ; rm –fr /

13websec

OS command injection

Any server-side code that uses client input to interact with the

underlying OS might be used to inject commands to the OS.

This is possibly in any programming language.
Dangerous things to look out for

– C/C++ system(), execvp(), ShellExecute(), ..

– Java Runtime.exec(), ...

– Perl system, exec, open, `, /e, ...

– Python exec, eval, input, execfile, ...

How would you prevent this or mitigate the potential impact?
1. input sanitisation: check for malicious inputs

• easier said than done…

2. the server should run with minimal rights
• eg. you don’t want to run it as super-user/admin

14websec

How would you attack this?

Suppose a website contains a link

http:/somesite.com/get-files.php?file=exam2023.pdf

exam2023.pdf looks like a filename…

You can try any other filename, e.g. exam2024.pdf

Or even any other path name, e.g. ../../../etc/passwd

Known as path traversal or directory traversal attack

websec 15

Directory traversal aka path traversal

Consider PHP code below,

which uses PHP string concatenation operator .

$base_dir = ”/usr/local/clientdata/”;

echo file_get_contents($base_dir .

$_GET[’username’]);

// concatenates base_dir and username

This can be attacked in the same way.

16websec

DoS by directory traversal

Directory traversals can also cause Denial-of-Service,
if you access

• a file or directory that does not exists

– This may crash a web application, though it’s unlikely

• device files, ie pseudo-files that provide interfaces to devices

– /var/spool/printer

This printer queue cannot be opened for reading, only for writing.

Opening it for reading may cause web application to hang.

– /dev/urandom

The random number generator that provides infinite stream of

random numbers

17websec

Real life example

Thanks to Arne Swinnen. See his blog at http://www.arneswinnen.net.

websec 18

Page in

Dutch,
based on IP

address or

language

settings of

browser/OS

websec 19

websec 20

No error

message: ./en

gives same

result as en

Strange input leads to the Dutch page. Why?

websec 21

Presumably the

page reverts to

the default

language if value

of hl gives an

error

Looking up some documentation
(for Django framework used by Instagram)

websec 22

websec 23

Webpage in

English, so

../locale/en

exists

Using fuzzdb to fuzz common file names

websec 24

Success!

websec 25

Fuzzdb finds 42 hits for ../<GUESS>/../locale/nl/

Facebook’s bug bounty program paid Arne 500$

Trying out

could have caused serious damage

The NULL trick

If the attacker’s input ends up in the middle of a concatenation,

this limits the scope of the attack.

For instance, by supplying malicious <INPUT> to

/usr/local/web/conf/<INPUT>.html

then attacker can only access files with .html extensions

But: with NULL character, URL-encoded as %00, at the end of

<INPUT>, the web server may ignore the rest of the string

websec 26

More recent example

Path traversal weakness in a back-end API

Explanation at https://www.youtube.com/watch?v=sjvW79tjWoM

websec 27

Fooling Starbuck’s Web Application Firewall (WAF)

Starbuck’s WAF disallows multiple ..

So you cannot include ../.. in your malicious input 

How would you circumvent this?

Type .././.. instead ☺

A WAF (Web Application Firewall) sits in front of the web server and tries

to filter very generic malicious inputs. Some WAFs are pretty crappy…

websec 28

web

server

W

A

F

	Slide 1: Web Security Server-side security risks (esp. injection attacks)
	Slide 2
	Slide 3: Don’t let the cute emoji fool you!
	Slide 4: Security concerns with static web pages
	Slide 5
	Slide 6: Security concerns with dynamically created web pages
	Slide 7
	Slide 8: CGI (Common Gateway Interface)
	Slide 9: Example: CGI perl script
	Slide 10: Languages & frameworks for the web
	Slide 11: Example PHP script
	Slide 12: Security worries with dynamically created web pages
	Slide 13: Command injection (in a CGI script)
	Slide 14: OS command injection
	Slide 15: How would you attack this?
	Slide 16: Directory traversal aka path traversal
	Slide 17: DoS by directory traversal
	Slide 18: Real life example
	Slide 19
	Slide 20
	Slide 21: Strange input leads to the Dutch page. Why?
	Slide 22: Looking up some documentation (for Django framework used by Instagram)
	Slide 23
	Slide 24: Using fuzzdb to fuzz common file names
	Slide 25: Success!
	Slide 26: The NULL trick
	Slide 27: More recent example
	Slide 28: Fooling Starbuck’s Web Application Firewall (WAF)

