SSReflect, A Small Scale Reflection Extension for the Coq system

Robbert Krebbers ${ }^{1}$

June 26, 2009
${ }^{1}$ Student number: s0513229, e-mail: robbertkrebbers@student.ru.nl

- Development started in 1984 at INRIA
- Current version 8.2
- Based on intuitionistic type theory
- Written in Objective Caml with a bit of C
- Correctness relies on a not so small kernel (16587 lines)
- Distributed under the LGPL

SSReflect

- Coq extension
- Development started by George Gonthier for the formalization of the Four Colour theorem
- Currently maintained by the Mathematical Components team of Microsoft Research/INRIA
- Current version 1.1, compatible with CoQ 8.1
- Distributed under the CeCill-B license

SSREFLECT

Download and documentation

- Home page
http://www.msr-inria.inria.fr/Projects/math-components
- Documentation
- Written by George Gonthier and Assia Mahboubi
- 78 pages
- Assumes you are highly experienced with CoQ

Users

- Mainly used at Microsoft Research/INRIA
- Based in Orsay and Sophia Antipolis
- Respectively 5 and 6 researchers

George Gonthier

Team leader

Research interests:

- Programming language design and semantics
- Concurrency theory
- Its application to security
- Methods and tools for the formal verification

Benjamin Werner

Arithmetic leader

Research interests:

- Formalization of mathematical reasoning
- Mechanical verification through proof systems
- Proofs involving computations and evolutions of type theory

Projects

Mainly for very long and non-trivial formalizations

1. Four Colour Theorem
2. Cayley-Hamilton Theorem
3. Feit-Thompson Theorem

Four Colour Theorem

Four Colour Theorem: The regions of any simple planar map can be coloured with only four colours, in such a way that any two adjacent regions have different colours.

- First stated in 1852 by Francis Guthrie
- Lots of false proofs and counterexamples given

Four Colour Theorem

Four Colour Theorem: The regions of any simple planar map can be coloured with only four colours, in such a way that any two adjacent regions have different colours.

- First stated in 1852 by Francis Guthrie
- Lots of false proofs and counterexamples given

Four Colour Theorem

Heinrich Heesch

- Heinrich Heesch developed methods for proof search by a computer in 1970
- Developed a test for the four color theorem
- Did not have enough computer time

Four Colour Theorem

Appel and Haken

- Proven by Appel and Haken in 1976 using a computer
- Enormous case analysis
- Checked 1936 configurations
- 400 pages of microfiche had to be checked by hand
- Proof not accepted by many mathematicians
- Unreadable IBM 370 assembly program
- Computer programming is known to be error prone
- In 1980 rumours about a flaw in Appel and Haken's proof

Four Colour Theorem

Robertson, Sanders, Seymour and Thomas

- Proven by Robertson, Sanders, Seymour and Thomas in 1995
- Based on proof by Appel and Haken
- C program instead of assembly

Four Colour Theorem

- Proven in 2005 by George Gonthier
- Using SSReflect for Coq 7.3.1
- Final step to remove all doubts
- 53282 lines Coq code
- Variable R : real_model.

Theorem four_color : (m : (map R))
(simple_map m) -> (map_colorable (4) m).
Proof.
Exact (compactness_extension four_color_finite). Qed.

Cayley-Hamilton Theorem

Cayley-Hamilton Theorem: Every square matrix over the real or complex field satisfies its own characteristic equation.

- Proven by Sidi Ould Biha in 2008 using SSReflect
- Resulted in a library to describe polynomials

Feit-Thompson Theorem

Feit-Thompson Theorem: Every finite group of odd order is solvable

Definition: A group is solvable if it has a normal series whose factor groups are all abelian

Feit-Thompson Theorem

- Historical proof of 255 pages
- It takes a professional group theorist a year to understand
- Unavoidable that flaws exist in the proof
- Start of the classification of finite simple groups
- George Gonthier et al. started a project to formalize this using SSReflect

Implementation

- Extension of the proof language 4388 lines of Ocaml
- Basic Library 6886 lines of CoQ/Gallina

Proof language

Chaining

- Write very compact proofs
- Do a lot of bookkeeping meanwhile
- Regular Coq
generalize n m le_n_m.
clear n m le_n_m.
elim; [intros m _ | intros n IHn m lt_n_m].
- Becomes in SSReflect
elim: n m le_n_m $=>$ [|n $1 H n$] m $=>$ [_ | lt_n_m].

Proof language

－rewrite tactic heavily extended
－apply more robust
－last 〈goal〉 first instead of Focus 〈goal〉
－by to terminate goals
－have for backwards reasoning
－Indentation and bullets allowed

Libraries

Propositions and booleans

- Coq is intuitionistic
- Logical propositions are of type Prop
- $\forall P$:Prop $[P \vee \neg P]$ not provable

Libraries

Propositions and booleans

- Coq is intuitionistic
- Logical propositions are of type Prop
- $\forall P$:Prop $[P \vee \neg P]$ not provable
- bool is an inductive type: bool : true | false
- $\forall_{b: b o o l}[b \| \sim b=$ true] is provable
- Because boolean functions are computable

Libraries

Propositions and booleans (2)

- In decidable domains this distinctions does not make sense
- Booleans are coerced to propositions

Coercion is true (b: bool) := b = true

- Propositions and booleans are related

```
Inductive reflect (P: Prop): bool Type :=
    | Reflect true : P reflect P true
    | Reflect false : P reflect P false
```


Some other libraries

- eqtype: type with a decidable equality
- choice: type with choice operator
- fintype: type with finite elements
- finfun: type of function of finite domain
- bigops: generic indexed big operations
- groups: finite groups theory
- ssralg: algebraic structures
- matrix: determinant theory and matrix decomposition

SSREFLECT

Efficiency

- Standard Coq library
- 93000 lines for 7000 objects
- Average 13 lines per object
- Extended SSReflect library
- 14400 lines for 1980 objects
- Average 7 lines per object

Conclusion

- Only suitable for advanced Coq users
- Very effective way of doing proofs
- Mainly used for long and non-trivial proofs
- Classical flavour more familiar with Isabelle and Hol
- Decidable types
- Relies heavy on rewriting
- Most complete formalisation of finite group theory

Demo and questions

?

