Belastingdienst wil zelf aftappen met nepzendmasten

De Fiod, de opsporingsdienst van de Nederlandse Belastingdienst, wil de bevoegdheid krijgen om zelf nepzendmasten in te zetten bij onderzoeken. Daarmee kan de opsporingsdienst telefoons, nummers, exacte locaties en meer onderzoeken.
IMSI catching

- IMSI catcher, fake celltower, “nepzendmast”
- overloaded term
 - catching IMSIs
 - eavesdropping
So, what is an IMSI?
So, what is an IMSI?

- **IMSI** = International Mobile Subscriber Identity
- unique identifier of a SIM
- IMEI ≠ IMSI ≠ phone number
So, what is an IMSI? (II)

15 digits that identify:
- home country
- home network
- user

Example IMSI:
204080123456789
So, what is an IMSI? (II)

15 digits that identify:
- home country
- home network
- user

Example IMSI:
204080123456789

- The Netherlands
So, what is an IMSI? (II)

15 digits that identify:
- home country
- home network
- user

Example IMSI:
204080123456789
- The Netherlands
- KPN
So, what is an IMSI? (II)

15 digits that identify:
- home country
- home network
- user

Example IMSI:

204080123456789

- The Netherlands
- KPN
And the IMSI is broadcast in plain text!
IMSI catchers

- passive
- active
IMSI catchers

- passive
- active
- eavesdropping and insertion
IMSI catchers

- passive
- active
- eavesdropping and insertion
- expensive and exclusively sold to governments
IMSI catchers

- passive
- active
- eavesdropping and insertion
- expensive and exclusively sold to governments
- or home made for $100,-
Why catch IMSIs?

- IMSIs reveal information
Why catch IMSIs?

- IMSIs reveal information
- Attack location privacy
Why catch IMSIs?

- IMSIs reveal information
- Attack location privacy
 - Tracking
Why catch IMSIs?

- IMSIs reveal information
- Attack location privacy
 - Tracking

[Diagram of a person and a location symbol with a question mark]
Why catch IMSIs?

- IMSIs reveal information
- Attack location privacy
 - Tracking
 - Location monitoring
Why catch IMSIs?

- IMSIs reveal information
- Attack location privacy
 - Tracking
 - Location monitoring
- Linking identities to devices
Why catch IMSIs?

- IMSIs reveal information
- Attack location privacy
 - Tracking
 - Location monitoring
- Linking identities to devices
Why catch IMSIs?

- IMSIs reveal information
- Attack location privacy
 - Tracking
 - Location monitoring
- Linking identities to devices
Why catch IMSIs?

- IMSIs reveal information
- Attack location privacy
 - Tracking
 - Location monitoring
- Linking identities to devices
Why is the IMSI not protected?

- **TMSI**s; Temporary Mobile Subscriber Identity
Why is the IMSI not protected?

- **TMSIs**: Temporary Mobile Subscriber Identity
- But, the IMSI can still be requested without authentication or encryption!
Why is the IMSI not protected?

- **TMSIs;** Temporary Mobile Subscriber Identity
- But, the IMSI can still be requested without authentication or encryption!
- Identification before Authentication
2G authentication (simplified)
2G authentication (simplified)
GSM weaknesses

1. Identify before authenticate
2. No mutual authentication
3. Weak encryption options
 (A5/0, A5/1, A5/2)
GSM weaknesses

1. Identify before authenticate

2. No mutual authentication

3. Weak encryption options (A5/0, A5/1, A5/2)
GSM Man-in-the-Middle

!MSI

?authenticate(chal)

!response(resp)

communication

communication

Asterisk
GSM Man-in-the-Middle
3G+4G authentication (simplified)
3G+4G authentication (simplified)
3G+4G weakness
So...

- IMSI catching works on all currently deployed 3GPP technology (GSM, GPRS, UMTS, LTE, etc.).
- UMTS and LTE protect against eavesdropping,
- but a fall-back attack to GSM is easy.
- Major updates to current technologies infeasible.
Protection
Protection against eavesdropping

- Switch off GSM
- Use secure tunnels
Protection against IMSI catching

1. IMSI-catcher catcher
2. Pseudonyms
IMSI-catcher catcher apps

- SnoopSnitch
- Cell Spy Catcher
- Android IMSI-Catcher Detector (AIMSICD)
IMSI-catcher catcher apps

- **SnoopSnitch**
 - 100,000 - 500,000 downloads
 - requires root access & Qualcomm chipset
 - low level access gets good results
- **Cell Spy Catcher**
- **Android IMSI-Catcher Detector (AIMSICD)**
IMSI-catcher catcher apps

- SnoopSnitch
- Cell Spy Catcher
 - 10,000 - 50,000 downloads
 - no special permissions, but a learning period
 - cell IDs not very reliable
- Android IMSI-Catcher Detector (AIMSICD)
IMSI-catcher catcher apps

- SnoopSnitch
- Cell Spy Catcher
- Android IMSI-Catcher Detector (AIMSICD)
 - open source on Github
 - phone support is flaky
IMSI-catcher catcher apps

- SnoopSnitch
- Cell Spy Catcher
- Android IMSI-Catcher Detector (AIMSICD)

These apps:

- only work for Android
- require high permissions
- can only warn the user
Preventing IMSI catching

- uses temporary pseudonyms: PMSIs
- can be deployed by any Home network / provider
- does not prevent IMSI catching, but hinders attack goals (e.g. tracking, etc.)
- is formally verified using ProVerif
- successor PMSIs are only known to SIM and Home network
- the Home network generates successor PMSIs, but how to get them to the SIM?
Preventing IMSI catching

- uses temporary pseudonyms: PMSIs
- can be deployed by any Home network / provider
- does not prevent IMSI catching, but hinders attack goals (e.g. tracking, etc.)
- is formally verified using ProVerif
- successor PMSIs are only known to SIM and Home network
- the Home network generates successor PMSIs
Preventing IMSI catching

- uses temporary pseudonyms: PMSIs
- can be deployed by any Home network / provider
- does not prevent IMSI catching, but hinders attack goals (e.g. tracking, etc.)
- is formally verified using ProVerif
- successor PMSIs are only known to SIM and Home network
- the Home network generates successor PMSIs, but how to get them to the SIM?
3G+4G solution
3G+4G solution

PMSI1

?identity

!PMSI2

PMSI2, sqn, PMSI

?authenticate([PMSI3, sqn,])
3G+4G solution
3G+4G solution
3G+4G solution
3G+4G solution (II)

- the random challenge can transmit the new PMSIs
- an extra key is shared between SIM and provider
- each SIM stores 2 PMSIs, the current and its successor
- when provider receives a successor PMSI, it hands out a new PMSI
3G+4G solution (II)

- the random challenge can transmit the new PMSIs
- an extra key is shared between SIM and provider
- each SIM stores 2 PMSIs, the current and its successor
- when provider receives a successor PMSI, it hands out a new PMSI

Some technicalities
- \(\text{Chal} = E_{key}(\text{PMSI},SQN) \)
3G+4G solution (II)

- the random challenge can transmit the new PMSIs
- an extra key is shared between SIM and provider
- each SIM stores 2 PMSIs, the current and its successor
- when provider receives a successor PMSI, it hands out a new PMSI

Some technicalities

- $\text{Chal} = E_{key}(\text{PMSI}, \text{SQN})$
- As E choose AES?
3G+4G solution (II)

- the random challenge can transmit the new PMSIs
- an extra key is shared between SIM and provider
- each SIM stores 2 PMSIs, the current and its successor
- when provider receives a successor PMSI, it hands out a new PMSI

Some technicalities

- Chal = $E_{key}(\text{PMSI, SQN})$
- As E choose AES?
- PMSI is only the last 10 digits of the IMSI (MSIN)
2G solution
3G+4G solution: Security guarantees

An attacker without knowledge of the new key cannot:

- link subsequent PMSIs
- insert false PMSIs
- replay genuine authentication messages
- get the SIM and provider out-of-sync
Discussion

The presented solution

- provides k-anonymity, with $k = \#\text{subscribers from same provider}$
Discussion

The presented solution

• provides k-anonymity, with $k = \#\text{subscribers from same provider}$

• does not prevent MitM attacks, but it does hinder them,
Discussion

The presented solution

• provides k-anonymity, with $k = \#\text{subscribers from same provider}$

• does not prevent MitM attacks, but it does hinder them,

• does not protect other identifiers in your phone, e.g. IMEI, MAC, BT address, etc,
Discussion

The presented solution

• provides k-anonymity, with $k = \#\text{subscribers from same provider}$

• does not prevent MitM attacks, but it does hinder them,

• does not protect other identifiers in your phone, e.g. IMEI, MAC, BT address, etc,

• increases back end traffic
Discussion

The presented solution
• provides k-anonymity, with $k = \#\text{subscribers from same provider}$
• does not prevent MitM attacks, but it does hinder them,
• does not protect other identifiers in your phone, e.g. IMEI, MAC, BT address, etc,
• increases back end traffic
• requires willing providers
Discussion

The presented solution

• provides k-anonymity, with $k = \#\text{subscribers from same provider}$

• does not prevent MitM attacks, but it does hinder them,

• does not protect other identifiers in your phone, e.g. IMEI, MAC, BT address, etc,

• increases back end traffic

• requires willing providers

• assumes the SIM is secure...
THE GREAT SIM HEIST
How Spies Stole the Keys to the Encryption Castle
Conclusions

• current technologies (2G - 4G) are not easily replaced
• and have serious security issues
• but you are not helpless!
Conclusions

- current technologies (2G - 4G) are not easily replaced
- and have serious security issues
- but you are not helpless!

So, who will be the first to sell IMSI Catcher resilient SIM cards?
Questions