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INTEGRATION IN FINITE TERMS 

MAXWELL ROSENLICHT, University of California, Berkeley 

1. The question arises in elementary calculus: Can the indefinite integral of an 
explicitly given function of one variable always be expressed "explicitly" (or "in 
closed form", or "in finite terms")? Liouville gave the answer one would expect, 
"No", and he proved in particular that such is not the case with j" exZdx.Since we 
have all fallen into the habit of quoting this result and giving neither proof nor 
reference, it may be worthwhile to actually state it as precisely as possible and give a 
proof that is as elementary as the subject matter might suggest. 

We must define our terms carefully. To begin with, we are not interested in 
arbitrary functions, but in elementary functions, which are functions of one variable 
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built up by using that variable and constants, together with repeated algebraic 
operations and the taking of exponentials and logarithms. Since we lose no generality 
by doing so, we shall take all exponentials and logarithms to the base e. We allow 
ourselves the convenience of the use of complex numbers, for with these the various 
trigonometric and inverse trigonometric functions turn out to be elementary, as 
seems reasonable. Thus the integral of a rational function of one real variable is 
elementary, since it is a linear combination of logarithms, inverse tangents, and 
rational functions. But we are still deficient in precision, because of the multi- 
valuedness of algebraic functions and logarithms. The functions we work with must 
be specific objects, each susceptible of an unambiguous sense. We choose to avoid 
the difficulties associated with multivaluedness by the simplest method, that of 
restricting ourselves, in any given discussion, to functions on some specific region 
(that is, nonempty connected open subset) of the real numbers R or the complex 
numbers C, and furthermore considering only meromorphic functions on the region 
in question, a meromorphic function on a region being a function whose values are 
complex numbers or the symbol co, with the property that sufficiently near any 
point z, of the region the function is given by a convergent Laurent series in z - z,, 
that is, a convergent power series in z - z,, with the possible addition of a finite 
number of negative powers. Thus the rational functions of one variable, which f i rm  
the field C(z) got by adjoining the identity function z to the field of constant functions 
C,are all meromorphic on all of R or 6 .  The exponential of a function f meromor-
phic on a certain region of R or @ is a function meromorphic on the subregion 
obtained by deleting those points where the value of f is co (and then taking 
a connected component, if we are working in R), while log f can be taken to 
be meromorphic on any simply connected subregion where f takes on neither of 
the values 0 or co, by arbitrarily choosing one of its many values at any particular 
point of the subregion. Furthermore, the implicit function theorem shows that 
if we are given a polynomial equation with coefficients which are functions 
meromorphic on a certain region, the leading coefficient not being zero, then there 
exists a meromorphic solution on a suitable subregion. Thus any complicated ex-
pression for an elementary function, compounded of algebraic operations, ex-
ponential~ and logarithms, has a realization as a meromorphic function on some 
region. Now the totality of all meromorphic functions on a given region form a 
field under the usual operations of functional addition and multiplication, and the 
restriction of all these functions to any given subregion gives an embedding of 
fields. The derivative of a function meromorphic on a given region is again mero- 
rnorphic, as is an indefinite integral, if one exists, of the function. Note that the 
rational functions on a region, that is the restriction of C(z) to this region, are a 
field of meromorphic functions on the region that are closed under differentiation, 
and that if we have any field of meromorphic functions on a region that is closed 
under differentiation and get a larger field of meromorphic functions on the region by 
adjoining the exponential or a logarithm of a function in our field, or a solution 
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of a polynomial equation with coefficients in the field, we again get a field of mero- 
morphic functions on the region that is closed under differentiation. Thus the proper 
objects of study are seen to be fields of meromorphic functions on given regions 
in R or Cwhich are closed under differentiation. If a function in such a field has an 
indefinite integral that is expressible "in finite terms," then by restricting all func- 
tions, if necessary, to a suitable subregion, we see that we have a tower of such fields 
of meromorphic functions, each larger field being obtained by adjunction of an 
exponential, or a logarithm, or the solution of an algebraic equation, the tower 
starting with the original field and culminating in a field containing the indefinite 
integral. Thus the original loosely worded analytic problem, when formulated as 
a precise analytic problem, becomes algebraic. 

2. Define a differential field to be a field F, together with a derivation on F, 
that is, a map of F into itself, usually denoted a *a', such that (a + b)' = a '  + b' 
and (ab) '=  a ' b + a b f  for all a , h ~ F .  Immediate consequences are that 
(alb)' = (abl-a'b)/b2 if a, b E F, b # 0, and (a")' = ?la"-'a' for all integers n .  
Furthermore, 1' = (1 ')' = 2 . 1 . l ' ,  so 1 ' = 0 .  Therefore the constants of F ,  
that is, all c E F such that c' = 0, are a subfield of F. 

If a, b are elements of the differential field F, a being nonzero, let us agree to 
call a an exponential of b, or b a logarithm of a ,  if b' = a'la;  this terminology is not 
unreasonable for our present purposes since the only properties of exponentials 
and logarithms in which we are interested are their differential properties. We im- 
mediately get the "logarithmic derivative identity," 

for a,, ...,a,, nonzero elements of F and v ,  ,...,v,,integers. 

3. There is a standard result on algebraic extensions of differential fields which 
we shall need later. For completeness we prove it here. The result is that if F is a 
differential field of characteristic zero and K an algebraic extension field of F, then 
the derivation on F can be extended to a derivation on K, and this extension is 
unique. (Thus K has a unique differential field structure extending that of F. We 
remark that the restriction to characteristic zero is not essential; it suffices to assuma 
that K is separable over F, and the following proof will hold in this more general 
case.) For the reader who is interested only in the classical function-theoretic case, 
where the fields in question are fields of meromorphic functions on a region of R 
or @, the proof is immediate, the existence proof being a direct consequence of the 
implicit function theorem, uniqueness following from the ordinary method of 
computing derivatives of functions given implicitly. To prove the result generally, 
let X be an indeterminate and define the maps Do, D, of the polynomial ring F [ X ]  
into itself by 
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for a,, a,, . . a ,  a, E F. If K has a differential field structure extending that of F, then 
for any x E K and any A(X) E F[X] we have 

If we replace A(X) by the minimal polynomial f(X) of x over F, (that is, the monic 
irreducible polynomial of which x is a root, indeed a simple root, so that (Dl f)(x) 
# 0), we get x' = - (Do f )  (x) 1 (Dl f )  (x). Thus the differential field structure on 
K that extends that on F is unique, if it exists. We now show that such a structure 
on K exists. Using the usual field-theoretic arguments, we may assume that K is a 
finite extension of F, so that we can write K = F(x), for a certain x E K. For some 
g(X) E FIX], to be determined later, let the map D: F[X] +F[X] be defined by 

for any A E FIX]. It follows immediately that D(A + B) = DA + DB and D(AB) 
= (DA)B + A(DB) for all A, B E F[X], since the analogous identities hold for both 
Do and Dl. Note that Da = a' for all a E F. Now look at the natural surjective ring 
homomorphism F[X] +F[x], which is the identity on F and sends X into x. Since 
F[x] = F(x) = K, the map D on F[X] will induce a derivation on K extending 
that on F if it so happens that D maps the kernel of our ring homomorphism into 
itself. But the kernel of the homomorphism is the ideal F[X] f(X), where f(X)is 
the minimal polynomial of x over F .  Hence we shall have proved our result once we 
have shown that D maps F[X] f(X) into itself. The condition for this is simply that 
D map f(X) into a multiple of itself, that is that D f be any element of F[X] of 
which x is a root, or that (D f)(x) = 0. But this last condition reduces to (Do f)(x) 
+g(x) (Dl f)(x) =0. Since (Dl f)(x) # O and F(x) = F[x], a polynomial g(X) E F[X] 
can actually be found such that (Df)(x) = 0, and this completes the proof of our 
statement. 

4. By a differential extension field of a differential field F we mean, of course, 
a differential field which is an extension field of F whose derivation extends the 
derivation on F .  The following result will be the principal tool for proving the the- 
orem of the next section, and will be used for the verification of our subsequent 
examples. 

LEMMA.Let F be a dgerential field, F(t) a differential extension field of F having 
the same subfield of constants, with t transcendental over F, and with either t' EF 
or t l / t  EF. If t '  EF,  then Jor any polynomial f(t) E F[t] of positive degree, (f (t))' 
is a polynomial in F[t] of the same degree as f(t), or degree one less, accrdding 
as the highest coefficient of f(t) is not, or is, a constant. If tl/t E F, then for any 
nonzero a E F  and any nonzero integer n we have (atn)' = htn, for some nonzero 
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h E F, and furthermore,  f o r  a n y  polynomial  f ( t )  E F [ t ]  of positive degree, ( f  ( t ) ) '  
is a polynomial in  F [ t ]  of  the same degree, and is a mul t ip le  o f  f ( t )  on l y  i f  f ( t )  is 
a monomial. 

We first consider the case t' = b E F.  Let the degree of f ( t )  be n > 0, so that 
f ( t )  = antn+ an-,t"-I + ... + a,, with a,,...,a, E F,  a, # 0. Then 

This is clearly a polynomial in F [ t ] , of degree n if an is not constant. If a,, is constant 
and nanb +a,:- ,  = 0, then (na,,t + a  ,,-,)' = na,,b + a,;-, = 0, so that nant  + a n - ,  
is a constant, therefore an element of F, so that t E F, contrary to the assumption 
that t is transcendental over F. Thus if a,, is constant, ( f ( t ) ) '  has degree n - 1. 

Now suppose that we are in the case t ' l t  = b E F. Let a E F, a # 0, and let n be 
a nonzero integer. Then 

(at f1) '= a ' t f l+ nat f l - I t '  = (a '  + nab)tn.  

If a'  + n a b  = 0, then (at")' = 0, so that at" is constant, therefore an element of 
F ,  contradicting the transcendence of t over F. Therefore a' + n a b  # 0. Finally, 
let f ( t )  E F [ t ]  have positive degree. Clearly ( f  ( t ) ) '  has the same degree. If ( f  ( t ) ) '  
is a multiple o f f  ( t ) , it must be by a factor in F. Therefore iff  ( t )is not a monomial, 
a,,tn and a,,,t In being two of its different terms, and ( f  ( t ) ) '  is a multiple off ( t ) ,we have 

or (a,,tll~af,ltm)'= 0, so that a, , t f ' /a , , , tm~F ,  again contradicting the transcendence of 
t over F. This completes the proof. 

5. Let F be a differential field. Define an elementary extension of F to be a 
differential extension field of F which is obtained by successive adjunctions of elements 
that are algebraic, or logarithms, or exponentials, that is, a differential extension 
field of the form F(t , ,  ..., t,), where for each i = 1, . . a ,  N, the element t i  is either 
algebraic over the field F(t , ,  ...,t i - ,), or the logarithm or exponential of an element 
of F( t , ,  ..., t i - ,). Note that each intermediate field F(t , ,  ...,t i - , )  is a differential 
field and an elementary extension of F. 

The following result is the abstract generalization of Ostrowski's 1946 generaliza- 
tion of Liouville's 1835 theorem on the subject. A proof of the analytic case may be 
found in Ritt's classic exposition [4]. Other algebraic proofs, essentially the same as 
the one given here, may be seen in [Z] and [5] .  
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THEOREM.Let F be a difSerential jield of characteristic zero and a E F. If the 
equation y'=a has a solution in some elementary differential extension field of  F 
having the same subjield of constants, then there are constants c,, ...,c, E F and 
elements u , , . . . , ~ , ,  v E F such that 

A number of comments are in order before we proceed with the proof. First, in 
the case of greatest interest, in which our fields are fields of meromorphic functions 
on some subregion of R or C, the condition that F and its elementary extension field 
have the same constants will be automatically satisfied as long as C c F,  since any 
constant meromorphic function is a complex number. In the general case however, 
the condition that F and its elementary extension field have the same constants, 
or some related condition, is essential. This can be seen from the example F = R(x) ,  
the field of real rational functions of a real variable, with x' = 1 as usual, and 
a = 1/(x2+ 1). Clearly J ' (1/ (x2+ 1))dx is an element of an elementary extension 
field of R(x),  and our claim is that the assumption that we can write 1/(x2+ 1) in 
the desired form, with c,, ..., c,,E R and u , ,  ...,u,, v E R(x) ,  will lead to a contra- 
diction. For if x 2  + 1 occurs vi times in the expression of ui as a power product of 
monic irreducible elements of R[X], then u(/ui- 2vix/(x2+ 1) is an element of 
R(x)  without x 2  + 1 in its denominator, while x 2  + 1, if it occurs in the denominator 
of v, will occur at least twice in the denominator of v'. Thus x 2  + 1 divides the de- 
nominator of neither v nor v', implying that 1 -C2civix is divisible by x 2  + 1, which 
is impossible. The final comment is that the theorem has an easy converse: if a can 
be written as indicated then a has an integral in some elementary extension field of F. 
This is quite easy to show in the abstract case and is immediate in the classical case 
where F is a field of meromorphic functions on a subregion of R or C, as we see by 
passing to a suitable subregion, where the various logui's can be defined. 

Now for the proof of Liouville's theorem. By assumption there is a tower of 
differential fields 

F c F( t l )  c ... c F( t l , ...,t,), 

all with the same subfield of constants, each ti being algebraic over F(t,, ...,t i- ,) ,  
or the logarithm or exponential of an element of this field, such that there exists an 
element y E F( t l , ...,t,) such that y' = a. We shall prove the theorem by induction 
on N. The case N = 0 is trivial, so assume that N > 0 and that the theorem holds for 
N - 1. Applying the case N - 1 to the fields F(t,) c F(t,, ..., t,), we deduce that we 
can write a in the desired form, but with u,, . . a ,  u,, v in F(t,). Setting t ,  = t ,  we have 
t algebraic over F,  or the logarithm or exponential of an element of F, and we know 
that 
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with c,, ...,c,, constants of F and u, ,  ...,u,, v  E F(t ) ,  and it remains to find a similar 
expression for a, possibly with a different n, but with all of u , ,  ...,u,, v  in F .  

First suppose that t is algebraic over F. Then there are polynomials U , ,  ...,U,, 
V E F [ X ]  such that U , ( t )  = u , ,  ...,U,(t) = u,, V ( t )  = v. Let the distinct conjugates 
of t over F in some suitable algebraic closure of F(t )  be s ,  ( = t ) ,  s,, ...,s,. (In case 
we are dealing with fields of meromorphic functions on a region in R or @, the 
functions s,, ...,s ,  can be taken to be meromorphic functions on a suitable sub- 
region, and it suffices to carry the proof through for functions on the subregion.) 
Now bear in mind the result of Section 3 on algebraic extensions of differential fields. 
We have 

for j = 1, ...,s, since this is true for j = 1. Application of the operation (11s) Cs=, 
to both sides of the equation yields 

Since each U i ( s l ) .  Ui(s,) and V ( s l )+ ... + V(s,)  are symmetric polynomials in 
s, ,  . . . ,T ,  with coefficients in F,  each of these expressions is actually in F. Hence the 
last equation is an expression for a of the desired form. 

In the remaining cases, where t is the logarithm or exponential of an element of F,  
we may assume that t is transcendental over F. Then we have 

with u, ( t ) , ...,u,(t), v(r) E F( t ) .  Each u i ( t )  can be written as a power product of a 
nonzero element of F and various monic irreducible elements of F[r] . Hence we may, 
if necessary, use the logarithmic derivative identity to  rewrite Cci(u i ( t ) ) ' /u i ( t )in a 
similar form, but with each u i ( t ) either in F or a monic irreducible element of F [ t ] .  
We therefore assume that u, ( t ) ,  ...,u,(t) are distinct, each being an element of F or a 
monic irreducible element of F [ t ] ,  and that no ci is zero. Now look at  the partial 
fraction decomposition of v(t) ,  which expresses v(t)  as the sum of an element of 
F [ t ]  plus various terms of the form g( t ) / ( f ( t ) ) ' ,  where f ( t )  is a monic irreducible 
element of F [ t ] ,  r a positive integer, and g( t )  is a nonzero element of F [ t ]  of degree 
less than that o f f  ( t ) . Clearly u, ( t ) ,  ...,u,(t), v( t)  must be of very special form for the 
right hand side of the last equation to add up to a, which doesn't involve t .  To in- 
vestigate this special form in detail, it now becomes convenient to separate cases. 
In each case the lemma provides the basic arguments. 

First, suppose that t is the logarithm of an element of F,  so that t' = a'la, for 
some a E F. Let f ( t )  be a monic irreducible element of F [ t ] .  Then ( f ( t ) ) '  is also in 
F [ t ] ,  and it has degree less than that of f  ( t ) ,  so that f  ( t )  does not divide ( f  ( t )) ' .  



970 MAXWELL ROSENLICHT [November 

Thus if ui(t) = f(t), then the fraction (ui(t))'/ui(t) is already in lowest terms, with 
denominator f(t). If g(t)/(f (t))' occurs in the partial fraction expression for u(t), 
with g(t) E F[t] of degree less than that off (t) and r > 0 and maximal for given f (t), 
then (v(t))' will consist of various terms having f(t) in the denominator at most r 
times plus (g(t)(l/(f (t))')' = - rg(t)(f (t))'/( f (t))'+ l .  Since f (t) does not divide 
g(t)(f (t))', we see that a term with denominator (f (t))'+l actually appears in 
(~(t))'. Thus if f(t)  appears as a denominator in the partial fraction expansion of 
v(t), it will appear in a, which is impossible. Therefore, f(t) does not appear in the 
denominator of v(t). Therefore f (t) cannot be one of the ui(t)'s either. Since this is 
true for each monic irreducible f (t), we have each ui(t) E F and v(t) E F[t]. Since 
(v(t))' E F, the lemma implies that v(t) = ct + d, with c constant and d G F. Thus 

is an expression for cr of the desired form. 
Finally, consider the case where t is the exponential of an element of F, say 

t'lt = b', with b E F. The lemma implies that if f (t) is a monic irreducible element 
of F[t] other than t itself, then (f (t))' E F[t] and f (t) does not divide (f (t))'. Pre- 
cisely the same reasoning as above shows that f (t) cannot occur in the denominator 
of v(t), nor can any ui(t) equal f (t). Thus v(t) can be written as u(t) = Zjajtj, where 
each a j  E F and j ranges over a finite set of integers, positive, negative, or zero, and 
each of the quantities ul(t), ...,u,(t) is in F, with the possible exception that one of 
these may be t itself. Since each (ui(t))'/ui(t) is in F, we have (v(t))' E F, so the lemma 
implies that v(t) E F. If each ui(t) is in F, we already have LY in the desired form, and 
are done. If not, only one ui(t), say ul(t), is not in F. Then ul(t) = t and u2(t), ..., 
u,(t) EF, so we can write 

with u,, ...,u,, clb + u all in F. This completes the proof of the theorem. 

6.  An elementary function is a meromorphic function on some region in R or @ 
that is contained in an elementary extension field of the field of rational functions 
C(z). We now give some examples of elementary functions with nonelementary 
indefinite integrals. 

As a preliminary comment we note that if g(z) is a non-constant rational function 
of the complex variable z then eg is not algebraic over @(z). This can easily be shown 
analytically by noting that since g(z) must have at least one pole on the Riemann 
sphere, eg will have at least one essential singularity, unlike any algebraic function. 
Or it can be shown algebraically by looking at the irreducible equation over @(z) 
that eg would otherwise satisfy, say 
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where a,, a * . ,  a, E C(Z), then differentiating this to get 

ng'ew + (a; + (n - l)a,g')e("l)g + ... + a,'= 0, 

which must be proportional to the first equation, so that ng' = aL/a,, then noting 
that ailan is either zero or -a sum of fractions with constant numerators and linear 
denominators, whereas ng' can have no linear denominator, so that g' = 0, con-
tradicting the assumption that g is nonconstant. 

We now want to derive a criterion, due to Liouville, that J"f(z)eg(')dz be ele- 
mentary, where f (z), g(z) are given rational functions of z, f (z) being nonzero, and 
g(z), as above, non-constant. Writing eg = t, we have t'/t = g'. Working in the 
differential field @(z, t), a pure transcendental extension of C(z), we see that if 
Jf egdz is elementary, then we can write 

with c,, ...,c, E C and u,, ...,u,,,v E C(Z, t). Now let F = @(z), so that f,g E F and 
u,, ...,u,, v E F(t). By factoring each ui as a power product of irreducible elements 
of F[t] and using logarithmic derivatives, if necessary, we can guarantee that the 
ui's which are not in F are distinct monic irreducible elements of F[t]. Imagine v 
expanded into partial fractions with respect to F[t]. The lemma implies immediately 
that the only possible monic irreducible factor of a denominator in v is' t, which is 
also the only possible ui not in F. Thus v is of the form Xbjtj, for j ranging over 
some set of integers and each b, E F. Since Zciuj/ui E F, we have f t = (b; + b,g')t. 
Writing b, = a, we have f = a '  + ag', with a E C(z). Conversely, if there is an 
a E @(z) such that f = a '  + ag' then one elementary integral of f eg is aeg. Thus 

feg has an elementary integral if and only if there is an a E C(z) such that f = a '  + ag'. 
For given f,g E C(Z), the possibility of finding a E @(z) such that f = a '  + ag' 

can be decided by considering partial fraction expansions for f,g, and a .  For J"e"dz 
we have the equation 1 = a '  + 2za, which is easily seen to have no solution a E C(z). 
For J(ez/z)dz, we have the equation l /z  = a '  + a, which also has no solution in 
@(z). Therefore J"ez2dz and J"(ez/z)dz are not elementary. By certain changes of 
variable we can get other nonelementary integrals. For example, if we replace z by 
ez in the second integral we get J"eezdz nonelementary, and replacing z by logz 
we get J (lllog z)dz nonelementary. The integral J log log zdz reduces to the 
previous integral by integration by parts, so it also is nonelementary. 

It is slightly more complicated to show that J(sinz/z)dz is not elementary. 
To  do this, first change the variable to J?z to slightly simplify the problem to 
that of showing that J" ((ez- eWz)/z)dz is not elementary. Here again consider the 
differential field @(z,t), where t = ez. If our integral is elementary, Liouville's 
theorem enables us to write 
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with c,, ...,c, E @ and u,, ...,u,, v E @(z, t). Again write F = C(z), so that u,, u,,. a s ,  


v E F(t), again arrange that the ui's which are not in F are distinct monic irreducible 
elements of F[t] and that v is expressed in its partial fraction form, and use the 
lemma. We again get that the only possible ui not in F is t, so that Cciu(/ui E F ,  
and the only possible monic irreducible factor of a denominator in v is t. Writing 
v = CbjtJ, as before, with each b j e  F, we deduce as before that l / z  = b ;  + b,, 
which is impossible. Therefore j" (sin z/z)dz is not elementary. 

7. The question arises whether for any explicitly given elementary function of 
the complex variable z it can be decided whether or not the function has an elementary 
integral, and if so, finding it. It is not difficult to see, using the method of the previous 
section, that this can be done for any function in @(z, eq),where g is any nonconstant 
element of C(z), but the general question is not so easy. Hardy's book [I] discusses 
the systematic integration of the kinds of elementary functions that occur in calculus, 
the main point being that there really is a system (contrary to the sometimes ex- 
pressed opinion that integration in calculus is as much an art as a science), but the 
book barely broaches the general decision question, which very quickly leads to 
once intractable questions about points of finite order on abelian varieties over 
finitely generated ground fields. A solution to this decision problem has recently 
been announced by Risch [3]. 
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