First exercise for Proof Assistants 2009

The exercise is to write a Mizar formalization of the following mathematics:

Lemma 1. Each natural number $n \equiv 3(\bmod 4)$ has a prime divisor p for which it also holds that $p \equiv 3(\bmod 4)$.

Proof. We prove this by induction on the size of n. Take a prime divisor p of n. Because n is odd, p will be either 1 or $3(\bmod 4)$. In the latter case we are finished, so suppose $p \equiv 1(\bmod 4)$. Then n / p will be smaller than n and also be $3(\bmod 4)$, The induction hypothesis then applies to n / p giving us a prime divisor that is $3(\bmod 4)$ of n / p, but this will also be a prime divisor of n, giving us what we are looking for.

Lemma 2. For each natural number n there exists a prime number $p>n$ with $p \equiv 3(\bmod 4)$.

Proof. Using the previous lemma obtain a prime divisor $p \equiv 3(\bmod 4)$ of $4 n!-1$. We show with a proof by contradiction that $p>n$. So suppose that $p \leq n$. Then p would divide n !, because it is one of the factors. But from that it follows that it also divides $4 n$!, while by construction it already divided $4 n!-1$. Together this gives that it divides 1 , which is impossible.

Theorem. The set $\{p \mid p$ is prime $\& p \equiv 3(\bmod 4)\}$ is infinite.
Proof. Immediate from Lemma 2.

The exercise is to write a Mizar article that is error-free, and is in a shape that makes it fit to be submitted to the MML library.

The deadline for this exercise is Friday June 12. As a half-way checkpoint, Friday April 24 a version of the article has to be handed in that already has the formalization of the statements of the two lemmas and the theorem, and that only has $* 1$ and $* 4$ errors left.

Some remarks about this exercise:

- I took me about two hours to do this exercise (but then I am an experienced Mizar user). My solution currently is 138 lines long.
- The proof of the second lemma is an adapted version of Euclid's proof that there are infinitely many primes, which goes like this:

Lemma $\mathbf{2}^{-}$. For each natural number n there exists a prime number $p>n$.

Proof. Consider a prime divisor p of $n!+1$. We show with a proof by contradiction that $p>n$. So suppose that $p \leq n$. Then p would
divide n !, because it is one of the factors. But by construction it already divided $n!+1$. Together this gives that it divides 1 , which is impossible.

Here is a Mizar formalization of this simpler proof (which is 30 lines long):

```
environ
    vocabularies FILTER_0, QC_LANG1, ARYTM_3, ORDINAL2, ARYTM;
    notations NAT_1, INT_2, XXREAL_0, ORDINAL1, NUMBERS,
        XCMPLX_0, NEWTON, SUBSET_1, INT_1;
    constructors NAT_1, XXREAL_0, NEWTON, NAT_D;
    registrations XXREAL_0, ORDINAL1, INT_1;
    requirements SUBSET, BOOLE, NUMERALS, REAL, ARITHM;
    theorems INT_2, NAT_1, NEWTON, XREAL_1, WSIERP_1;
begin
    reserve n for natural number;
    reserve p for Element of NAT;
theorem
    for n ex p st p is prime & p > n
proof
    let n;
    n! > 0 by NEWTON:23;
    then n! >= 0 + 1 by NAT_1:13;
    then n! + 1 >= 1 + 1 by XREAL_1:8;
    then consider p such that
A1: p is prime & p divides n! + 1 by INT_2:48;
A2: p <> 0 & p > 1 by A1,INT_2:def 5;
    take p;
    thus p is prime by A1;
    assume p <= n;
    then p divides n! by A2,NEWTON:54;
    hence contradiction by A1,A2,INT_2:1,WSIERP_1:20;
end;
```

- If you think of a useful lemma, first try to find it in the MML. If you cannot find it, do not hesitate to state and prove it yourself (but only prove it after you finished the main proof.) For example, the lemma

```
for n,a,b being Integer holds
    (a* b) mod n = ((a mod n) * (b mod n)) mod n
```

is in the MML (find it!) However, the lemma

```
n}\mathrm{ is even iff n mod 4 = 0 or n mod 4 = 2
```

does not seem to be there yet. In my formalization the proof of this lemma took 23 lines.

- Be aware of the difference between
natural number
and

Element of NAT

To get from the first to the second, use reconsider with ORDINAL1:def 13. It is crazy that this is needed, but each time you introduce a variable you need to decide which of these two types is the most appropriate for that specific variable.

- A scheme that you can use for the induction in the proof of the first lemma is NAT_1: sch 4.
- Finally, here is - for a random example - an easy way to 'calculate' the value of a 'mod' expression:

```
42 = 4*10 + 2 & 2 < 4;
then 42 mod 4 = 2 by NAT_D:def 2;
```

