Second exercise for Proof Assistants 2009

The exercise is to implement a very small LCF-style prover for minimal proposi-
tional logic. Minimal propositional logic is the logic that only has one connective,
implication, and that only has three inference rules:

A+ B I'A—B I'FA
IT'U{A}FA T+A—B I'FB

For an example, here is a very small proof in this logic:

atFa
Fa—a
In this proof a is a free propositional variable.
Although these three rules are the customary natural deduction rules for

minimal propositional logic, in order implement it in the style of HOL it is
easier to replace them with the inference rules:

I'B I'rA—B Ar-A
AFA T -{AlFA—>B T'UAFB

These alternative rules allow one to deduce the same sequents as the original
rules did.

The exercise is to write a short ML program that contains both a ‘LCF kernel’
for this logic, as well as a ‘subgoal package’ for it that allows one to interactively
prove propositions by applying tactics to a goal. Please submit your program as
one file, that for instance could be called ‘prop.ml’. You can interactively load
this file in ocaml by issuing the command ‘#use "prop.ml";;’ at the interpreter
prompt.

The hard deadline for this exercise is June 26. As a half-way checkpoint, May
29 a version of the kernel of the prover has to be handed in.

*

Here is a step-by-step guide on how one might go about doing this exercise. It
is not at all required to follow this in detail.

1. Implement a logic kernel that defines types

form
thm

and functions

assume : form -> thm
intro_rule : form -> thm -> thm
elim_rule : thm -> thm -> thm



that correspond to the inferences rules of the logic.
You are now at the halfway checkpoint of the exercise.

. Implement a package for goal-directed proof that defines types

goal
goalstate
tactic

and a function

by : tactic -> goalstate -> goalstate
This ‘by’ function applies the tactic to the first goal in the goalstate.
. Implement tactics that correspond to the rules from the kernel:

assumption : tactic
intro_tac : tactic
elim_tac : form -> tactic

. Implement interactive commands for doing goal-directed proofs:

: form -> goal
: unit -> goal
: tactic -> goal
: unit -> goal

o o 'O 0

These commands respectively set the current goal, return the current goal
(= the first goal in the most recent goalstate in the proof history), apply a
tactic to the current goal, and undo the last tactic that was applied. They
use a global variable

history : goalstate list ref
to keep the state of the proof, and raise an exception
QED

when there is no subgoal left to return. Make each command run p() at the
end, so that each command will return the current goal.

. Implement a function
top_thm : unit -> thm

that returns the thm when an interactive proof is finished by running the
justification function that has been constructed. This only needs to work if
no goal is left.



To give an impression of the complexity of this exercise: my own solution along
these lines consisted of 125 lines of ML code.

*
There are various things that you can do to make this exercise more work. They
are not required to get full marks, but they might be fun working on.

— First of all, there are three different ways to implement tactics in an LCF-
style:

(i) You can use the normal LCF style where one has

goal = form list * form
goalstate = goal list * (thm list -> thm)
tactic = goal -> goalstate

This is the easiest approach.
(ii) You can follow HOL Light and instead use goals that look like

goal = thm list * form

so where the assumptions in the goals are represented by thms instead of by
forms.

(iii) If you are really courageous you can try to follow the approach from Proof-
Power and Isabelle and use

goalstate = goal list * thm

instead of goalstates in the normal LCF style.
In message <200601051723.25137 . rda@lemma-one.com> to the hol-info
mailing list, Rob Arthan described this approach in the following way:

I can thoroughly recommend the way Kevin Blackburn implemented
the subgoal package in ProofPower based on ideas of Roger Jones.
The logical state of the proof is represented by a theorem whose con-
clusion represents the original goal and whose assumptions represents
the outstanding subgoals (a sequent being essentially represented by
a universally closed implication).

Tactics have the traditional type (GOAL -> GOAL list * (THM list
=> THM)). All useful tactics return justifications (the THM list ->
THM bit) that are insensitive to the presence of additional assumptions
in the theorems in the argument list. So with some very simple logical
trickery, the subgoal package can arrange to apply the justification
immediately and use it to replace the assumption in the goal-state
theorem that represents the goal by new assumptions representing
the new subgoals.

This approach neatly solves some classic problems (the justifications
are tested immediately and the theorem produced at the end is guar-
anteed to be identical with the original goal). It does theoretically
restrict what the tactics can do (e.g., as regards type instantiation),
but this is not a problem for any tactic I have ever seen.



This third approach does not take too much extra code, but it requires some
hard thinking about the ‘logical trickery’ that is needed to make this work.
(I would really like it if someone would try to implement this variant of doing
a subgoal package for the exercise.)

For the exercise it is not required to implement parsers or pretty-printers.
However, it would be nicer to be able to type

form "(a -> b) -> c"

where the function form has type ‘string -> form’) than to have to type
g
something like

Imp (Imp (Var "a", Var "b"), Var "c")

For the exercise it is not required to turn the types form and thm into
‘private’ types by putting them inside a module like it is done in HOL
Light. However, doing this would clearly delineate the kernel, and would
fully protect the logic against unsafe ML programming.

An interesting modification would be to modify the type thm to have it
contain a lambda-term that represents the proof as a proof object.

One could add labels to the goals, and then implement a tactic that corre-
sponds to Coq’s ‘apply’ tactic.

Finally it might be interesting to implement a rule and a corresponding tac-
tic that proves arbitrary propositions fully automatically, like HOL Light’s
‘TAUT’ or Coq’s ‘tauto’ tactic.



