
SSReflect, A Small Scale Reflection Extension
for the Coq system

Robbert Krebbers 1

June 26, 2009

1Student number: s0513229, e-mail: robbertkrebbers@student.ru.nl

Coq

I Development started in 1984 at INRIA

I Current version 8.2

I Based on intuitionistic type theory

I Written in Objective Caml with a bit of C

I Correctness relies on a not so small kernel (16587 lines)

I Distributed under the LGPL

SSReflect

I Coq extension

I Development started by George Gonthier for the formalization
of the Four Colour theorem

I Currently maintained by the Mathematical Components team
of Microsoft Research/INRIA

I Current version 1.1, compatible with Coq 8.1

I Distributed under the CeCill-B license

SSReflect
Download and documentation

I Home page
http://www.msr-inria.inria.fr/Projects/math-components

I Documentation
I Written by George Gonthier and Assia Mahboubi
I 78 pages
I Assumes you are highly experienced with Coq

http://www.msr-inria.inria.fr/Projects/math-components

Users

I Mainly used at Microsoft Research/INRIA

I Based in Orsay and Sophia Antipolis

I Respectively 5 and 6 researchers

George Gonthier
Team leader

Research interests:

I Programming language design and semantics

I Concurrency theory

I Its application to security

I Methods and tools for the formal verification

Benjamin Werner
Arithmetic leader

Research interests:

I Formalization of mathematical reasoning

I Mechanical verification through proof systems

I Proofs involving computations and evolutions of type theory

Projects

Mainly for very long and non-trivial formalizations

1. Four Colour Theorem

2. Cayley-Hamilton Theorem

3. Feit-Thompson Theorem

Four Colour Theorem

Four Colour Theorem: The regions of any simple planar
map can be coloured with only four colours, in such a
way that any two adjacent regions have different colours.

I First stated in 1852 by Francis Guthrie

I Lots of false proofs and counterexamples given

Four Colour Theorem

Four Colour Theorem: The regions of any simple planar
map can be coloured with only four colours, in such a
way that any two adjacent regions have different colours.

I First stated in 1852 by Francis Guthrie

I Lots of false proofs and counterexamples given

Four Colour Theorem
Heinrich Heesch

I Heinrich Heesch developed methods for proof search by a
computer in 1970

I Developed a test for the four color theorem

I Did not have enough computer time

Four Colour Theorem
Appel and Haken

I Proven by Appel and Haken in 1976 using a computer
I Enormous case analysis

I Checked 1936 configurations
I 400 pages of microfiche had to be checked by hand

I Proof not accepted by many mathematicians
I Unreadable IBM 370 assembly program
I Computer programming is known to be error prone

I In 1980 rumours about a flaw in Appel and Haken’s proof

Four Colour Theorem
Robertson, Sanders, Seymour and Thomas

I Proven by Robertson, Sanders, Seymour and Thomas in 1995

I Based on proof by Appel and Haken

I C program instead of assembly

Four Colour Theorem
George Gonthier

I Proven in 2005 by George Gonthier

I Using SSReflect for Coq 7.3.1

I Final step to remove all doubts

I 53282 lines Coq code

I Variable R : real_model.
Theorem four_color : (m : (map R))
(simple_map m) -> (map_colorable (4) m).

Proof.
Exact (compactness_extension four_color_finite).
Qed.

Cayley-Hamilton Theorem

Cayley-Hamilton Theorem: Every square matrix over
the real or complex field satisfies its own characteristic
equation.

I Proven by Sidi Ould Biha in 2008 using SSReflect

I Resulted in a library to describe polynomials

Feit-Thompson Theorem

Feit-Thompson Theorem: Every finite group of odd
order is solvable

Definition: A group is solvable if it has a normal series
whose factor groups are all abelian

Feit-Thompson Theorem

I Historical proof of 255 pages

I It takes a professional group theorist a year to understand

I Unavoidable that flaws exist in the proof

I Start of the classification of finite simple groups

I George Gonthier et al. started a project to formalize this using
SSReflect

Implementation

I Extension of the proof language
4388 lines of Ocaml

I Basic Library
6886 lines of Coq/Gallina

Proof language
Chaining

I Write very compact proofs

I Do a lot of bookkeeping meanwhile

I Regular Coq

generalize n m le_n_m.
clear n m le_n_m.
elim; [intros m _ | intros n IHn m lt_n_m].

I Becomes in SSReflect

elim: n m le_n_m => [|n IHn] m => [_ | lt_n_m].

Proof language

I rewrite tactic heavily extended

I apply more robust

I last 〈goal〉 first instead of Focus 〈goal〉
I by to terminate goals

I have for backwards reasoning

I Indentation and bullets allowed

Libraries
Propositions and booleans

I Coq is intuitionistic

I Logical propositions are of type Prop

I ∀P:Prop[P ∨ ¬P] not provable

I bool is an inductive type: bool : true | false

I ∀b:bool[b || ∼ b = true] is provable

I Because boolean functions are computable

Libraries
Propositions and booleans

I Coq is intuitionistic

I Logical propositions are of type Prop

I ∀P:Prop[P ∨ ¬P] not provable

I bool is an inductive type: bool : true | false

I ∀b:bool[b || ∼ b = true] is provable

I Because boolean functions are computable

Libraries
Propositions and booleans (2)

I In decidable domains this distinctions does not make sense

I Booleans are coerced to propositions

Coercion is true (b: bool) := b = true

I Propositions and booleans are related

Inductive reflect (P: Prop): bool Type :=
| Reflect true : P reflect P true
| Reflect false : P reflect P false

Some other libraries

I eqtype: type with a decidable equality

I choice: type with choice operator

I fintype: type with finite elements

I finfun: type of function of finite domain

I bigops: generic indexed big operations

I groups: finite groups theory

I ssralg: algebraic structures

I matrix: determinant theory and matrix decomposition

SSReflect
Efficiency

I Standard Coq library
I 93000 lines for 7000 objects
I Average 13 lines per object

I Extended SSReflect library
I 14400 lines for 1980 objects
I Average 7 lines per object

Conclusion

I Only suitable for advanced Coq users

I Very effective way of doing proofs

I Mainly used for long and non-trivial proofs

I Classical flavour more familiar with Isabelle and Hol

I Decidable types

I Relies heavy on rewriting

I Most complete formalisation of finite group theory

Demo and questions

?

