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Introduction

The original motivation® for the work described in this paper was to determine the proof
theoretic strength of the type theories implemented in the proof development systems
Lego and Coq, [Luo and Pollack 92, Barras et al 96]. These type theories combine the
impredicative type of propositions?, from the calculus of constructions, [Coquand 90],
with the inductive types and hierarchy of type universes of Martin-Lof’s constructive type
theory, [Martin-Lof 84]. Intuitively there is an easy way to determine an upper bound
on the proof theoretic strength. This is to use the ‘obvious’ types-as-sets interpretation
of these type theories in a strong enough classical axiomatic set theory. The elementary
forms of type of Martin-Lof’s type theory have their familiar set theoretic interpretation,
the impredicative type of propositions can be interpreted as a two element set and the
hierarchy of type universes can be interpreted using a corresponding hierarchy of strongly
inaccessible cardinal numbers. The assumption of the existence of these cardinal numbers
goes beyond the proof theoretic strength of ZFC. But Martin-Lof’s type theory, even
with its W types and its hierarchy of universes, is not fully impredicative and has proof
theoretic strength way below that of second order arithmetic. So it is not clear that
the strongly inaccessible cardinals used in our upper bound are really needed. Of course
the impredicative type of propositions does give a fully impredicative type theory, which
certainly pushes up the proof theoretic strength to a set theory®, Z~, whose strength is
well above that of second order arithmetic. The hierarchy of type universes will clearly

*This paper was written while on sabbatical leave from Manchester University. I am grateful to my
two departments for making this possible. I am also grateful to Nijmegen University Computer Science
Department for supporting my visit there. Some of the ideas for this paper were developed during that
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lead to some further strengthening. But is it necessary to go beyond ZFC to get an upper
bound?

Surprisingly perhaps, the ‘obvious’ types-as-sets interpretation® has hardly been stud-
ied systematically®. So it is the main aim of this paper to start such a systematic study.
In section 2 we first present some of the details of the TS interpretation of a type theory
MLWet that is a reformulation of Martin-Lof’s extensional type theory with W types but
no type universes. This interpretation is carried out in the standard axiomatic set theory
ZFC and so gives a proof theoretic reduction of MLW®* to ZFC. Of course this result is
much too crude and we go on in section 2 to describe two approaches to getting a better
result.

The first approach is to make the type theory classical by adding the natural formula-
tion of the law of excluded middle. It turns out that to carry through the interpretation
we need to strengthen the set theory by adding a global form of the axiom of choice and
we get a proof theoretic reduction of MLW®* + EM to ZFGC. Fortunately it is known
that the strengthened set theory is not proof theoretically stronger, so that we do get a
reduction of MLW®* + EM to ZFC.

Section 2 ends with the second approach, which is to replace the classical set theory by
a constructive set theory, CZF*, that is based on intuitionistic logic rather than classical
logic. So we get a reduction of MLW®* to CZF*.

In section 3 we extend the results of section 2 by adding first a type universe reflecting
the forms of type of MLW®* and then an infinite cumulative hierarchy of such type
universes. To extend the T'S interpretation to the resulting type theories we use, in
classical set theory, strongly inaccessible cardinal numbers for the type theories with EM,
and in constructive set theory, inaccessible sets as introduced in [Griffor and Rathjen 96].
Finally in section 3, we formulate type theories having rules for the impredicative type
of propositions of the calculus of constructions and formulate corresponding axioms of
constructive set theory and again describe how each of these type theories has a T'S
interpretation into a corresponding set theory.

In section 4 we briefly describe how the sets-as-trees interpretation of CZF into the
type theory MLWU, first presented in [Aczel 78] and then developed further in [Aczel 82,
Aczel 86, Griffor and Rathjen 94, Griffor and Rathjen 96|, extends to the other set the-
ories, giving reductions to the corresponding type theories with an extra type universe.
Fortunately each type theory with an infinite hierarchy of type universes is proof theo-
retically as strong as the type theory with a type universe added on top, so that we end
up with results stating that to each of the type theories we consider that have an infinite
hierarchy of type universes there is a corresponding set theory of the same proof theoretic
strength. In particular the type theory MLWPU_,,, that is our aproximation to the type
theories implemented in Lego and Coq, has the same proof theoretic strength as the set
theory CZF*pu_,. This last result does not solve the original problem motivating our
work as the set theory is unfamiliar. Nevertheless I think that it does give a new handle
on the problem. The new set theory is an interesting one and I plan to present some
results about it on a future occasion.

In section 1 we set up our particular approach to the syntax of our type theories
and the ST interpretation of them. We have tried to make this a simple as possible.
We have prefered to focus on extensional Martin-Lof type theories having extensional

“Here abbreviated TS interpretation.
"But see [Werner 97].



equality types Fq(A,ay,as) for the ST interpretation, as the rules for these types are
easily justified. We have also added equality types EQ(A;, As) for the same reason. For
the reverse sets-as-trees interpretation these equality types are not needed, but nor are
any intensional equality types needed, so we can simply drop the extensionality rules.

1 The general form of the syntax and set theoretical
semantics of our type theories

1.1 Syntax

We give the general form of the syntax of the type theories we will consider.

1.1.1 Pseudoterms

The pseudoterms, M, are given by the following abstract syntax.
M:i=uxz|co|ey(M)|co(M,M) | cs(M, M, M) | (Qz: M)M

where © : VAR, ¢y : Cy, ¢1 : Cq, ¢5 : Cy, c3: C3 and Q : QUANT. Here VARS is an
infinite set of variables and the finite sets C;, for i = 0,1, 2,3, and QUANT will depend
on the type theory.

Each @) operates as a variable binder so that free occurrences of z in M’ get bound in
(Qx : M)M'. The notions of free and bound occurrences of variables and the substitution
operation are defined in the standard way. We write M[M;,..., M, /x;,...z,]| for the
result of simultaneously substituting M; for x; in M, for + = 1,...n, relabelling bound
variables in the usual way so as to avoid variable clashes. For this we assume that the
variables zy,...,x, are pairwise distinct. In general we will not distinguish between
pseodoterms that only differ in a suitable relabelling of the bound variables.

1.1.2 Pseudojudgements and the formal judgements of a type theory

Definition 1.1 A pseudojudgement has the form
7 =B

where 7 is a pseudocontext and B is a pseudobody.

e A pseudocontext is a finite sequence x1 : My,...,x, : M, of pseudodeclara-
tions, z; : M; for i = 1,...,n where each M; is a pseudoterm and each x; : VAR
and, for 1 < j <1, x; is distinct from x; and is not free in M;.

e A pseudobody has one of the following four forms.

M type,

My = My,
MO : M,

M] — MQ M

When the pseudocontext is the empty sequence then we get a pseudojudgement = B
which will usually simply be written B.



If 7 is a pseudocontext xq : My, ..., xz, : M, then a variable y is new to 7 if y is distinct
from each x; and not free in any M;.
Note: If 7 is a pseudocontext xy : My, ..., x, : M,, r is a variable distinct from each x;
and M is a pseudoterm that has no free occurrences of any z; then z : Mj[M/x],... z, :
M,[M/z] is also a pseudocontext that we will abbreviate ? [M/xz]. Also we can define
the result B[AM/x] of substituting M for x in a pseudobody B in the obvious way. For
example (M; = My)[M/z] is defined to be M;[M /x| = My[M/z].

The rules of inference of the type theories that we will consider will be given schemat-
ically and will have instances of the following form.

AT A
J

where £ > 0 and .J; - --.J; are the premisses and .J is the conclusion of the instance,
both the premisses and the conclusion being pseudojudgements. When £ = 0, so that
there are no premisses then the line above the conclusion will be omitted in writting the
inference.

The schemes presenting the rules will have the abbreviated form

?]:>Bl 7k:Bk
A=B ’
which is unabbreviated by making explicit an implicit pseudocontext metavariable 7

of the scheme by adding it to the front of the left hand side of each premiss and the
conclusion to get the scheme

7,7 =By - 7,7, = By
7, A=B '

Note that an unabbreviated scheme will generally involve metavariables and an instance
of the scheme will be obtained by substituting for the metavariables, provided that the
side conditions of the scheme hold.

A pseudojudgement is a theorem and so a formal judgement of the type theory, if
it is in the smallest class of pseudojudgements that includes the conclusion whenever
it includes the premisses of any instance of a rule of the type theory. Whenever a
pseudocontext 7 appears in a formal judgement ? = B then we call 7 a context.

All our type theories will have a common list of general rules of inference. These come
under three headings, assumption rules, equality rules and substitution rules.

1.1.3 General Rules

Assumption Rules In these rules the variable x must be new to the implicit context
7 i.e. not appear in 7.

A type A=B A type
r:A=zx:A r: A A=B
Equality Rules
Atype A] :AQ A] :AQ A2:A3
A:A AQZA] A]:Ag
a: A a; =ag: A a; =ag: A as =as: A
a=a:A as —a; 1 A a; =az: A



(L:A] A]:AQ (L]:(LQZA] A]:A2

U,ZAQ U,]:UQ:AQ

Substitution Rule
r:AAA=B a:A

Ala/x] = Bla/z]
Congruence Rules
x: A A= C type a; =ay: A r: A AN=c:C a; =ay: A
Alay/z] = Clay/x] = Clay/z] Alay/z] = clay/z] = clag/x] : Clay/x]

1.2 Types-as-Sets

We now assume given a fixed type theory T and a fixed set theory S. We will work
informally in the set theory S.

A types-as-sets interpretation (7'S interpretation) of T in S is determined by the
following set theoretic data.

e For each ¢g, a set ¢

e For each c,, where n = 1,2,3, a definable n-place operation ¢ assigning a set
¢9(Aq, ..., A,) to each n-tuple Ay, ..., A, of sets.

e For each (), a definable operation () that assigns to each set B that is a function
a set Q°(B). In practise, if A is a set and F' is a definable unary operation on
sets then, using the Replacement Axiom Scheme, that will be available in our set
theory, we may form the set B = {(a, F(a)) | a € A} which is a function defined
on A. The result of applying Q° to this set B will be written (Q%a € A)F(a).

1.2.1 The interpretation functions

By a variable assignment we mean a set theoretic function that assigns a set &(x) to
each variable z.

We can define the function mapping each variable assignment £ to the interpretation
[[M]]¢ of M, for each pseudoterm A/. The definition is by structural induction on the
formation of the pseudoterm M, using the variable assignment when M is a variable and
using the corresponding operation on sets, as illustrated earlier, for each other form of
expression.

In the following n = 1,2 or 3.

[#]le = &(x)
[colle =<5
[[en (M, aMn)HE = (Mg - - - [[Ma]le)

¢ = (Q% € [[M]|e)[[M"]g(asa)

Here £(a/x) is the variable assignment &' that is like £ except that &'(z) = a.
The following lemmas are proved by a routine induction on the structure of the
pseudoterm M.



Lemma 1.2 If the variable x is not free in the pseudoterm M and &, £ are variable
assignments that agree except possibly at x then [[M]]e = [[M]]e.

Lemma 1.3 (Substitution Lemma) For all pseudoterms M, M', all variables x and
all variable assignments &

(MM /2]lle = [[Meqarye/)-

1.2.2 Soundness

Definition 1.4 If? is a pseudocontext xy : My, ..., x, : M, then let £ =7 if
E(z;) € [[Mille fori=1,...n.

Lemma 1.5 If ? is a pseudocontext x1 : My, ..., x, : M,, x is a variable distinct from
each x; and M is a pseudoterm that has no free occurrences of any x; then for each
variable assignment &

§ETIM/x] = E([[M]le/x) =7.
Definition 1.6 We define & = B for each form of pseudobody B.
e & = M type for any pseudoterm M,

o { =M= M, if [Mi]le = [[Mo]le,

o {=M: M if [[M]]e € [[M']e,

o { =My =M,: M if [Mi]le = [[M]]e € [[M"]]e,
Lemma 1.7 { |= B[M/z] <= £([[M]]¢/z) = B.

Definition 1.8 A pseudojudgement ? = B is valid, written =7 = B if, for all variable
assignments &,

EET implies £ =B.
Definition 1.9 A rule of inference is sound if, for every instance

Jy oo Iy
J

of the rule, if the premisses are valid then so is the conclusion; i.e.
EL & & E . implies E .

Proposition 1.10 FEach general rule is sound. Moreover, for each quantifier () of the
type theory the following congruence rule is sound.

.TZM:>M] :MQ
(QTM)M] = (Q’L’M)MQ

The proof of this result is straightforward. The assumption and equality rules are trivial.
The substitution and congruence rules make use of previously stated lemmas.

The type theory T is sound if each of its rules is sound. The following result is by
structural induction following the inductive definition of the formal judgements of a type
theory.

Lemma 1.11 If the type theory T is sound then every formal judgement of T is valid.

When we have a sound T'S interpretation of a type theory T in a set theory S we will
write T <;¢ S.



2 The theory MLW®

We will start with the theory MLW. The abstract syntax of the theory is determined by
the following syntax equations.

o= 0]1|2]%]1]2,

Cp = Rg ‘ US| ‘71'2,
¢y = Ry | pair | sup | app | rec,
c3 = Ry,

Q= TI|S | WA\
2.1 Some defined forms of pseudoterm

(My — M) = (T : My) M,

(M, x M) = (S_: My) M,

(My + My) = (S : 2)Ro(My, My, 7)
N = (Wz:2)Ry(0,1,2)

Note that the underscore, _, in the first two definitions represents a vacuous variable; i.e.

a variable that is being bound by II and ¥ but does not occur in M.

2.2 Special Rules for MLW
Type Formation Rules

¢ type (c€{0,1,2})

A type  Ajtype  c¢:2
Ry( A1, Ay, c) type

x: A= Btype
(Qx : A)B type

Using the definitions above we have the following derived type formation rules.

(@ e {IL, X, W})

Aj type A, type
(A1#A,) type

N type (# € {—=, x, +})

Introduction Rules

x:1 1:2 2:2

r:A=0b0:B
(Ax: A)b: (Tlx . A)B

r:A= Btype a:A b:Bla/z
pair(a,b) : (Xz: A)B

r: A= Btype a:A f:(Bla/z] > (Wz:A)B)
sup(a,b) : (Waz: A)B




Special Congruence Rules

.Z':A:>B1:B2

Qr: B = (Qr: B, (@il = W)

r:A=b=b:8B
(Ax: A)by = Az : A)by : (Ilz : A)B

Elimination rules

r:0=Ctype a:0
Ry(a) : Cla/x]

r:1=Ctype a:1 c¢:Clx/z]
Ri(c,a): Cla/x]

r:2=Ctype a:2 ¢ :C[1/z] «¢o:C[/x]
Ry(c1,c9,a) : Cla/x]

r:A= Btype f:(Ilz:A)B a:A
app(f,a) : Bla/x]

r:A= Btype c¢:(Zx:A)B

{ m(c) : A
mo(c) : Blmi(c)/x]

x: A= Btype z:W = C type
b:(llx: A)(Hu: B— W)D(z,u) e: W
rec(b,e) : Cle/z]

In the last rule we used W to abbreviate (Wz : A)B and D(z,u) to abbreviate
(Tly : B)Clapp(u,y)/2) — Clsup(z, u)/2].



Computation Rules

Ajtype A, type
{ RQ(A] ) AQa 1) - A]
RQ(AD A27 2) = AQ

r:1=Ctype c:C[x/x]
Ri(c, %) = c: Clx/x]

r:2=Ctype ¢ :C[l/x] ¢:C[2/x]
{ RQ(C],CQ,l) = Cq 0[1/77]
RQ(C],CQ,Q) = Co . 0[2/77]

r:A=0b:B a:A
app((Az : A)b,a) = bla/z] : Bla/x]

z: A= Btype a:A b:Bla/x]

{ m (pair(a,b)) =a: A
mo(pair(a, b)) = b : Bla/x]

x: A= Btype z:W = C type
b: (llz: A)(Hu: B — W)D(x,u) a:A f:Bla/z] > W
rec(b, sup(a, f)) = app(app(app(b, a), f), g) : Clsup(a, f)/2]

In this last rule we used the following abbreviations.

W for (Wx: A)B,
D(z,u) for (Tly : B)Clapp(u,y)/z] — Clsup(w,u)/],
g for (A\y: Bla/z])rec(b,app(f,y)).

2.3 Extending to MLW®*

We first extend the syntax equations as follows.

(;2;;:...|EQ
cz=---| Eq

We add the rules of inference given by the following schemes in abbreviated form.

A type a; A as: A Aj type A, type
Eq(A, ay,az) type EQ(A;, Ay) type
a1 = Q9 . A A] = AQ
x 1 Bq(A, a1, a9) x 1 BQ(A, Ag)
c: Eq(A, a,as) c: EQ(A, Ay)

ap =ay: A A=Ay
c=x:Fq(A ar,ay) c=x: EQ(Ay, Ay)



2.4 The TS interpretation of MLW®* in ZFC

We will work informally in the set theory ZFC. We use the usual von Neumann definition
of the natural numbers; i.e. 0 =0, 1 = {0},2 = {0, 1}, etc .... Ordered pairs are defined as
usual; i.e. for sets a, b we define (a,b) = {{a}, {a,b}}. Asusual functions are single valued
sets of ordered pairs. For any set b, its domain is the set dom(b) = {x | Jy (x,y) € b}.

If a is a set and B is a definable operation that assigns a set B(x) to each z € a then
we let [1,¢,B(x) be the set of all the functions f, with domain a, such that f(z) € B(z)
for all © € a. Also, we let X,c,B(x) be the set of all pairs (z,y) such that = € a and
y € B(x).

A function coding in set theory consists of a pair of definable operations APP, LAM
on sets, AP P being binary and LAM being unary, such that the following condition holds.
If f is a function and a € dom(f) then

APP(LAM(f),a) = f(a).
The standard example of a function coding is given by the definitions

APP(a,b) ={z|3Jylr €y & (b,y) € a]}
LAM(a) =a

for all sets a, b. Later it will be convenient to use a non-standard function coding. In the
following we assume given some function coding. Given sets a, b, ¢, d let

EXP(a,b) ={LAM(f)|f:a— b}
Pl,coB(x) ={LAM(f) | f € e B(x)} if B(z) is a set for each z € a
APPy(a,b,c) = APP(APP(a,b),c)
APPy(a,b,c,d) = APP(APP(APP(a,b),c),d)

We now present the set theoretic interpretations of the syntactic operations of ML,
leaving the interpretations for the W rules til later.

0°=0,1°=1,20=2, % =0, 1°=0, 20 =1

R3(a) = a, 7i(a) = {x | 3y (2.9) = a}, 73(a) = {y | 37 (7.4) = a}
R?(a,b) = a, pair®(a,b) = (a,b), app®(a,b) = APP(a,b)

RS(a,b,c) ={z|(c=1°&z€a)V(c=2°&z€b)}

EQ°(a,b) ={z |z =0& a =10}, E¢°(a,b,c) ={zx |z =0&b=c& b€ a}
If b is a function with domain a let

A°(b) = LAM(b)
() = PLe,b()

$°(b) = Syeab(a)

To deal with the W rules we will need the following result.

10



Theorem 2.1

1. For each set b there is a smallest set W such that
if v € dom(b) and f € EXP(b(x), W) then (x, f) € W.
We write W(b) for this set W.
2. Given a set g let

Y(Q) = ZmEdom(g)Zuedom(APP(g,m))dOTn(A]DPQ ((]: T, u))

There is a smallest set f such that if (z,(u,v)) € Y(g) and X,, C f, where
Xuo ={(APP(u,y), APP(v,y)) | y € dom(u)}, then

((x,u), APPs(g, x,u,v)) € f.
We write R(g) for this set f.
3. Given sets a,b,c, let
g e P]meaP]'u,eEXP(b(m),W)d((-77; u)),
where W = W(b) and, for w = (z,u) € W,
d(w) = EXP(Plycpm)c(APP(u,y)), c(w)).
Then R(g) is the unique function f € l,ewc(w) such that if w = (z,u) € W then
f(w) = APP;s(g,z,u, LAM(H(f,u)).

Here H(f,u) is the function h € Ilycpqc(APP(u,y)) such that
W) = F(APP(u.y)) for y € b{x).

2.4.1 Proof of the theorem in ZFC

The first two parts of this theorem are applications of the following result.

Lemma 2.2 Let © be a definable operation on sets such that, for some set B,

whenever X is a set such that ©(X) has an element then there is a surjective
function f : b — X for some b € B. Then there is a smallest class I such
that

XCIlI = O(X)CI.
Moreover I 1s a set.

To prove part 1 of the theorem ,using this lemma, it suffices to let
O(X) = {(z, LAM(f)) | z € dom(f) & f : b(xz) = X is onto X},
and choose B = {b(z) | = € dom(b)}.

11



For part 2 we let
O(X) ={((z,u), APPs(g,x,u,v)) | (z,(u,v)) € Y(g9) & X = Xy},

and choose B = {X,, | (7, (u,v)) € Y(g)}. For part 3 of the theorem, first
observe that, by an easy induction following the inductive definition of R(g),
dom(R(g)) € W. Now, by another easy induction, this time on the inductive
definition of W, observe that, for each w = (z,u) € W,

APP3(Q,,T,11,, LAM(H(f, U)))

is the unique z such that (w,z) € R(g) and moreover z € ¢(w). All this
shows that R(g) is an f satisfying the desired conditions. Finally, another
proof by induction on W will show that R(g) is the unique f satisfying these
conditions.
We now turn to the proof of the lemma. Let 7 be the operation on sets
given by
V)= J ew),

XePow(Y)
for each set Y. The operation ? is monotone and we must show that it has a
least fixed point. By transfinite recursion on ordinals we can define sets [,

for ordinals «, so that
I =71,

where 1<% = J,_,, I8. Let  be an infinite regular ordinal such that card(b) <
k forall b € B.

Claim 1: [® C [<®
To see this, let @ € I". Then a € ©(X) for some set X C <", For each x € X
let h(z) be the least ordinal 7y < & such that x € I7. By the assumption on
© there is b € B and a function f : b — X that is onto X. If @ = card(b)
then a < k and there is a function ¢ : @« — b that is onto b. It follows that
hofog:a— k. As k is regular there is § < k such that ho fog:a — 3.
As fogis onto X it follows that h : X — 3 so that X C I<# and hence
a€IP C <",

It is a standard consequence of this claim that I* is the least fixed point
of 7 and so is the desired set I of the lemma.®

To interprete the extra syntax needed for the W rules we use
sup’(a,b) = (a,b),
rec’(a,b) = R(a)(b)

and if b is a function
We(b) = W(b).

6This proof of the lemma uses the classical theory of cardinal numbers and uses AC. I do not think
that AC can be avoided. Instead of AC it may be possible to use the axiom that there are unboundedly
many regular ordinals.
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Theorem 2.3 (ZFC) The type theory MLW®* is sound.

This result gives a proof theoretic reduction of the type theory MLW®* to the set theory
ZFC. We write
MLW® <,g ZFC

to express this reduction. The type theory is constructive in the sense that when the
propositions-as-types idea is used to represent logic then intuitionistic logic is represented
and the law of excluded middle is not justified. On the other hand the set theory is
classical. In the following two subsections we improve on the result by first making the
type theory classical and second by making the set theory constructive.

2.5 Adding excluded middle

Recall that the logical notions are represented in MLW by using the propositions-as-
types idea. In particular the operation + on types represents disjunction and negation is
represented by the operation that maps a type A to the type A — 0. So to add the law
EM of excluded middle to the type theory we extend the syntax

= |el

and add the following rule.
A type
cl(A): A+ (A—0)

We call the resulting theory MLW + EM.

We need to extend the interpretation by having an equation for the new form of
pseudoterm. To do so we strengthen the axiom system ZFC by adding a one-place function
symbol C'H to the language of ZFC and adding the following global form of the axiom of
choice.

Va[z # 0 — CH(z) € .

The axiom schemes of ZFC should be extended to the extended language. We call the
resulting axiom system ZFGC. Working in this axiom system we can define an operation
CL where, for each set a,

[ (0,CH(a)) ifa#0
Clta) = { ({0}, 0) ifa =0

We can now let ¢l® = CL.
It is easy to check that, for each pseudoterm A and each variable assignment &,

€ =[cl(A) € A+ (A - 0)].

So we get the result that
MLW®* + EM <rg ZFGC.
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2.6 Reduction to a constructive set theory

We now follow the other strategy to improve on the result MLW®* <rq ZFC. This is
to weaken ZFC to a constructive set theory. In [Aczel 78] a constructive set theory CZF
was introduced that is a subtheory of ZF whose logic is intuitionistic. This set theory
was shown to have the property that when excluded middle is added to the logic then a
theory CZF + E'M is obtained that has the same theorems as ZF'. Here we will consider
the extension CZF" = CZF +REA of CZF obtained by adding to CZF the following axiom,
that was first introduced in [Aczel 86].

Regular Extension Axiom (REA)
Every set is a subset of a regular set, where a transitive set A is a regular set if,
for every a € A and every set R C a x A such that Vo € a3y € A[(z,y) € R] there
is a set b € A such that Yz € a3y € b[(z,y) € R] and Vy € b3z € a[(z,y) € R).

The construction, in subsection 2.4, of the T'S interpretation of MLW®* was carried out
in the set theory ZFC. It is straightforward to show that the construction can be carried
through in CZF™. In fact it can all be carried through in CZF, except for the proof of
Lemma 2.2 The proof in ZFC that was given here of that lemma used the power set
axiom and some of the classical theory of cardinal numbers and needed the axiom of
choice. Instead we can apply Theorem 5.2 of [Aczel 86] to see that the lemma is provable
in CZF*.7
So we now have the following result.

Theorem 2.4 (CZF") The type theory MLW®* is sound.

This can be expressed as
MLW® <, CZF™.

3 Adding type universes

In this section we consider natural ways of extending the type theory MLW with one or
more type universes; i.e. types of types. In each case we define a corresponding way of
extending set theory so that the T'S interpretation extends to include the type universes.

3.1 Adding a single reflecting type universe, U

We extend the type theory MLW to MLWU by adding a type U of types that has rules
that reflect the type forming rules of MLW. First we extend the syntax with

cop=---|U.
Next we add the rules given by the following schemes in abbreviated form.

A:U
U type m c: U (C S {0, ]_7 2})

"The status of CZFYEM = ZF + REA is unclear. Every theorem is a theorem of ZFC. But it is
probable that RE A is not provable in ZF.
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A:U r: A= B:U

(Qz: A)B: U (@€ {I, =, W})
When extending MLW®* to MLW®*U we also need rules for U to reflect Fq and EQ); i.e.
A:U ap : A as : A AU Ayt U
Eq(A,a,a9) : U EQ(A,Ay) : U

In order to extend the T'S interpretation to MLW®*U + EM it suffices to add to ZFGC the
axiom that there is an inaccessible cardinal and interprete U as the set U? of all sets of set
theoretic rank less than the least strongly inaccessible cardinal. If we call the resulting
set theory ZFGC; then we get the reduction

MLW®*U + EM <5 ZFGC;.

To extend the T'S interpretation of MLW®* in CZF" we add to CZF" an individual
constant u and axioms expressing that u is an inaccessible set in the sense of Griffor and
Rathjen, [Griffor and Rathjen 96] 8 We write CZF*u for the resulting theory. Now it
suffices to take U° = u and we get the reduction

MLW®*U <7g CZF"u.

3.2 Adding an infinite hierarchy, Uy, Uq,..., of reflecting type
universes

This time we extend the syntax using
con=---]1U, (n=0,1,...)
and add rules given by the following schemes for n = 0,1, .. ..

AU,

t -
U, type Atype

¢:U, (cefo, 1,2}

A:U xr:A=B:U,
(Qx: A)B: U,

(@ e A{Il, &, W})

A:U,
A:Un+1

In the case of MLW®* we also need the obvious rules for reflecting Eq and FQ. We get
the resulting type theories MLWU_,, and MLW®*U_,,. To extend the T'S interpretation
we need to extend the classical and intuitionistic set theories in the following way. We
add an infinite sequence u,, for n = 0,1, ... of individual constants to the set theoretical
language and add axioms u, € u,;; for n = 0,1,.... In the classical case we also add
axioms that express that each u, is the set of sets of rank less than a strongly inaccessible
cardinal number and in the constructive case we add axioms that express that each u,
is an inaccessible set. We write ZFGCu.,, and CZF*u., for the resulting extensions.
We extend the TS interpretation by taking U? = u, for each n and get the following
reductions.

Un : Un—|—1

MLWetU_, + EM <gg ZFGCu.,,

MLWetU_,  <5g CZFtu_,

8i.e. a regular set that is a transitive model of CZF*.
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3.3 Adding an impredicatively [I-closed type universe P

We extend the syntax with

cpi=---|P
and add rules given by the schemes
P tvpe A:P A:P a; : A as : A
yP A type ay =ag: A
r:A=>B:P r: A= B, =By:P
(Mz: A)B: P (Mz: A)B; = (Ilx : A)By : P

With these rules the type P behaves like the impredicative type of propositions of the
calculus of constructions, with the additional property that all the propositions in P are
proof-irrelevant. Adding these rules we get the type theories MLWP and MLW®P. To
get the type theories MLWPU and MLW®*PU we need to add the previously given rules
for U and also the following rules so that U reflects P.

A:P
A:U

P:U

Similarly we can define the type theories MLIWPU_,, and MLW®*PU_,,.

We show how to extend the T'S interpretation so as to interprete the type P and
justify its rules. In classical set theory we can interprete P as the set 2 = {0,1}. But to
do so we need to use a non-standard function coding. Recall that our T'S interpretation
uses an arbitrary function coding and so far the standard one has been good enough.
But to justify the rules for P we use the following non-standard function coding.

APP(a,b) ={y|(by) €a}
LAM(a) =Up.pea{z} x 2)

The advantage of this function coding over the standard one is that we can prove the
following result, which we express in a form that still usefully holds in constructive set
theory. Recall that 1 = {0}.

Proposition 3.1 For any set a, if B(x) C 1 for each x € a then
Pl,c.B(x)={yel|Vexea(B(x)=1)}C1

so that
Pl,eoB(z) =1 <= Vzea(B(x)=1).

Note that in classical set theory the subsets of 1 are just the elements of 2 = {0,1}. In
constructive set theory the subsets of 1 play the role small extensional propositions and
the above result expresses that the PI operation behaves like universal quantification on
such propositions.

Using this result we get the soundness of the rules for P and hence the following

reductions.
MLWP + EM  <;¢ ZFGC

MLWPU + EM <pg ZFGC;
MLWePU_, + EM <pg ZFGCu.,
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In constructive set theory we cannot use Pow(1) = {z | z C 1} to interprete the type P
as the class Pow(1) cannot be shown to be a set in CZF or its constructive extensions.
Instead we will here simply extend the theory to give us what we want. So we add a new
individual constant p to the language and add the following axioms.

1.Vxepx Cl,

2. If B is a function with domain the set a such that Vx € a B(x) € p then
PlL,c.B(z) € p.

This gives us the extension CZF*p. For the theories CZF*pu, CZFpu_, we also need
the axioms p € u, p € ug respectively.

Of course in the T'S interpretations in our constructive set theories we let P° = p and
get the following reductions.

MLWeP  <;.s CZF*+p
MLWePU  <p¢ CZF*pu
MLWePU_,, <pg CZFTpu_,

4 Interpreting Set Theories in Type Theories

We now explore to what extent the proof theoretic reductions we have obtained using
the T'S interpretation can be reversed using what we will here call the ST interpre-
tation. This is the sets-as-trees interpretation that was introduced and developed
in [Aczel 78, Aczel 82, Aczel 86] and has also been used in [Griffor and Rathjen 94,
Griffor and Rathjen 96]. It is used to interprete a set theory in a type theory. The
idea for the original interpretation, in [Aczel 78], of CZF in MLWU was to interprete the
sets of CZF as the well-founded trees of the type V = (Wz : U)z, the membership and
equality relations of CZF being interpreted as terms €y, =y of type V- — (V' — U). Using
the propositions-as-types idea each sentence of CZF was interpreted as a type of MLWU
and it was shown that each theorem of CZF is an inhabited type of MLWU; i.e. a type A
such that a : A can be derived in MLWU for some term a. In this way a proof theoretic
reduction of CZF to MLWU is obtained that will be expressed as ? CZF <gp MLWU. In
fact, as shown in [Aczel 86], we get

CZF* <gp MLWU.

Also, it is easy to see that, using the rule EM of MLWU 4 EM we can justify both the law
of excluded middle and global choice for the set theory so as to get the reduction

ZFGC <gr MLWU + EM.

Unfortunately this and the previous reduction do not match up exactly with our earlier
TS reductions. The trouble is the need to use a type universe U in our ST interpretation.
In order to interprete the type universe in set theory we need to strengthen the set theory
with a set theoretic version; i.e. an inaccessible set in the constructive set theory case and
a strongly inaccessible cardinal in the classical set theory case. Now, if we wish to extend

9Notice that the ST interpretation does not use any kind of equality types, neither intensional nor
extensional, so that we have stated the stronger result of a reduction to MLWU rather than to MLW®tU.
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the ST interpretation of CZF" to an interpretation of CZFu, we need to use two of the
type universes Uy, U; of MLWU_,, and their rules and use the type V; = (Wz : Uy)z to
interprete the universe of sets of CZF"u. The inaccessible set u of CZF*u can be modelled
by vo = sup(Vo, (Az : Vo)h(z)) : Vi where Vy = (Wax € Up)x : Uy and h(z) : Vi is defined
by transfinite recursion on x : V so that

h(sup(a, f)) = sup(Vo, (Az : a)h(app(f,z)))

fora: Uy and f: a — Vj; i.e. h(z) is the term rec(b, x) where b is the term (Az : Ug)(Ay :
x— Vo) Az x — V)sup(x, z).

We can extend these ideas to more universes, a set theory with n inaccessibles being
given an ST interpretation in a type theory with n 4+ 1 type universes, Uy, ..., U,, with
the universe of sets of the set theory being interpreted as the type V,, = (Wz : U,)z.

Fortunately we do get a matching of a set theory with a type theory of the same proof
theoretic strength when we go to the limit. First consider the type theory MLWU_,U
that is obtained from MLWU_, by adding the type universe U at the top reflecting all
the rules of MLWU_,, so that in particular we have the rules

AU,
e SV
for n = 0,1,.... As above we get an ST interpretation of CZF} into this theory, using

V = (Wz € U)z to interprete the universe of sets of the set theory, giving us
CZF! <gr MLWU_,U.

Now observe that we have a proof theoretic reduction
MLWU_,U < MLWU_,,.

The idea for this is that any derivation in the left hand type theory can only involve
finitely many of the type universes U; and so can be translated into a derivation in the
right hand type theory by replacing the symbol U everywhere by U,,, where n is chosen
large enough so that n > ¢ whenever U; occurs in the derivation. Using a previous 7'S
reduction, we get the next result.

Theorem 4.1 The following theories are of the same proof theoretic strength.
e CZFtu_,
e MLWU_,U
e MLWU_,
e MLW®*U_,

We have the same situation for classical set theory so that, using the fact that global
choice does not increase the proof theoretic strength, we get the next result.

Theorem 4.2 The following theories are of the same proof theoretic strength.

L] ZFCU<w
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ZFGCu_,,

MLWU_,U + EM
e MLWU_, + EM
e MLWetU_,, + EM

Finally we observe that the ST interpretation carries over to the set theory CZF'p to
give the reduction
CZF*p <gr MLWUP

and, as above, the reduction
CZF*pu_, <sr MLWPU_,,.
This, with a previous reduction gives us the following result.
Theorem 4.3 The following theories are of the same proof theoretic strength.
e CZFtpu_,
e MLWPU_,

o MLWePU_,,
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