
Privacy risk: ETags for cached images

ETags (entity tags) are identifiers added to control caching

Browser tells server which version of image it has cached;

This allows server to identify a user by adding unique Etag

Demo-ed at https://cable.ayra.ch/toys/track.php

websec 1

Server uses ETag

value to determine if

image needs to be

reloaded

Browser

provides

ETag value

Today:

More attacks on clients, esp. the user

URL obfuscation,

Click-jacking/UI redressing,

CSRF revisited

2

Securing the last 30 centimeter...

We can secure connections between computers 1000s of miles apart,

eg using TLS,

but the remaining 30 cm between user and laptop remain a problem

Beware: blaming the ‘dumb user’ is usually unfair victim blaming.

We should blame computer scientists & engineers for making poor

solutions

websec 3

1000s of miles30 cm

Securing the last 30 centimeter...

We can secure connections between computers 1000s of miles apart,

eg using TLS,

but the remaining 30 cm between user and laptop remain a problem

Beware: blaming the ‘dumb user’ is usually unfair victim blaming.

We should blame computer scientists & engineers for making poor

solutions

websec 4

1000s of miles30 cm

benign content

malicious

content

Attacker model (1) : malicious content on benign site

5

Such malicious content can be

1. 3rd party iframe (intentionally included, separated with SOP)

2. user-provided content

(e.g. Facebook post; same-origin, so SOP imposes no restrictions)

3. injected with HTML injection or XSS

Malicious site could for instance phish for logins & passwords.

It could also include malicious links to the attacked website,

eg for CSRF attacks

Attacker model (2) : a malicious website

6

Attacker model (3): malicious website with genuine iframe

7

genuine

content

Does SOP help here?

Yes, SOP protects against malicious site from observing or messing

with trusted content – and vice versa

• but, as we will see, user can still be misled

Would you trust these URLs?

• https://www.paypal.com:get_request%2Eupdate&id=234782&

Recall that a URL can have the form

https://username:password@host/....

So what is the domain we are accessing?

• https://www.paypal.com

How do you know that the first p is not a Cyrillic character?

websec 8

Browser warnings – about strange character sets

websec 9

Punycode encoding of unusual characters

Highlighting domain name in the address bar

Alternative: show the organisation name from the certificate

websec 10

URL obfuscation attacks

Attacker tries to confuse the user (in e.g. phishing attack) by

• including a username before the domain name

https://www.visa:com@%32%32%30%2E%36%38%2E%32%31%34%2E...

which translates to the IP address 220.68.214.213

• using strange Unicode characters in a homograph attacks

https://paypal.com with a Cyrillic p

Countermeasures:

1. Punycode: encode Unicode as ASCII to reveal funny characters

www.xn-pypal-4ve.com

2. Domain highlighting: show which part of URL is the domain name

Browser bugs may offer more opportunities to confuse users.

• A bug in Internet Explorer displayed URLs with null character,

eg. http://paypal.com%00@mafia.com, incorrectly

websec 11

Newer homograph attack [2017, still works in some browsers]

Some browsers display https://xn--80ak6aa92e.com

as apple.com

Problem:

browser uses puny encoding if URL mixes several characters sets,

but not if all characters are from one - unusual - character set

See https://www.xudongz.com/blog/2017/idn-phishing/

For you to do: check if this attack works in the browser(s) you use.

websec 12

https://www.xudongz.com/blog/2017/idn-phishing/

UI confusion on mobile phones [2019]

Chrome on mobile phone hides URL bar when you scroll down.

Attacker can abuse this feature to display a fake URL bar.

See https://jameshfisher.com/2019/04/27/the-inception-bar-a-new-phishing-method/

13

https://jameshfisher.com/2019/04/27/the-inception-bar-a-new-phishing-method/

Is this pop-up window legit?

The URL is a https-link

to facebook.com; clicking

lock shows valid certificate

No, this is not a pop-up window displayed by your browser,

but a fake pop-up rendered inside a malicious webpage

How can you tell?

You can move this ‘pop-up window’ inside the webpage window

but you cannot drag it outside of the browser window

See https://myki.com/blog/facebook-login-phishing-campaign

and or https://youtu.be/nq1gnvYC144

UI confusion on desktops [2019]

14

https://myki.com/blog/facebook-login-phishing-campaign
https://youtu.be/nq1gnvYC144

Click-jacking & UI redressing

15

UI = User Interface

UX = User Experience

HMI = Human-Machine Interface

Click-jacking & UI redressing

• These attacks try to confuse the user into unintentionally

doing something, such as

– clicking some link

– providing text input to some fields

• These attacks abuse trust that users have in a webpage and
their browser

– ie. the trust that users have in what they see

– What you see may not be what it is!

16

web

browser
web server

XSS

Clickjacking

UI redressing

Click-jacking & UI redressing

Terminology is very messy

• Click-jacking and UI redressing can be regarded as synonyms,

but some people see UI redressing as a way to achieve clickjacking,

while others see click-jacking as an ingredient in UI redressing

• To add to the confusion, these attacks often come in combination with

CSRF or XSS

17

Basic click-jacking

Make the victim unintentionally click on some link

<a onMouseUp=window.open("http://mafia.org/")

href="http://www.police.nl">Trust me, it is safe to

click here, you will simply go to police.nl

See demo

http://www.cs.ru.nl/~erikpoll/websec/demo/clickjack_basic.html

Why would attacker want to do this?

• Some unwanted side-effect of clicking the link
Especially if user is automatically authenticated by the target

website (thanks to cookie), ie. CSRF

• Click fraud

18

Business model for click jacking: click fraud

• Web sites that publish ads are paid for the number of click-

throughs (ie, number of visitors that click on these ads)

• Click fraud: attacker tries to generate lots of clicks on ads,

that are not from genuinely interested visitors

• Motivations for attacker

1. generate revenue for web site hosting the ad

2. generate costs for a competitor who has to pay for clicks

on their advertisements?

19

Click fraud

Other forms of click fraud (apart from click-jacking)

• Click farms (hiring individuals to manually click ads)

• Pay-to-click sites (pyramid schemes created by publishers)

20

• Click bots (hijacked computers in botnet, running software to

automate clicking)

Criminal business models: YouTube views

Alternative business model to click fraud: generate & sell views,

likes, ... for websites that ranks results based on views, likes, ...

websec 21

Criminal business models: YouTube likes

websec 22

Criminal business models: selling traffic or clicks

websec 23

Criminal business models: selling traffic or clicks

websec 24

Example clickjacking attack:
with age confirmation check

25

Example clickjacking attack

Inspecting HTML source to see what you are actually clicking

Inspecting contents of these Amazon S3 buckets leads to

26

https://mobile.facebook.com/v2.6/dialog/share?app_id=283197842324324

&href=https://example.com&in_iframe=1&locale=en_US&mobile_iframe=1

Example clickjacking attack

Clicking age confirmation shares a post on Facebook.

Such clickjacking can get you many likes or shares!

Attack only worked in the Facebook mobile app,

not in a normal browser

• NB the Facebook app ‘is’ (or ‘includes’) a web-browser

Read the description at
https://malfind.com/index.php/2018/12/21/how-i-accidentaly-found-clickjacking-in-facebook/

27

https://malfind.com/index.php/2018/12/21/how-i-accidentaly-found-clickjacking-in-facebook/

UI redressing

Attacker creates a malicious web page that includes elements of

a target website, esp. links victims can click.

• With iframe (inline frame) with content from attacked website

– iframes allow flexible nesting, cropping, and overlapping

Two approaches

1. “steal” a button with non-specific text

2. make a iframe transparent

NB esp. 1 looks a lot like CSRF, as we’ll discuss later

28

Old UI redressing example

Tricking users into altering security settings of Flash

• Load Adobe Flash player settings into an invisible iframe

• Click will give permission for any Flash animation to use the

computer's microphone and camera

29

UI redressing example

Trick users into confirming a financial transaction

30

UI redressing example

Trick users to login to a banking website

31

Click-jacking and UI redressing: abusing trust

• These attacks abuse trust users have in a webpage

– in what they see in their browser

• These attacks also abuse trust the web server has in browsers

– Web server trusts that all actions from the browser

performed willingly & intentionally by the user

• Some browser will prevent users from interacting with

transparent content

Check if your browsers does at
http://www.cs.ru.nl/~erikpoll/websec/demo/clickjack_some_button.html

http://www.cs.ru.nl/~erikpoll/websec/demo/clickjack_some_button_transparent.html

32

http://www.cs.ru.nl/~erikpoll/websec/demo/clickjack_some_button.html
http://www.cs.ru.nl/~erikpoll/websec/demo/clickjack_some_button_transparent.html

Variations of click-jacking

• like-jacking and share-jacking

• cursor-jacking
(See https://www.cs.ru.nl/~erikpoll/websec/demo/cursor-jacking.html)

• file-jacking (unintentional uploads in Google Chrome)

• event-jacking

• class-jacking

• double click-jacking

• content extraction

• pop-up blocker bypassing

• stroke-jacking

• event recycling

• SVG (Scalable Vector Graphics) masking

• tap-jacking on Android phones

• ...

33

https://www.cs.ru.nl/~erikpoll/websec/demo/cursor-jacking.html

Countermeasures against

click-jacking & UI redressing

34

Frame busting

Countermeasure to prevent being included as iframe:

webpage tries to bust any frames it is included in

• Example JavaScript code for frame busting

if (top!=self){

top.location.href = self.location.href

}

• top is the top or outer window in the DOM;

self is the current window

• If an iframe executes this code, it will make itself the top window.

• For a demo, see

https://www.cs.ru.nl/~erikpoll/websec/demo/framebusting1.html

which includes a frame-busting iframe

https://www.cs.ru.nl/~erikpoll/websec/demo/framebuster.html

Lots of variations possible, some more robust than others

35

Busting frame busting

Recall sandboxing of iframes (discussed 2 weeks ago):

This allows attacker to restrict capabilities of a victim iframe

• eg. iframe be disallowed to change top.location

This can block the framebusting

• Example HTML code for sandboxing:

<iframe sandbox="allow-scripts allow-forms"

src="facebook.html"> </iframe>

– allow-scripts: allow scripts

– allow-forms: allow forms

– there is no allow-top-navigation, so the iframe is not
allowed to change of top.location

For a demo, see
https://www.cs.ru.nl/~erikpoll/websec/demo/framebusting2.html

36

Better solution: X-Frame options

X-Frame-Options in HTTP response header introduced to indicate

if webpage can be loaded as iframe

• Possible values

DENY never allowed

SAMEORIGIN only allowed if other page has same origin

ALLOW-FROM <url> only allowed for specific URL (Only ?)

• Simpler than using JavaScript to do frame busting,

and cannot be disabled with HTML sandboxing

• CSP (Content Server Policy) also provides ways to do this,

but given the complexity of CSP, many sites continue to use
X-Frame-Options

37

Example: website with age confirmation check

Why doesn’t Facebook use X-Frame-Options to prevent

malicious inclusion of share or like buttons?

Facebook does set X-Frame-Options to DENY, but only for

content served to a normal web browser, not for content sent to

their mobile facebook app

See also

https://malfind.com/index.php/2018/12/21/how-i-accidentaly-found-clickjacking-in-facebook/

38

Browser protection against UI redressing

Firefox extension NoScript has a ClearClick option,

that warns when clicking or typing on hidden elements

How this works:

• Activated when user clicks on

object in an iframe

• Comparison made between

screenshots of

a) the web page

b) the web page with any

opaqueness/transparency

in iframe turned off

• If screenshots differ, user is warned

and screenshot is shown so user can

evaluate it themselves

39

CSRF revisited

40

Recall : CSRF abuses cookies without stealing them

Attacker sets up malicious website mafia.com with link to bank.com

<a href=“https://bank.com/transferMoney?amount=1000

&toAccount=52.12.57.762”>

If victim visits mafia.com and click this link,

then if they are logged in to the back,

this request will be sent with the victim’s cookies for bank.com

websec 41

CSRF

• Ingredients

– malicious link or JavaScript on attacker’s website

– automatic authentication by cookie at targeted website

• Requirements

– the victim must have a valid cookie for the attacked website

– that site must have actions which only require a single HTTP

request

• It’s a bit like click-jacking, except

• it does not involve UI redressing

• if JavaScript is used, it is more than just clicking a link

42

CSRF on GET vs POST requests

Action on the targeted website might need a POST or GET request

• Recall: GET parameters in URL, POST parameters in body

• For action with a GET request:

– Easy!

– Attacker can even use an image tag <img..> to execute
request

<img scr=“http://bank.com/transfer?amount=1000

&toAccount=52.12.57.762”>

• For action with a POST request:

– Trickier!

– Attacker cannot append data in the URL

– Instead, attackers can use JavaScript on own website to make a
form which then results in a POST request to the target website

43

CSRF of a POST request using JavaScript

If bank.com uses

<form action=”transfer.php” method=”POST”>

To: <input type=”text” name=”to”/>

Amount: <input type=”text” name=”amount”/>

<input type=”submit” value=”Submit”/>

</form>

attacker could use

<form action=”http://bank.com/transfer.php” method=”POST”>

<input type=”hidden” name=”to” value=”52.12.57.762”/>

<input type=”hidden” name=”amount” value=”1000” />

<input type=”submit”/>

</form>

<script> document.forms[0].submit(); </script>

Note: no need for victims to click anything!

The JavaScript code clicks it for them

44

Countermeasures against CSRF

-

which might also help against clickjacking?

45

Recall: Countermeasures against CSRF [week 2 & 3]

1. Let client re-authenticate before important actions

2. Keep sessions short

3. Anti-CSRF token [aka Tokenization]

– an unpredictable CSRF token as hidden parameter in requests
that changes every time

4. Looking at the Referer or Origin headers

5. Setting SameSite flag for cookies

6. Let browser add Sec-Fetch-Site header to distinguish cross site
requests and let your server check these

Which of these help against click-jacking/UI redressing?

• 1&2 obviously help.

• 3 does not help; if mafia.com’s webpage loads ‘fresh’ iframes from
bank.com, links inside these iframes probably have valid tokens.

• 4-6 help, but what counts as same site for SameSite or cross-origin for
Sec-Fetch-Site gets confusing! See example on next slide.

46

CSRF vs UI redressing: defenses

CSRF attack: suppose a webpage from mafia.com (or an HTML email send by

mafia) includes a link to bank.

<html> . . .

</html>

• If bank cookies are declared as SameSite, the browser will not attach these

cookies if link is clicked.

• Also, the browser will mark this request as cross-origin with Sec-Fetch-

Site.

• If bank includes anti-CSRF tokens in links, e.g. the link should be

http://bank.com/transfer?amount=1000 &toAccount=52.12.57.76&token=097123571

the mafia people have no way of predicting a valid value for that token

So all these defences help against this CSRF attack.

(Btw, it is unlikely that a bank transfer could be done with a simple GET request.)

47

CSRF vs UI redressing: defenses

UI redressing/clickjacking attack: suppose a webpage from mafia.com includes an

iframe from bank.com

<html> . . .

<iframe src=http://bank.com/somepage.html?param=...></iframe>

</html>

For the request to retrieve this iframe

• if bank cookies are declared as SameSite, the browser will not attach these

cookies to that request.

• Also, the browser will mark this request cross-origin as Sec-Fetch-Site.

Suppose that there are links inside the iframe, i.e. inside somepage.html

• These links might have a valid value for the anti-CSRF token.

• If user click these links, the browser will not attach SameSite cookies and

declared the request as cross-origin with Sec-Fetch-Site. This may seem

counterintuitive, as the iframe comes from bank.com, but the domain of the

webpage, here mafia.com, not the domain of the iframe, determines howthe
browser deals with SameSite and Sec-Fetch-Site

48

Beware of confusion!

XSS
vs

CSRF
vs

Click-jacking & UI redressing

50

CSRF vs Click-jacking/UI-redressing

Easy to confuse! Some differences:

• Unlike Click-jacking, CSRF might not need a click

• Unlike UI redressing, CSRF does not involve recycling parts of

the target website

– So frame-busting or XFRAME-Options won’t help

– UI redressing involves a more powerful attacker model

51

CSRF meets HTML injection & XSS

Instead of attacker using their own site or emails with malicious

links for CSRF,

malicious links can also be inserted as content on the vulnerable

target site

• Ideally this vulnerable site is target site itself, as user is then

guaranteed to be logged in

– Classic example: malicious link in an amazon.com book

review to order books at amazon.com

• This is then also an HTML injection attack

• If the CSRF attack uses JavaScript (eg for a POST),

then it is also a XSS attack

52

Trust

websec 53

I trust

what I see

I trust that

everything on

a.com comes

from a.com

I trust that the

browser only

performs

requests

because the

user wants

these

I trust all content

served by a.com

to access all

a.com resources

CSRF vs XSS

Easy to confuse! Some differences:

• CSRF does not require JavaScript (for GET actions),

XSS always does

• For any JavaScript used:

– XSS: script is in webpage of the attacked website

– CSRF: script can be anywhere, also the attacker’s website

• You can use XSS to do CSRF, as shown on previous slide 44,

where code will be in the attacked site

54

Trust: CSRF vs XSS

• CSRF abuses trust of the webserver in the client,

where client = the web browser or its human user

– The webserver trusts that all actions are actions that the user

does willingly and knowingly

• XSS abuses trust of user & browser in the webserver

– The user & browser trusts that all content of a webpage is really

coming from that webserver

• even though it may include HTML and scripts that are really

coming from an attacker

• Clickjacking/UI redressing abuses both types of trust

55

Root causes

Why are web applications often so insecure?

websec 56

FUNCTIONALITY vs security

Security is only a secondary concern:

• The primary purpose of any IT system, application, or API is to

provide functionality

The more (general) functionality, the better!

• All this functionality comes with risks.

Security is about managing these risks.

Companies, developers, and users, all like more of functionality,

even at the expense of less security.

Often security risks may only become clear later.

websec 57

Complexity

Root cause of many security problems is complexity

• in technologies, languages, features

• in the interactions between them

This complexity can be

• hard to use correctly (for users, sys-admins, and programmers)

• may come with unexpected corner cases

• hard to implement incorrectly

websec 58

Lack of economic incentives

There is often no economic incentive to provide better security

• Making more secure applications takes more time & effort,

but are people commissioning them willing to pay? And are

companies willing to give programmers more time & training?

websec 59

More attacks

websec 60

websec 61

OWASP Top10 & ASVS

There are more attacks than we discussed, but usually variations on the

same theme (notably some form of injection)

OWASP produces a well-known OWASP Top 10 of web applications

security vulnerabilities

Knowing OWASP Top 10 helps to find flaws & develop more secure

applications but better, more structural approach to produce secure web

applications: OWASP ASVS (Application Security Verification Standard)

For Dutch speakers & Dutch government agencies, CIP-overheid.nl provides

similar standards for ‘Grip op SSD (Secure Software Development)’

websec 62

IDOR

Most promising way to earn bounties with bugs in Brightspace.

Brightspace website provides lots of functionality to view or

download information, e.g.

websec 63

IDOR (Insecure Direct Object Reference)

Attacker could modify these links to the object

and by-pass access control to access other objects

Countermeasure: re-do access control checks for every access!

Path traversal can be viewed as a special case of IDOR

websec 64

browser server ru.nl
request

look up info;

check if user is allowed access;

if so, return page with (link to)

object stored on the server

response with a link to that object

 https:/ru.nl/tmp/AllGrades.xlsx
or an iframe displaying the object

 <iframe src= https://ru.nl/info/someiframe.html?u=s123456>...
or passing object as data to JavaScript function

 someJSfunction(https://ru.nl/info/s123456/data.json)

	Slide 1: Privacy risk: ETags for cached images
	Slide 2: Today: More attacks on clients, esp. the user URL obfuscation, Click-jacking/UI redressing, CSRF revisited
	Slide 3: Securing the last 30 centimeter...
	Slide 4: Securing the last 30 centimeter...
	Slide 5: Attacker model (1) : malicious content on benign site
	Slide 6: Attacker model (2) : a malicious website
	Slide 7: Attacker model (3): malicious website with genuine iframe
	Slide 8: Would you trust these URLs?
	Slide 9: Browser warnings – about strange character sets
	Slide 10: Highlighting domain name in the address bar
	Slide 11: URL obfuscation attacks
	Slide 12: Newer homograph attack [2017, still works in some browsers]
	Slide 13: UI confusion on mobile phones [2019]
	Slide 14: UI confusion on desktops [2019]
	Slide 15: Click-jacking & UI redressing
	Slide 16: Click-jacking & UI redressing
	Slide 17: Click-jacking & UI redressing
	Slide 18: Basic click-jacking
	Slide 19: Business model for click jacking: click fraud
	Slide 20: Click fraud
	Slide 21: Criminal business models: YouTube views
	Slide 22: Criminal business models: YouTube likes
	Slide 23: Criminal business models: selling traffic or clicks
	Slide 24: Criminal business models: selling traffic or clicks
	Slide 25: Example clickjacking attack: with age confirmation check
	Slide 26: Example clickjacking attack
	Slide 27: Example clickjacking attack
	Slide 28: UI redressing
	Slide 29: Old UI redressing example
	Slide 30: UI redressing example
	Slide 31: UI redressing example
	Slide 32: Click-jacking and UI redressing: abusing trust
	Slide 33: Variations of click-jacking
	Slide 34: Countermeasures against click-jacking & UI redressing
	Slide 35: Frame busting
	Slide 36: Busting frame busting
	Slide 37: Better solution: X-Frame options
	Slide 38: Example: website with age confirmation check
	Slide 39: Browser protection against UI redressing
	Slide 40: CSRF revisited
	Slide 41: Recall : CSRF abuses cookies without stealing them
	Slide 42: CSRF
	Slide 43: CSRF on GET vs POST requests
	Slide 44: CSRF of a POST request using JavaScript
	Slide 45: Countermeasures against CSRF - which might also help against clickjacking?
	Slide 46: Recall: Countermeasures against CSRF [week 2 & 3]
	Slide 47: CSRF vs UI redressing: defenses
	Slide 48: CSRF vs UI redressing: defenses
	Slide 50: Beware of confusion! XSS vs CSRF vs Click-jacking & UI redressing
	Slide 51: CSRF vs Click-jacking/UI-redressing
	Slide 52: CSRF meets HTML injection & XSS
	Slide 53: Trust
	Slide 54: CSRF vs XSS
	Slide 55: Trust: CSRF vs XSS
	Slide 56
	Slide 57: FUNCTIONALITY vs security
	Slide 58: Complexity
	Slide 59: Lack of economic incentives
	Slide 60: More attacks
	Slide 61
	Slide 62: OWASP Top10 & ASVS
	Slide 63: IDOR
	Slide 64: IDOR (Insecure Direct Object Reference)

