Formal Reasoning 2017

Solutions Test Block 2: Languages & Automata

(25/10/17)

1. We define a context-free grammar G:

S — bA
A—aA|bS| A

We call the language produced by this grammar Lq:

(a)

(b)

()

(d)

Ll = ﬁ(Gl>

Give a deterministic finite automaton M; with L(M;) = L.

b

() 2(@))-
b

a

a,b

Give a regular expression 7 with £(ry) = L.

blaubb)* or (ba*b)*ba* or b(a®(bb)*)* or b(a*(bb)*a)*

Is the context-free grammar G4 right-linear? Explain your answer.
Yes, it is. All non-terminals on the right side of the arrows are always
completely at the right.

We want to show that bab L(G1). For this someone proposes the
1
following pro verty as an invariant:
S})

w starts with a symbol from the set {b, S} and
w contains an odd number of symbols from {b, S}

P(w) =

Does this work? Explain your answer.
Yes, it works. It is obvious that P(bab) does not hold, hence if P is
an invariant, this implies that bab & L(G).

So now we have to prove that P is indeed an invariant. First we
introduce a short notation:

|w|,g = the amount of symbols from {b, S} in word w

e P(S) holds because S starts with an S and |S|,¢ = 1 which is
odd.

e Let v be a word such that P(v) holds. Hence v starts with a b
or an S and |v|,g is odd. Assume that v — v’. We consider the
following cases, where u € {b, S} and where x and y are arbitrary
words over the terminals and non-terminals:

— v =uxSy — v = urbAy. Obviously v’ starts with a b or an
S, because the first symbol didn’t change. And [v'|, ¢ = [v],
since we have one S less, but one b more. Hence [v'[, 4 is odd,
so P(v") holds.

— v =uxAy — v = uzaAy. Obviously v’ starts with a b or an
S. And |v'[,g = |v|,g since the amount of b’s and S’s didn’t
change. Hence [v'|,¢ is odd, so P(v’) holds.

— v =uxAy — v = uxbSy. Obviously v’ starts with a b or an
S. And |v'|,g = |v],g + 2 since we get one b and one S more.
Hence [v'|, 4 is odd, so P(v") holds.

— v = urAy — v' = uxy. Obviously v/ starts with a b or an
S. And |[v'|,¢ = |v],g since the amount of b’s and S’s didn’t
change. Hence [v'[, ¢ is odd, so P(v") holds.

— v =582 — v = bAzx. Obviously v’ starts with a b or an S.
And |v'|,¢ = |v|,g since we have one S less, but one b more.
Hence [v'[, 4 is odd, so P(v") holds.

So in all cases we have seen that P(v’) holds. Hence P is indeed
an invariant.

(e) Does the following equality hold?
Ly = {w € {a,b}" | P(w) holds}

Explain your answer.

No, it does not hold. The word bbab is a counterexample. It is easy
to see that P(bbab) holds, but bbab € Li. In the grammar it is easy
to see that every second b, must be immediately followed by another
b. This is caused by the production A — bS — bbA.

2. We define a non-deterministic finite automaton Ms:

a b a

NN

We call the language recognized by this automaton Lo:

]42 = L(A\[_))

(a) Write M; as a quintuple (2, @, qo, F,). Define § by giving equations
of the form §(q;,z) = ... for all possible inputs ¢; and .
My = ({a,b},{90, 91,42}, 90, {g2}, &), where § is given as follows:

6(g0,a) = {qo} 5(qo,0) = 0 8(q0,N) = a1}
5(Q17a) = 0 5((]1,17) = {(h} 5((]17)\) = {Q2}
6(g2,a) = {q2} 5(ga,0) = 0 6(g2,A) = 0

(b) Give a regular expression o with L£(ry) = Lo.

ry = a*b*a*

3.

(c) Give a deterministic finite automaton MJ with L(MJ}) = L.

a a,b

[f for a language L is given that A € L and LL = L, does it always hold
that L* = L?

If so, explain why. If not, give an example of a language L3 for which this

does not

hold, and explain why it is a counterexample.

Yes, it always holds.

Since L C L* for any language L, we only have to prove that L* C L.

o Let we L*.

e Then there exists £k € N such that w = wiwsy - wr_1wg where
w; € L for all 7.

If K =0 then w = A and it was given that A € L, so in this case
w € L.

If kK =1 then w = wy, where wy € L, so also in this case w € L.
If k£ > 2 we know that wi_qwy € L, because LL = L.

But this means that we can write w = wjwsy---wj)_,; where
w; € L and w,_, € L.

So we have shown that if we can split w in k parts that are all
in L, then we can also split w in k — 1 parts that are all in L.
Now if £ — 1 = 1 we can repeat the argument we mentioned
above for this case. (Note that if k& > 2 it cannot happen that
k—1=0.)

And if £ —1 > 2 we can repeat this trick and get that w)_, =
wk_2w2:71 = w_oWk_1wi € L, so we can split w also in k — 2
parts that are all in L.

Because k is finite, we know that after applying this trick k& — 1
times we have that w = w] € L, so also in this case w € L.

e So in all cases we get that w € L.

Hence L* € L, and together with L C L* we get that L* = L.

