Formal Reasoning 2014 Solutions Additional Test (07/01/15)

1. Give three distinct models in which the proposition $a \to b \leftrightarrow c$ holds. (15 points)

In order to see in which models a formula holds easily, we create the corresponding truth table. The columns of the table immediately give the order for parsing the formula.

a	$\mid b \mid$	$\mid c \mid$	$a \rightarrow b$	$(a \to b) \leftrightarrow c$
0	0	0	1	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

From this table it follows that there are four models in which the formula is true:

- v_1 where $v_1(a) = 0$, $v_1(b) = 0$ en $v_1(c) = 1$
- v_3 where $v_3(a) = 0$, $v_3(b) = 1$ en $v_3(c) = 1$
- v_4 where $v_4(a) = 1$, $v_4(b) = 0$ en $v_4(c) = 0$
- v_7 where $v_7(a) = 1$, $v_7(b) = 1$ en $v_7(c) = 1$
- 2. Translate the following English sentence to a formula of predicate logic with equality.

There is exactly one man who loves exactly one woman.

Use this dictionary:

$$M$$
 the domain of men V the domain of women $H(x, y)$ x loves y

(20 points)

We start by introducing an abbreviation HPV(x) with the meaning: x loves exactly one woman.

$$HPV(x) := \exists y \in V [H(x,y) \land \forall z \in V [H(x,z) \rightarrow z = y]]$$

We use this abbreviation twice in the formalization of the whole sentence:

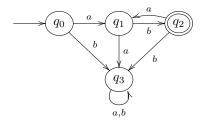
$$\exists x \in M [HPV(x) \land \forall y \in M [HPV(y) \rightarrow y = x]]$$

3. Give a finite (deterministic) automaton for the language

$$L_3 := \mathcal{L}((ab)^*) \cap \overline{\{w \in \{a,b\}^* \mid w \text{ does not contain } b\}^*}$$
(20 points)

- The language $\mathcal{L}((ab)^*) = \{\lambda, ab, abab, ababab, \dots\}.$
- The language $\{w \in \{a,b\}^* \mid w \text{ does not contain } b\} = \{\lambda,a,aa,aaa,\dots\}.$
- The language $\{w \in \{a,b\}^* \mid w \text{ does not contain } b\}^* = \{\lambda, a, aa, aaa, \dots\}.$
- The language $\overline{\{w\in\{a,b\}^*\mid w\text{ does not contain }b\}^*}=\{w\in\{a,b\}^*\mid w\text{ contains a }b\}.$
- But then the requested intersection is the language: $\{ab, abab, ababab, \dots\}$.

A finite (deterministic) automaton that accepts this language is:



4. We want to show that the sum of the degrees of all vertices in a graph is always even. Prove this by induction to the number of edges in the graph.

(20 points)

Proposition:

The sum of the degrees of all vertices in a graph with n edges is even, for all $n \ge 0$.

Proof by induction on n.

1

We first define our predicate P as:

$$P(n) := {\begin{array}{c} \text{The sum of the degrees of all vertices in a graph with} \\ n \text{ edges is even} \end{array}}$$

2

Base Case. We show that P(0) holds, i.e. we show that

3

the sum of the degrees of all vertices in a graph with 0 edges is even.

This indeed holds, because

4

in a graph with zero edges, each vertex has degree 0. Hence the sum of all these degrees is also 0. And 0 is even.

Induction Step. Let k be any natural number such that $k \geq 0$.

Assume that we already know that P(k) holds, i.e. we assume that the sum of the degrees of all vertices in a graph with k edges is even. (Induction Hypothesis IH)

We now show that P(k+1) also holds, i.e. we show that the sum of the degrees of all vertices in a graph with k+1 edges is even

This indeed holds, because of this argument. Let G be a graph with k+1 edges and let (p,q) be one of these edges in the graph. If we omit edge (p,q) from the graph, we get a subgraph G' with the same vertices and almost the same edges. But G' has only k edges. By applying the induction hypothesis we know that the sum of the degrees of all vertices in G' is even, say 2r for some $r \in N$. However, by construction it follows that the sum of the degrees of all vertices in graph G equals 2r+1+1, because both the degrees of p and p are exactly one higher. Hence the sum of the degrees in G is 2r+2=2(r+1) and hence in particular also even.

Hence it follows by induction that P(n) holds for all $n \geq 0$.

5. Give an LTL formula that formalizes the following property and explain your answer:

a becomes true before b

More precisely: a and b are both at least once true (but they don't have to stay true), and the moment on which a becomes true for the first time, is strictly earlier than the moment on which b becomes true for the first time.

(15 points)

6

7

9

$$(\neg a \land \neg b) \ \mathcal{U} \ (a \land \neg b \land \mathcal{F}b)$$

The second part of this formula says that $a \land \neg b \land \mathcal{F}b$ will be true at some moment in time. Hence there will be a moment in which a is true and b is false, but b will become true some time later. Although $\mathcal{F}b$ implies that this later moment may be the same moment that a is true, however, this is excluded by $\neg b$. The first part of this formula prevents that there is an earlier moment in which b becomes true. For instance, if we had only written $\mathcal{F}(a \land \neg b \land \mathcal{F}b)$ this situation was not excluded.