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Legal noti
e
HOL Light version 1.0, hereinafter referred to as \the software", is a
omputer theorem proving system written by John Harrison, a resear
hworker at the University of Cambridge Computer Laboratory, New Mu-seums Site, Pembroke Street, Cambridge, CB2 3QG, England. The soft-ware is 
opyright, 

University of Cambridge 1998.Permission to use, 
opy, modify, and distribute the software and itsdo
umentation for any purpose and without fee is hereby granted. In the
ase of further distribution of the software the present text, in
luding
opyright noti
e, li
en
e and dis
laimer of warranty, must be in
ludedin full and unmodi�ed form in any release. Distribution of derivativesoftware obtained by modifying the software, or in
orporating it intoother software, is permitted, provided the in
lusion of the software isa
knowledged and that any 
hanges made to the software are 
learlydo
umented.John Harrison and the University of Cambridge dis
laim all war-ranties with regard to the software, in
luding all implied warranties ofmer
hantability and �tness. In no event shall John Harrison or theUniversity of Cambridge be liable for any spe
ial, indire
t, in
identalor 
onsequential damages or any damages whatsoever, in
luding, butnot limited to, those arising from 
omputer failure or malfun
tion, workstoppage, loss of pro�t or loss of 
ontra
ts.
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Prefa
eHOL Light is a relatively new version of the HOL theorem prover (Gordon andMelham 1993). The whole implementation, even the axiomatization of the logi
,has been re-engineered and simpli�ed. Compared with other versions of HOL, it isrelatively small and 
lean, and makes modest demands on the ma
hine it is run on.The material that follows is not only a tutorial on the use of HOL Light and itsintera
tion language, but also provides a detailed dis
ussion of the implementation.HOL Light proves theorems in a system of 
lassi
al higher order logi
 basedon polymorphi
 simple type theory. All proof pro
eeds by the appli
ation of low-level primitive rules, maintaining a high degree of reliability. However, a suite ofderived rules for proving various useful theorems automati
ally is provided, as is afull programming language in whi
h users 
an implement their own derived rules.A number of useful mathemati
al theories, e.g. real analysis, are already available.To be
ome an expert user of HOL Light, it is ne
essary to know somethingabout programming in CAML Light, whi
h is the implementation and intera
tionlanguage. However, for readers primarily interested in theorem proving, it's nodoubt somewhat dispiriting to spend a long time studying fun
tional programmingbefore even beginning to prove theorems. We have tried to minimize this problemin the organization that follows.We begin with a short introdu
tory 
hapter highlighting the basi
 features ofCAML and HOL, in
luding the basi
 me
hanism of user intera
tion and the prin
i-ples behind derived inferen
e rules. Features of HOL and CAML are illustrated aswe go, and most readers will be able to pi
k up the general ideas. This introdu
tionis followed by the two larger Parts, 
omprising systemati
 introdu
tions to CAMLand HOL respe
tively. While these 
an be ta
kled in sequen
e, the impatient reader
an read them in parallel, or even read the HOL part �rst and refer ba
k to theCAML part as needed. (Indeed, there are a number of obvious parallels betweenCAML and the HOL logi
, with both being an enri
hed version of lambda 
al
ulus,and both having a similar system of types. Reading these parts in parallel will showmany similar 
on
epts like 
urrying and polymorphism in two di�erent 
ontexts.)Sin
e HOL Light is aimed parti
ularly at the enthusiast who wants to implement
ustom theorem-proving tools, a third Part gives an overview of the implementation,explaining the basi
 stru
ture of the system and dis
ussing various design de
isions.We hope that users interested in building 
ustom theorem proving tools, or justin understanding the ar
hite
ture of a modern theorem prover, will �nd somethingof interest in HOL Light and the present do
ument. While we are writing primarilyfor those interested in theorem proving, the system might be 
onsidered interestingfor two other reasons: it is a large appli
ation of (impure) fun
tional programming,and it in
ludes a systemati
 logi
al development of nontrivial mathemati
s from itsvery foundations �a la Prin
ipia Mathemati
a (Whitehead and Russell 1910).I do not assume that the reader is familiar with HOL or any similar system.Some knowledge of programming and of basi
 logi
 would be of great bene�t, butnot essential. However the present introdu
tion is not 
omprehensive, and theserious user will need to spend time browsing through the sour
e 
ode.iii
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Chapter 1Introdu
tionIn the following 
hapter we explain the key ideas behind HOL Light and 
over thebasi
s of intera
tion with the system. It is intended merely to give a brief taste,and readers wanting a more systemati
 introdu
tion should study the subsequent
hapters.1.1 What is HOL Light?There are many 
omputer programs, e.g. as used in ordinary po
ket 
al
ulators,for dealing with numeri
al problems like adding 2 and 2. Other programs, su
h asthe 
omputer algebra systems Maple1 and Mathemati
a2, 
an 
ope not just withparti
ular numbers, but also with expressions involving variables. For example they
an 
al
ulate that the derivative of x2 with respe
t to x evaluated at the point x is2x. These programs are usually thought of as 
al
ulating the answers to problems.But one 
an also look at them as systems that produ
e, on demand, mathemati
altheorems in a 
ertain 
lass. If we use the symbol ` to indi
ate that an assertion isa
tually a true theorem of mathemati
s, we might say that these programs produ
ethe following theorems, when given the appropriate left-hand sides:` 2 + 2 = 4or ` ddxx2 = 2xHOL Light is similar: it is a system for produ
ing theorems on demand. Com-pared with 
al
ulators or 
omputer algebra systems (CASs), it has two great ad-vantages:� HOL Light 
an produ
e theorems 
overing a wide mathemati
al range, e.g.involving in�nite sets and so-
alled quanti�ers like `there exists some integersu
h that . . . ' or `for any set of real numbers . . . '. By 
ontrast, 
al
ulators andCASs mainly produ
e un
onditional equations with any variables impli
itlyregarded as universal.� The theorems it produ
es 
an be relied on to be unambiguous in meaning andrigorously proven. By 
ontrast, the exa
t readings of `theorems' produ
ed by1Maple is a registered trademark of Waterloo Maple Software.2Mathemati
a is a registered trademark of Wolfram Resear
h In
.1



2 CHAPTER 1. INTRODUCTION
al
ulators and CASs are often open to doubt | even for something as trivialas expli
it 
al
ulation involving approximations like sin(0:7) = 0:6442176872.Moreover, CASs often leave out essential side
onditions su
h as denominatorsof fra
tions being nonzero.Needless to say, this greater power and reliability 
omes at a pri
e.� Only in limited problem domains 
an HOL Light produ
e its theorems 
om-pletely automati
ally. In general, the user needs to des
ribe a suitable math-emati
al proof in reasonable detail | HOL Light merely �lls in some of thesimpler gaps and 
he
ks that the user doesn't make mistakes.� Whereas 
al
ulators and CASs are highly eÆ
ient and optimized for the typi-
al problems, HOL Light derives its theorems via a uniform me
hanism whi
htends to be less eÆ
ient in parti
ular 
ases.Like good 
al
ulators and CASs, HOL Light is programmable. This means thatone 
an start with the available fun
tions for proving 
ertain theorems automat-i
ally, and produ
e new ones for parti
ular tasks by implementing them in termsof the original ones. Similarly, a simple s
ienti�
 
al
ulator might have a built-infun
tion to approximate sin, but none for evaluating, say, areas under the normaldistribution 
urve | the user has to program the latter. On
e this has been done,it 
an itself be
ome a subroutine in more 
omplex operations.The majority of the HOL Light system is a tower of su
h fun
tions. Right at thebottom, a very small set of primitive operations ultimately produ
e all theorems.In terms of these, more 
onvenient higher-level fun
tions are de�ned, these arethemselves used to build up additional layers, and so on. Any user 
an build upthis tower further. Be
ause theorems are ultimately produ
ed by the primitive rules,errors in higher-level fun
tions 
annot lead to false `theorems' being produ
ed; thisexplains the 
laim that HOL Light is relatively reliable. (A similar 
laim 
annotbe made for ordinary 
al
ulators sin
e the answers are often approximate, and it'shard to analyze how the ina

ura
y builds up.)This approa
h to theorem proving, using programmability to build up from asmall and reliable logi
al 
ore, originated with the Edinburgh LCF proje
t (Gordon,Milner, and Wadsworth 1979). For the approa
h to be palatable, the programminglanguage must be well suited to the task, and as part of the LCF proje
t a 
ompletelynew programming language 
alled ML3 was developed. ML has sin
e taken on a lifeof its own and is 
urrently being widely touted as a general-purpose language. Itis a higher-order fun
tional programming language, featuring a novel polymorphi
type system (Milner 1978) and a simple but useful ex
eption me
hanism as well assome traditional imperative features.The version of ML used in HOL Light is CAML Light (Weis and Leroy 1993).This language and an ex
ellent lightweight interpreter for it have been developedby a team at INRIA Ro
quen
ourt in Paris. HOL Light has no separate userinterfa
e: the user a
tually works inside the CAML interpreter with all the HOLLight infrastru
ture loaded in.HOL Light is the latest in a line of theorem provers going ba
k to the mid-eighties, using the LCF approa
h to implement a theorem prover for 
lassi
al HigherOrder Logi
 (hen
e the name HOL). Previous versions have in
luded HOL88, hol90,ICL ProofPower, and more re
ently hol98. HOL Light is intended to be a moresimple and elegant version targeted at users who really want to understand how the3ML for metalanguage; following Tarski (1936) and Carnap (1937), it has be
ome usual to en-for
e a stri
t separation between the `obje
t language' under 
onsideration and the `metalanguage'used to talk about it. For example in a 
ourse in Russian given in English, Russian is the obje
tlanguage and English the metalanguage.



1.2. GETTING STARTED 3system works, or who want to build their own appli
ation-spe
i�
 theorem provingtools.1.2 Getting startedAfter starting up CAML and loading HOL, the user is 
onfronted with CAMLLight's prompt (`#'). CAML Light is expe
ting the user to type something in, andit will then evaluate it and print the result. CAML will only a
t after the userterminates the input with a double semi
olon (`;;') and newline. For example, one
an use CAML like a po
ket 
al
ulator:#2 + 2;;it : int = 4The user enters the expression 2 + 2, and CAML evaluates it and prints theanswer, 4. It also prints out the type of the expression, namely int (short forinteger, i.e. whole number). We will explain CAML's types in more detail later.CAML also abbreviates the result by `it', to save the user retyping. For example,one 
an now do:#it + 3;;it : int = 7Instead of using the default name it, whi
h is overwritten every time a newexpression is evaluated, one 
an bind an expression to a name by using let. Forexample, after the following intera
tion, x has the value 4, at least until another`let x = ...' overwrites it.#let x = 2 + 2;;x : int = 4The above was only intended as an introdu
tion to intera
tion with CAML. Weare really interested in manipulating not numbers but logi
al entities like theorems.In fa
t, there are three key logi
al notions in HOL Light, ea
h with a 
orrespondingML type: types (hol type), terms (term) and theorems (thm). HOL Light is, atits 
ore, a system for manipulating these obje
ts. (Note the obje
t-meta distin
tionhere: one has an ML (meta) type of data stru
tures representing HOL (obje
t)types.)A HOL term represents a mathemati
al assertion like x + 1 = y or just somemathemati
al expression like x+ 1. Every term has a type, indi
ating what sort ofmathemati
al entity it is, e.g. a boolean value (true or false), a real number, a setof real fun
tions et
. For example, x+1 has type num indi
ating that it is a naturalnumber, while x + 1 = y has type bool indi
ating that it is either true or false.A HOL theorem simply asserts that some boolean-typed term is valid, or at least,follows from a �nite list of assumptions.Terms and types are represented by ML data stru
tures that we des
ribe inmore detail below. However, it is tiresome to des
ribe parti
ular terms and types,espe
ially large ones, by 
reating su
h data stru
tures expli
itly. Instead, HOLhas parsers and printers that allow types and terms to be represented in something
loser to familiar mathemati
al notation, subje
t to the limitations of ASCII. Termsare entered rather like strings, en
losed within ba
kquotes:#`x + 1`;;it : term = `x + 1`#`x + y <= z`;;it : term = `x + y <= z`



4 CHAPTER 1. INTRODUCTIONThis however hides quite a lot of pro
essing. Quotations are expanded (by afront-end �lter separate from CAML proper) into a 
all of a term parser and typeinferen
er. This not only analyzes the synta
ti
 stru
ture of the term but worksout types for the term as a whole and all its subterms. For example, it knows thatthe 
onstant 1 has type num, and that the left and right arguments of + must havethe same type, whi
h is also the type of the result. Hen
e it de
ides that x andthe term as a whole must also have type num. If the user tries to enter a term that
annot be typed, e.g. `(1 <= 2) + 3`, the type
he
ker will fail. If, on the otherhand, there is not enough type information to �x the types of all subterms, typevariables are invented and a warning given:#`x`;;Warning: inventing type variablesit : term = `x`The use 
an annotate the term or any subterms with types by writing a 
olonfollowed by a type, e.g.#`x:num`;;it : term = `x`The parser does not allow the same variable to have di�erent types in the sameterm.4 It is possible to 
reate su
h terms by hand using the fun
tions des
ribedlater, but is apt to look 
onfusing. Note that identi
ally-named variables withdi�erent types are treated as di�erent. Types, rather than terms, 
an be enteredby simply omitting the term, i.e. starting the quotation with a 
olon, e.g.#`:bool`;;it : hol_type = `:bool`HOL types and terms are not a
tually ML abstra
t types (they 
ould easily bemade so by separately 
ompiling the modules), but the user is expe
ted to use thestandard interfa
e fun
tions. These restri
t formation to those that are well-formedand well-typed. So even using the basi
 
onstru
tors, it is impossible to 
reate, forexample, a term that adds a number and a boolean value. Theorems 
an also onlybe 
reated by, at bottom, a small set of basi
 fun
tions. One of these is the fun
tionREFL whi
h takes a term t as an argument and returns a rather trivial theoremsaying that t is equal to itself:#REFL `x + 1`;;it : thm = |- x + 1 = x + 1HOL prints theorems using an ASCII approximation to the 
onventional `turn-stile' symbol `. If a theorem has assumptions, these are printed to the left of theturnstile. For example, another primitive fun
tion ASSUME takes a term p of Booleantype and returns the theorem (on
e again rather trivial) that under the assumptionthat p holds, p holds:#ASSUME `p:bool`;;it : thm = p |- p#ASSUME `1`;;Un
aught ex
eption: Failure "ASSUME: not a proposition"4Or more pre
isely, in the same s
ope. Separately bound instan
es 
an have di�erent types |see later.



1.3. DERIVED RULES 5While the user 
an enter any (typeable) term in quotations and have it elevatedto a HOL term, it is not possible to do this with theorems. While there's a 
om-putable pro
edure for de
iding if a term is well-typed, HOL has no way in general ofde
iding whether it is possible to 
onstru
t a theorem from the primitive fun
tions.However, there are some high-level fun
tions that a

ept a term of a 
ertain formand prove it automati
ally, turning it into a theorem. For example ARITH RULE 
anprove many basi
 fa
ts of natural number arithmeti
:#ARITH_RULE `2 * x < 2 * (x + 1)`;;it : thm = |- 2 * x < 2 * (x + 1)Note, however, that the theorem is still 
reated under the surfa
e by a (some-times quite lengthy) series of appli
ations of the primitive rules, maintaining theguarantee of reliability.1.3 Derived rulesIn general, an inferen
e rule in HOL is simply any ML fun
tion that return a theoremor theorems (obje
ts with ML type thm). Ones like ARITH RULE that turn 
laimsinto theorems are parti
ularly simple to use, but in general HOL inferen
e rulesmay require other theorems as input. For example MK COMB a

epts two theoremsas input, one saying that two fun
tions (say f and g) are equal, the other sayingtwo arguments (say x and y) are equal, and if the types mat
h up 
orre
tly so itmakes sense to apply f to x and g to y, MK COMB returns a theorem saying that f(x)and g(y) are equal.#let th1 = ASSUME `f:num->num = g`;;th1 : thm = f = g |- f = g#let th2 = ASSUME `m:num = n`;;th2 : thm = m = n |- m = n#MK_COMB(th1,th2);;it : thm = f = g, m = n |- f m = g nHOL rules 
an be separated into the primitive rules like REFL, ASSUME andMK COMB, of whi
h there are ten, and all the others, whi
h are 
alled derived rules,sin
e they are built up from the primitives. A lot of HOL Light's sour
e 
ode is asystemati
 building up of a useful set of higher-level derived rules, and the use ofthe rules, primitive and derived, to prove useful mathemati
al theorems. Here is avery simple but genuine example, one of HOL Light's simplest inbuilt derived rules
alled AP TERM. It a

epts a term representing a fun
tion f and a theorem assertingthat x and y are equal, and if the types mat
h up, returns a theorem asserting thatf(x) = f(y):#let AP_TERM tm th =MK_COMB(REFL tm,th);;AP_TERM : term -> thm -> thm = <fun>#AP_TERM `h:num->num` (ASSUME `m = 1`);;it : thm = m = 1 |- h m = h 1The de�nition of AP TERM is a simple 2-line ML program, whi
h �rst derivesthe trivial theorem that the fun
tion is equal to itself, using REFL, and then 
allsMK COMB to get the �nal result. Note that this just expresses generi
ally the wayone would prove su
h a theorem given only the primitive rules to work with. Aderived rule doesn't yield a single theorem, but rather a whole family of theorems



6 CHAPTER 1. INTRODUCTIONdepending on the input. It 
orresponds naturally to what a logi
ian would think ofas a `derived rule'.CAML Light, des
ribed in the next Part, is a full programming language, soone 
an perform essentially any kinds of inferen
e one wants, provided it is redu
edto the existing infrastru
ture of primitive and derived rules. Derived rules oftenhave a re
ursive stru
ture, passing over the input term and transforming it into anappropriate theorem. They may also do di�erent things depending, for example, onthe logi
al stru
ture of the input, the names of variables, and so on. All this willbe illustrated in more detail in what follows.Further readingThe original textbook on Edinburgh LCF by Gordon, Milner, andWadsworth (1979)introdu
es many of the basi
 ideas in HOL Light; see also the later book by Paul-son (1987) on a re-engineered version `Cambridge LCF'. The general approa
h totheorem-proving des
ribed above is, as emphasized by Gordon (1982), largely in-dependent of the parti
ular logi
 one works with, e.g. the original LCF (logi
 of
omputable fun
tions), higher order logi
, or �rst order set theory. The originalHOL was born when Gordon used the Cambridge LCF system to implement 
las-si
al higher order logi
. There is a book by Gordon and Melham (1993) des
ribingan early version of the system `HOL88', while an interesting histori
al survey ofthe development of LCF and HOL is given by Gordon (1996). The original ML isalso des
ribed in the early LCF publi
ations. CAML Light has extensive on-linedo
umentation and a book (in Fren
h) by Weis and Leroy (1993) devoted to it.Another ML version, Standard ML, is des
ribed by Paulson (1991).
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Chapter 2A taste of CAMLCAML Light feels rather di�erent from 
ommon programming languages like C orFORTRAN. The major di�eren
e is that it is a fun
tional rather than imperativelanguage. While it does have imperative features, we won't make very great useof them. The following se
tion explains the 
ontrast; readers with no previousprogramming experien
e may 
hoose to skip or just skim this material.2.1 Imperative vs fun
tional programmingPrograms in traditional languages, su
h as FORTRAN, Algol, C and Modula-3,rely heavily on modifying the values of a 
olle
tion of variables, 
alled the state.Before exe
ution, the state has some initial value �, representing the inputs tothe program, and when the program has �nished, the state has a new value �0in
luding the result(s). During exe
ution, ea
h 
ommand 
hanges the state, whi
hhas therefore pro
eeded through some �nite sequen
e of values:� = �0 ! �1 ! �2 ! � � � ! �n = �0For example in a sorting program, the state initially in
ludes an array of values,and when the program has �nished, the state has been modi�ed in su
h a way thatthese values are sorted, while the intermediate states represent progress towardsthis goal.The state is typi
ally modi�ed by assignment 
ommands, often written in theform v = E or v := E where v is a variable and E some expression. These 
ommands
an be exe
uted in a sequential manner by writing them one after the other in theprogram, often separated by a semi
olon. By using statements like if and while,one 
an exe
ute these 
ommands 
onditionally, and repeatedly, depending on otherproperties of the 
urrent state. The program amounts to a set of instru
tions onhow to perform these state 
hanges, and therefore this style of programming is often
alled imperative or pro
edural. Correspondingly, the traditional languages intendedto support it are known as imperative or pro
edural languages.Fun
tional programming represents a radi
al departure from this model. Essen-tially, a fun
tional program is simply an expression, and exe
ution means evaluationof the expression.1 We 
an see how this might be possible, in general terms, as fol-lows. Assuming that an imperative program (as a whole) is deterministi
, i.e. theoutput is 
ompletely determined by the input, we 
an say that the �nal state, orwhi
hever fragments of it are of interest, is some fun
tion of the initial state, say1Fun
tional programming is often 
alled `appli
ative programming' sin
e the basi
 me
hanismis the appli
ation of fun
tions to arguments. 9



10 CHAPTER 2. A TASTE OF CAML�0 = f(�).2 In fun
tional programming this view is emphasized: the program isa
tually an expression that 
orresponds to the mathemati
al fun
tion f . Fun
tionallanguages support the 
onstru
tion of su
h expressions by allowing rather powerfulfun
tional 
onstru
ts.Fun
tional programming 
an be 
ontrasted with imperative programming eitherin a negative or a positive sense. Negatively, pure fun
tional programs do not usevariables | there is no state. Consequently, they 
annot use assignments, sin
ethere is nothing to assign to. Furthermore the idea of exe
uting 
ommands in se-quen
e is meaningless, sin
e the �rst 
ommand 
an make no di�eren
e to the se
ond,there being no state to mediate between them. Positively however, fun
tional pro-grams 
an use fun
tions in mu
h more sophisti
ated ways. Fun
tions 
an be treatedin exa
tly the same way as simpler obje
ts like integers: they 
an be passed to otherfun
tions as arguments and returned as results, and in general 
al
ulated with. In-stead of sequen
ing and looping, fun
tional languages use re
ursive fun
tions, i.e.fun
tions that are de�ned in terms of themselves. By 
ontrast, most traditional lan-guages provide poor fa
ilities in these areas. C allows some limited manipulation offun
tions via pointers, but does not allow one to 
reate new fun
tions dynami
ally.FORTRAN does not even support re
ursion at all.A potential advantage of fun
tional languages is the following. Sin
e the eval-uation of expressions has no side-e�e
t on any state, separate subexpressions 
anbe evaluated in any order without a�e
ting ea
h other. This makes programs more
omprehensible and debugging easier, sin
e there is no danger of one part of aprogram unexpe
tedly a�e
ting others. Moreover, fun
tional programs may lendthemselves well to parallel implementation, i.e. the 
omputer 
an automati
allyfarm out di�erent subexpressions to di�erent pro
essors. By 
ontrast, imperativeprograms often impose a fairly rigid order of exe
ution, and even the limited inter-leaving of instru
tions in modern pipelined pro
essors turns out to be 
ompli
atedand full of te
hni
al problems.A
tually, CAML is not a purely fun
tional programming language; it does havevariables and assignments if required. Most of the time, we will work inside thepurely fun
tional subset. But even when we do use assignments, and lose some ofthe pre
eding bene�ts, there are advantages in the more 
exible use of fun
tionsthat languages like CAML allow. Programs 
an often be expressed in a very 
on-
ise and elegant style using higher-order fun
tions (fun
tions that operate on otherfun
tions). Code 
an be made more general, sin
e it 
an be parametrized even overother fun
tions. For example, a program to add up a list of numbers and a pro-gram to multiply a list of numbers 
an be seen as instan
es of the same program,parametrized by the pairwise arithmeti
 operation and the 
orresponding identity.In one 
ase it is given + and 0 and in the other 
ase, � and 1.2.2 Basi
 use of CAMLWe will use CAML in its intera
tive and interpretive mode. When it is started itpresents its prompt (`#'):> Caml Light version 0.74# (In order to exit the system, simply type 
trl/d or quit();; at the prompt.)When CAML presents you with its prompt, you 
an type in expressions, terminated2Compare Naur's remarks (Raphael 1966) that he 
an write any program in a single statementOutput = Program(Input).



2.2. BASIC USE OF CAML 11by two su

essive semi
olons, and it will evaluate them and print the result. In
omputing jargon, the CAML system sits in a read-eval-print loop: it repeatedlyreads an expression, evaluates it, and prints the result. For example, CAML 
an beused as a simple 
al
ulator:#10 + 5;;it : int = 15The system not only returns the answer, but also the type of the expression,whi
h it has inferred automati
ally. (We will have more to say about CAML'stypes in a later se
tion.) It 
an do this be
ause it knows the type of the built-inaddition operator +. On the other hand, if an expression is not typable, the systemwill reje
t it, and try to give some idea about how the types fail to mat
h up. In
ompli
ated 
ases, the error messages 
an be quite tri
ky to understand.#1 + true;;Toplevel input:>let it = 1 + true;;> ^^^^This expression has type bool,but is used with type int.Sin
e CAML is a fun
tional language, expressions are allowed to be fun
tions.Fun
tions 
an be written in CAML using the syntax fun x -> t[x℄ for the fun
tionthat maps an argument x to t[x℄, the latter being any expression involving x. Su
han expression involving `fun x -> ...' is said to be a fun
tion abstra
tion. Forexample we 
an de�ne the su

essor fun
tion:#fun x -> x + 1;;it : int -> int = <fun>Again, the type of the expression, this time int -> int, meaning a fun
tionfrom integers to integers, is inferred and displayed. However the fun
tion itselfis not printed; the system merely writes <fun>. This is be
ause, in general, theinternal representations of fun
tions are not very readable.3 In normal mathemati
alnotation, appli
ation of a fun
tion f to an argument x is written f(x). In CAML,the parentheses 
an be omitted unless they are needed to enfor
e grouping, e.g.#(fun x -> x + 1) 1 * 2;;it : int = 4#(fun x -> x + 1) (1 * 2);;it : int = 3#((fun x -> x + 1) 1) * 2;;it : int = 4Every fun
tion in CAML takes just a single argument. However there are twoways of getting the e�e
t of fun
tions of more than one argument. One way isto have a single argument but of a more 
omplex type, su
h as pairs (see later)of integers. The other is to use `
urrying' (after the logi
al Haskell Curry), wherethe fun
tion takes one argument and yields another fun
tion that takes the se
ondargument, and so on. For example, a 
urried fun
tion of two arguments that addsthe arguments together 
an be written and used as follows:3CAML does not store them simply as syntax trees, but 
ompiles them into byte
ode.



12 CHAPTER 2. A TASTE OF CAML#fun x -> (fun y -> x + y);;it : int -> int -> int = <fun>#(fun x -> (fun y -> x + y)) 1;;it : int -> int = <fun>#((fun x -> (fun y -> x + y)) 1) 2;;it : int = 3Note that the fun
tion has type int -> int -> int, meaning int -> (int ->int). When applied to one argument, 1, it yields another fun
tion, whi
h takes these
ond argument and maps it to the 
orresponding sum. Currying is used a lot infun
tional programming, sin
e it allows fun
tions to be used quite 
exibly. Someother synta
ti
 
onventions support it; for example, without parentheses to enfor
egrouping, fun
tion appli
ation asso
iates to the left, i.e. f g x means (f g)(x) notf(g(x)). We 
an write the above example more su

in
tly as:#(fun x y -> x + y) 1 2;;it : int = 32.3 Bindings and de
larationsA nontrivial fun
tional program is a very 
omplex expression, and it is of 
oursenot 
onvenient to evaluate it all in one go. Instead, useful subexpressions 
an beevaluated and bound to names using let. (In fa
t, a �lter in front of CAML Light,part of HOL Light, automati
ally binds the last anonymous expression evaluatedto the spe
ial name it, hen
e its appearan
e above.) For example:#let su

essor = fun x -> x + 1;;su

essor : int -> int = <fun>#su

essor 5;;it : int = 6De
larations 
an be made lo
al to the evaluation of an expression, so they areinvisible afterwards, using in. For example:#let su
 = fun x -> x + 1 insu
(su
 1);;it : int = 3#su
 1;;Toplevel input:>let it = su
 1;;> ^^^The value identifier su
 is unbound.The arguments to fun
tions 
an be written on the left of the equation, whi
hmost people �nd more natural:#let su

essor x = x + 1;;su

essor : int -> int = <fun>#su

essor 5;;it : int = 6Fun
tions 
an be re
ursive, i.e. de�ned in terms of themselves. To a
hieve this,simply in
lude the keyword re
. For example, the fa
torial n! = 1�2�� � ��(n�1)�n
an be evaluated as follows: evaluate (n� 1)! re
ursively, then multiply by n:



2.3. BINDINGS AND DECLARATIONS 13#let re
 fa
t n = if n = 0 then 1else n * fa
t(n - 1);;fa
t : int -> int = <fun>#fa
t 6;;it : int = 720By using and, one 
an make several binding simultaneously, and de�ne mutuallyre
ursive fun
tions. For example, here are two simple, though highly ineÆ
ient,fun
tions to de
ide whether or not a natural number is odd or even:#let re
 even n = if n = 0 then true else odd (n - 1)and odd n = if n = 0 then false else even (n - 1);;even : int -> bool = <fun>odd : int -> bool = <fun>#even 12;;it : bool = true#odd 14;;it : bool = falseIf de
larations do not in
lude the re
 keyword, then any instan
e of the name
urrently being bound on the right is taken to be the previous value. For example:#let su

essor n = su

essor(su

essor n);;su

essor : int -> int = <fun>#su

essor 2;;it : int = 4#su

essor 5;;it : int = 7The old binding is now overwritten. But note that we are not making assign-ments to variables. Ea
h binding is only done on
e when the system analyses theinput; it 
annot be repeated or modi�ed. It 
an be overwritten by a new de�ni-tion using the same name, but this is not assignment in the usual sense, sin
e thesequen
e of events is only 
onne
ted with the 
ompilation pro
ess, not with thedynami
s of program exe
ution. Indeed, apart from the more intera
tive feedba
kfrom the system, we 
ould equally repla
e all the double semi
olons after the de
-larations by in and evaluate everything at on
e. On this view we 
an see that theoverwriting of a de
laration really 
orresponds to the de�nition of a new lo
al vari-able that hides the outer one, a

ording to the s
oping rules usual in programminglanguages. For example:#let x = 1;;x : int = 1#let y = 2;;y : int = 2#let x = 3;;x : int = 3#x + y;;- : int = 5is the same as:#let x = 1 inlet y = 2 inlet x = 3 inx + y;;- : int = 5



14 CHAPTER 2. A TASTE OF CAMLNote 
arefully that variable binding is stati
, i.e. the �rst binding of x is stillused until an inner binding o

urs, and any uses of it until that point are not a�e
tedby the inner binding.4 For example:#let x = 1;;x : int = 1#let f w = w + x;;f : int -> int = <fun>#let x = 2;;x : int = 2#f 0;;it : int = 12.4 Evaluation rulesIn essen
e, CAML is quite simple to understand, sin
e it just evaluates expressions.However there are subtle questions over the pre
ise order of evaluation. For example,
onsider the following re
ursive fun
tion:#let re
 f x = f(x + 1);;f : int -> 'a = <fun>#f 2;;Interrupted.Evaluation of f 2 looped inde�nitely, until interrupted by 
trl/
. Now supposewe use f in another expression, but in a way that doesn't require f to be evaluatedon any arguments:#(fun x -> 1) (f 2);;Interrupted.Even so, an inde�nite loop results. The reason is that a

ording to CAML'sevaluation rules, all arguments to a fun
tion are evaluated before being insertedin the fun
tion body. This strategy is 
alled eager, in 
ontrast to 
leverer lazyapproa
hes that try to avoid evaluating subexpressions until they are de�nitelyneeded (and then no more than on
e).CAML adopts eager evaluation for two main reasons. Choreographing the redu
-tions and sharings that o

ur in lazy evaluation is quite tri
ky, and implementationstend to be relatively ineÆ
ient and 
ompli
ated. Unless the programmer is very
areful, memory 
an �ll up with pending unevaluated expressions, and in generalit is hard to understand the spa
e behaviour of programs. In fa
t many imple-mentations of lazy evaluation try to optimize it to eager evaluation in 
ases wherethere is no semanti
 di�eren
e. By 
ontrast, in CAML, we always �rst evaluate thearguments to fun
tions and only then inserts them in the body | this is simpleand eÆ
ient, and is easy to implement using standard 
ompiler te
hnology.The se
ond reason for preferring eager evaluation is that CAML is not a purefun
tional language, but in
ludes imperative features (variables, assignments et
.).Therefore the order of evaluation of subexpressions 
an make a big di�eren
e. Iflazy evaluation is used, it seems to be
ome diÆ
ult for the programmer to visualize,4The �rst version of LISP used dynami
 binding, where a rebinding of a variable propagated toearlier uses of the variable. This was in fa
t originally regarded as a bug, but soon programmersstarted to appre
iate its 
onvenien
e. The feature survived for a long time in many LISP diale
ts,but eventually the view that stati
 binding is better prevailed. In Common LISP, stati
 bindingis the default, but dynami
 binding is available if desired via the keyword spe
ial.



2.5. TYPES AND POLYMORPHISM 15in a nontrivial program, exa
tly when ea
h subexpression gets evaluated. In theeager CAML system, one just needs to remember the simple evaluation rules. Tobe expli
it, they are as follows:� Constants (e.g. prede�ned values and fun
tions like 1 and +) evaluate tothemselves.� Evaluation stops immediately at expressions of the form fun x -> ..., anddoes not look inside them. This only happens when su
h an expression isapplied to an argument.� When evaluating an appli
ation s t, then �rst both s and t are evaluated.5Then, assuming that the evaluated form of s is a fun
tion fun x -> ..., thebody is evaluated with ea
h instan
e of x repla
ed by the evaluated form oft. If the evaluated form of s is a built-in fun
tion like +, the appropriateevaluation is performed.� When evaluating if E1 then E2 else E3, �rst E1 is evaluated, and depend-ing on whether it yields true or false, either E2 or E3 respe
tively (and notthe other) is evaluated.One 
an regard let x = E1 in E2 as an abbreviation for (fun x -> E2) E1,and the above evaluation rules then give the right answer: E1 is evaluated, and thenthe evaluated form repla
es ea
h x in E1, whi
h is then itself evaluated. Let us seesome examples of evaluating expressions:(fun x -> (fun y -> y + y) x) (2 + 2)= (fun x -> (fun y -> y + y) x) 4= (fun y -> y + y) 4= 4 + 4= 8Note that the subterm (fun y -> y + y) x is not redu
ed, sin
e it is inside thefun
tion abstra
tion `fun x -> ...'. However, terms that are redu
ible and not soen
losed in both fun
tion and argument get redu
ed before the fun
tion appli
ationitself is evaluated, e.g. the se
ond step in the following:((fun f x -> f x) (fun y -> y + y)) (2 + 2)= ((fun f x -> f x) (fun y -> y + y)) 4= (fun x -> (fun y -> y + y) x) 4= (fun y -> y + y) 4= 4 + 4= 8The fa
t that CAML does not evaluate under fun
tion abstra
tions is of 
ru
ialimportan
e to advan
ed programmers. It gives pre
ise 
ontrol over the evaluation ofexpressions, and 
an be used to mimi
 many of the helpful 
ases of lazy evaluation,or sometimes to for
e earlier evaluation of expressions by moving them outside funx -> ....2.5 Types and polymorphismSome fun
tions do not have a �xed type. For example, the identity fun
tion thatreturns its argument un
hanged doesn't 
are whether its argument is an integer, a5CAML Light a
tually evaluates t �rst.



16 CHAPTER 2. A TASTE OF CAMLboolean, or another fun
tion. Therefore, it is said to have polymorphi
 type, andCAML displays a type involving type variables. These 
an later be set to someparti
ular type when it is used, di�erent instan
es with di�erent types.#let I = fun x -> x;;I : 'a -> 'a = <fun>CAML prints type variables as 'a, 'b et
.; these are supposed to be ASCIIrepresentations of �, � and so on. We 
an now use the polymorphi
 fun
tionseveral times with di�erent types:#I true;;- : bool = true#I 1;;- : int = 1#I I I I 12;;- : int = 12Ea
h instan
e of I in the last expression has a di�erent type, and intuitively
orresponds to a di�erent fun
tion. CAML always assigns the most general typepossible for an expression, without spe
ializing it unne
essarily, using an algorithmdue to Milner (1978). For example, the following is a more 
omplex de�nition of anidentity fun
tion; the reader may wish to study it to see why CAML gives all theseexpressions the types it does,6 and why I' a
ts as an identity fun
tion. Note thatin 
ontrast to most programming languages, CAML allows the prime 
hara
ter invariable names, re
e
ting its ba
kground in logi
 and mathemati
s where variableslike x0 are 
ommon.#let K x y = x;;K : 'a -> 'b -> 'a = <fun>#let S f g x = (f x) (g x);;S : ('a -> 'b -> '
) -> ('a -> 'b) -> 'a -> '
 = <fun>#let I' = S K K;;I' : '_a -> '_a = <fun>#I' 2;;it : int = 2In the above examples of polymorphi
 fun
tions, the system very qui
kly infers amost general type for ea
h expression, and the type it infers is simple. This usuallyhappens in pra
ti
e, but there are pathologi
al 
ases, e.g. the following example dueto Mairson (1990). The type of this expression takes about 10 se
onds to 
al
ulate,and o

upies over 4000 lines on an 80-
olumn terminal.let pair x y = fun z -> z x y inlet x1 = fun y -> pair y y inlet x2 = fun y -> x1(x1 y) inlet x3 = fun y -> x2(x2 y) inlet x4 = fun y -> x3(x3 y) inlet x5 = fun y -> x4(x4 y) inx5(fun z -> z);;Be
ause of CAML's automati
 type inferen
e, the programmer need never entera type. At least, CAML will already allo
ate as general a type as possible to an6Ignore the unders
ores for now. This is 
onne
ted with the typing of imperative features, andwe will dis
uss it later.



2.6. EQUALITY OF FUNCTIONS 17expression. However it may sometimes be 
onvenient to restri
t the generality ofa type. This 
annot make 
ode work that didn't work before, but it may serve asdo
umentation regarding the intended purpose of the 
ode; it is also possible touse shorter synonyms for 
ompli
ated types. Type restri
tion 
an be a
hieved inCAML by adding type annotations after some expression(s). These type annotations
onsist of a 
olon followed by a type. It usually doesn't matter exa
tly wherethese annotations are added, provided they enfor
e the appropriate 
onstraints.For example, here are some alternative ways of 
onstraining the identity fun
tionto type int -> int:#let I (x:int) = x;;I : int -> int = <fun>#let I x = (x:int);;I : int -> int = <fun>#let (I:int->int) = fun x -> x;;I : int -> int = <fun>#let I = fun (x:int) -> x;;I : int -> int = <fun>#let I = ((fun x -> x):int->int);;I : int -> int = <fun>2.6 Equality of fun
tionsInstead of 
omparing the a
tions of I and I 0 on parti
ular arguments like 3, itwould seem that we 
an settle the matter de�nitively by 
omparing the fun
tionsthemselves. However this doesn't work:#I' = I;;Un
aught ex
eption: Invalid_argument "equal: fun
tional value"It is in general forbidden to 
ompare fun
tions for equality, though a few spe
ialinstan
es, where the fun
tions are obviously the same, yield true:#let f x = x + 1;;f : int -> int = <fun>#let g x = x + 1;;g : int -> int = <fun>#f = f;;it : bool = true#f = g;;Un
aught ex
eption: Invalid_argument "equal: fun
tional value"#let h = g;;h : int -> int = <fun>#h = f;;Un
aught ex
eption: Invalid_argument "equal: fun
tional value"#h = g;;it : bool = trueWhy these restri
tions? Aren't fun
tions supposed to be �rst-
lass obje
ts inCAML? Yes, but unfortunately, (extensional) fun
tion equality is not 
omputable.This follows from a number of 
lassi
 theorems in re
ursion theory, su
h as theunsolvability of the halting problem and Ri
e's theorem.7 Let us give a 
on
rete7Ri
e's theorem is an extremely strong unde
idability result whi
h asserts that any nontrivialproperty of the fun
tion 
orresponding to a program is un
omputable from its text. An ex
ellent
omputation theory textbook is Davis, Sigal, and Weyuker (1994).



18 CHAPTER 2. A TASTE OF CAMLillustration of why this might be so. It is still an open problem whether the followingfun
tion terminates for all arguments, the assertion that it does being known as theCollatz 
onje
ture:8#let re
 
ollatz n =if n <= 1 then 0else if even(n) then 
ollatz(n / 2)else 
ollatz(3 * n + 1);;
ollatz : int -> int = <fun>What is 
lear, though, is that if it does halt it returns 0. Now 
onsider thefollowing trivial fun
tion:#let f (x:int) = 0;;f : int -> int = <fun>By de
iding the equation 
ollatz = f, the 
omputer would settle the Collatz
onje
ture. It is easy to 
on
o
t other examples for open mathemati
al problems.It is possible to trap out appli
ations of the equality operator to fun
tions anddatatypes built up from them as part of type
he
king, rather than at runtime. Thisis the approa
h taken by Standard ML. Types that do not involve fun
tions inthese ways are known as equality types, sin
e it is always valid to test obje
ts ofsu
h types for equality. On the negative side, this makes the type system mu
hmore 
ompli
ated. However one might argue that stati
 type
he
king should beextended as far as feasibility allows.Further readingNumerous textbooks on `fun
tional programming' in
lude a general introdu
tionto the �eld and a 
ontrast with imperative programming | browse through a fewand �nd one that you like. A detailed and polemi
al advo
a
y of the fun
tionalstyle is given by Ba
kus (1978), the main inventor of FORTRAN. A good elementaryintrodu
tion to CAML Light and fun
tional programming is Mauny (1995). Paulson(1991) is another good textbook, though based on Standard ML.

8A good survey of this problem, and attempts to solve it, is given by Lagarias (1985). Stri
tly,we should use unlimited pre
ision integers rather than ma
hine arithmeti
. We will see later howto do this.



Chapter 3Further CAMLIn this 
hapter, we 
onsolidate the previous examples by spe
ifying the basi
 fa
il-ities of CAML and the syntax of phrases more pre
isely, and then go on to treatsome additional features su
h as re
ursive types. We might start by saying moreabout intera
tion with the system.So far, we have just been typing phrases into CAML's toplevel read-eval-printloop and observing the result. However this is not a good method for writingnontrivial programs. Typi
ally, you should write the expressions and de
larationsin a �le. To try things out as you go, they 
an be inserted in the CAML windowusing `
ut and paste'. This operation 
an be performed using X-windows and similarsystems, or in an editor like Ema
s with multiple bu�ers. However, this be
omeslaborious and time-
onsuming for large programs. Instead, you 
an use CAML'sin
lude fun
tion to read in the �le dire
tly. For example, if the �le myprog.ml
ontains:let pythag x y z =x * x + y * y = z * z;;pythag 3 4 5;;pythag 5 12 13;;pythag 1 2 3;;then the toplevel phrase in
lude "myprog.ml";; results in:#in
lude "myprog.ml";;pythag : int -> int -> int -> bool = <fun>- : bool = true- : bool = true- : bool = false- : unit = ()That is, the CAML system responds just as if the phrases had been entered atthe top level. The �nal line is the result of evaluating the in
lude expression itself.HOL Light runs a �lter in front of CAML to expand ba
kquotes into 
alls of termand type parser and type
he
ker. In order to make this happen when loading a �le,use loadt instead of in
lude.In large programs, it is often helpful to in
lude 
omments. In CAML, these arewritten between the symbols (* and *), e.g.19



20 CHAPTER 3. FURTHER CAML(* ------------------------------------------------------ *)(* This fun
tion tests if (x,y,z) is a Pythagorean triple *)(* ------------------------------------------------------ *)let pythag x y z =x * x + y * y = z * z;;(*
omments*) pythag (*
an*) 3 (*go*) 4 (*almost*) 5 (*anywhere*)(* and (* 
an (* be (* nested *) quite *) arbitrarily *) *);;3.1 Basi
 datatypes and operationsCAML features several built-in primitive types. From these, 
omposite types maybe built using various type 
onstru
tors. For the moment, we will only use thefun
tion spa
e 
onstru
tor -> and the Cartesian produ
t 
onstru
tor *, but we willsee in due 
ourse whi
h others are provided, and how to de�ne new types and type
onstru
tors. The primitive types that 
on
ern us now are:� The type unit. This is a 1-element type, whose only element is written ().Obviously, something of type unit 
onveys no information, so it is 
ommonlyused as the return type of imperatively written `fun
tions' that perform aside-e�e
t, su
h as in
lude above. It is also a 
onvenient argument wherethe only use of a fun
tion type is to delay evaluation.� The type bool. This is a 2-element type of booleans (truth-values) whoseelements are written true and false.� The type int. This 
ontains some �nite subset of the positive and negativeintegers. Typi
ally the permitted range is from �230 (�1073741824) up to230� 1 (1073741823).1 The numerals are written in the usual way, optionallywith a negation sign, e.g. 0, 32, -25.� The type string 
ontains strings (i.e. �nite sequen
es) of 
hara
ters. Theyare written and printed between double quotes, e.g. "hello". In order toen
ode in
lude spe
ial 
hara
ters in strings, C-like es
ape sequen
es are used.For example, \" is the double quote itself, and \n is the newline 
hara
ter.The above values like (), false, 7 and "
aml" are all to be regarded as �xed
onstants. There are other 
onstants 
orresponding to operations on the basi
 types.Some of these may be written as in�x operators, for the sake of familiarity. Thesehave a notion of pre
eden
e so that expressions are grouped together as one wouldexpe
t. For example, we write x + y rather than + x y and x < 2 * y + z ratherthan < x (+ (* 2 y) z). The logi
al operator not also has a spe
ial parsingstatus, in that the usual left-asso
iativity rule is reversed for it: not not p meansnot (not p). User-de�ned fun
tions may be granted in�x status via the #infixdire
tive. For example, here is a de�nition of a fun
tion performing 
omposition offun
tions:1We will see later how to use an alternative type of integers with unlimited pre
ision.



3.1. BASIC DATATYPES AND OPERATIONS 21#let su

essor x = x + 1;;su

essor : int -> int = <fun>#let o f g = fun x -> f(g x);;o : ('a -> 'b) -> ('
 -> 'a) -> '
 -> 'b = <fun>#let add3 = o su

essor (o su

essor su

essor);;add3 : int -> int = <fun>#add3 0;;it : int = 3##infix "o";;#let add3' = su

essor o su

essor o su

essor;;add3' : int -> int = <fun>#add3' 0;;it : int = 3It is not possible to spe
ify the pre
eden
e of user-de�ned in�xes, nor to makeuser-de�ned non-in�x fun
tions right-asso
iative. Note that the impli
it opera-tion of `fun
tion appli
ation' has a higher pre
eden
e than any binary operator,so su

essor 1 * 2 parses as (su

essor 1) * 2. If it is desired to use a fun
-tion with spe
ial status as an ordinary 
onstant, simply pre
ede it by prefix. Forexample:#o su

essor su

essor;;Toplevel input:>o su

essor su

essor;;>^Syntax error.#prefix o su

essor su

essor;;it : int -> int = <fun>#(prefix o) su

essor su

essor;;it : int -> int = <fun>With these questions of 
on
rete syntax out of the way, let us present a system-ati
 list of the operators on the basi
 types above. The unary operators are:Operator Type Meaning- int -> int Numeri
 negationnot bool -> bool Logi
al negationand the binary operators, in approximately de
reasing order of pre
eden
e, are:Operator Type Meaningmod int -> int -> int Modulus (remainder)* int -> int -> int Multipli
ation/ int -> int -> int Trun
ating division+ int -> int -> int Addition- int -> int -> int Subtra
tion^ string -> string -> string String 
on
atenation= 'a -> 'a -> bool Equality<> 'a -> 'a -> bool Inequality< 'a -> 'a -> bool Less than<= 'a -> 'a -> bool Less than or equal> 'a -> 'a -> bool Greater than>= 'a -> 'a -> bool Greater than or equal& bool -> bool -> bool Boolean `and'or bool -> bool -> bool Boolean `or'



22 CHAPTER 3. FURTHER CAMLFor example, x > 0 & x < 1 is parsed as & (> x 0) (< x 1). Note that all the
omparisons, not just the equality relation, are polymorphi
. They not only orderintegers in the expe
ted way, and strings alphabeti
ally, but all other primitivetypes and 
omposite types in a fairly natural way. On
e again, however, they arenot in general allowed to be used on fun
tions.The two boolean operations & and or have their own spe
ial evaluation strategy,like the 
onditional expression. In fa
t, they 
an be regarded as synonyms for
onditional expressions: p & q 4= if p then q else falsep or q 4= if p then true else qThus, the `and' operation evaluates its �rst argument, and only if it is true,evaluates its se
ond. Conversely, the `or' operation evaluates its �rst argument,and only if it is false evaluates its se
ond.3.2 Syntax of CAML phrasesExpressions in CAML 
an be built up from 
onstants and variables; any identi�erthat is not 
urrently bound is treated as a variable. De
larations bind names tovalues of expressions, and de
larations 
an o

ur lo
ally inside expressions. Thus,the syntax 
lasses of expressions and de
larations are mutually re
ursive. We 
anrepresent this by the following BNF grammar.2expression ::= variablej 
onstantj expression expressionj expression infix expressionj not expressionj if expression then expression else expressionj fun pattern -> expressionj (expression)j de
laration in expressionde
laration ::= let let bindingsj let re
 let bindingslet bindings ::= let bindingj let binding and let bindingslet binding ::= pattern = expressionpattern ::= variablesvariables ::= variablej variable variablesThe syntax 
lass pattern will be expanded and explained more thoroughly lateron. For the moment, all the 
ases we are 
on
erned with are either just variableor variable variable � � � variable. In the �rst 
ase we simply bind an expression to2We negle
t many 
onstru
ts that we won't be 
on
erned with. A few will be introdu
ed later.See the CAML manual for full details.



3.3. FURTHER EXAMPLES 23a name, while the se
ond uses the spe
ial synta
ti
 sugar for fun
tion de
larations,where the arguments are written after the fun
tion name to the left of the equalssign. For example, the following is a valid de
laration of a fun
tion add4, whi
h 
anbe used to add 4 to its argument:#let add4 x =let y = su

essor x inlet z = let w = su

essor y insu

essor w insu

essor z;;add4 : int -> int = <fun>#add4 1;;it : int = 5It is instru
tive to unravel this de
laration a

ording to the above grammar. Atoplevel phrase, terminated by two su

essive semi
olons, may be either an expres-sion or a de
laration.3.3 Further examplesIt is easy to de�ne by re
ursion a fun
tion that takes a positive integer n and afun
tion f and returns fn, i.e. f Æ � � � Æ f (n times):#let re
 funpow n f x =if n = 0 then xelse funpow (n - 1) f (f x);;funpow : int -> ('a -> 'a) -> 'a -> 'a = <fun>We 
an apply funpow just to the �rst argument, and this en
odes a naturalnumber as a fun
tion that takes a fun
tion as an argument then iterates it theappropriate number of times, a so-
alled Chur
h numeral.3 Sin
e fun
tions aren'tprinted, we 
an't a
tually look at the expression representing a Chur
h numeral:#funpow 6;;it : ('_a -> '_a) -> '_a -> '_a = <fun>However it is straightforward to de�ne an inverse fun
tion to funpow that takesa Chur
h numeral ba
k to a ma
hine integer:#let defro
k n = n (fun x -> x + 1) 0;;defro
k : ((int -> int) -> int -> 'a) -> 'a = <fun>#defro
k(funpow 32);;it : int = 32We 
an de�ne some of the arithmeti
 operations on Chur
h numerals. Under-standing these de�nitions thoroughly is a good exer
ise.3The basi
 idea was used earlier by Wittgenstein (1922), 6.021.



24 CHAPTER 3. FURTHER CAML#let add m n f x = m f (n f x);;add : ('a -> 'b -> '
) -> ('a -> 'd -> 'b) -> 'a -> 'd -> '
 = <fun>#let mul m n f x = m (n f) x;;mul : ('a -> 'b -> '
) -> ('d -> 'a) -> 'd -> 'b -> '
 = <fun>#let exp m n f x = n m f x;;exp : 'a -> ('a -> 'b -> '
 -> 'd) -> 'b -> '
 -> 'd = <fun>#let test bop x y = defro
k (bop (funpow x) (funpow y));;test :((('a -> 'a) -> 'a -> 'a) ->(('b -> 'b) -> 'b -> 'b) -> (int -> int) -> int -> '
) ->int -> int -> '
 = <fun>#test add 2 10;;it : int = 12#test mul 2 10;;it : int = 20#test exp 2 10;;it : int = 1024The above is not a very eÆ
ient way of performing arithmeti
 operations. CAMLdoes not have a built-in fun
tion for exponentiation, but it is easy to de�ne one byre
ursion:#let re
 exp x n =if n = 0 then 1else x * exp x (n - 1);;exp : int -> int -> int = <fun>However this performs n multipli
ations to 
al
ulate xn. A more eÆ
ient wayis to exploit the fa
ts that x2n = (xn)2 and x2n+1 = (xn)2x as follows:#let square x = x * x;;square : int -> int = <fun>#let re
 exp x n =if n = 0 then 1else if n mod 2 = 0 then square(exp x (n / 2))else x * square(exp x (n / 2));;exp : int -> int -> int = <fun>#infix "exp";;#2 exp 10;;it : int = 1024#2 exp 20;;it : int = 1048576Another 
lassi
 operation on natural numbers is to �nd their greatest 
ommondivisor (highest 
ommon fa
tor) using Eu
lid's algorithm:#let re
 g
d x y =if y = 0 then x else g
d y (x mod y);;g
d : int -> int -> int = <fun>#g
d 100 52;;it : int = 4#g
d 7 159;;it : int = 1#g
d 24 60;;it : int = 12



3.4. TYPE DEFINITIONS 25Rather than using the re
 keyword every time we de
lare a re
ursive fun
tion,e

entri
s might prefer to de�ne a re
ursion operator Re
, and thereafter use that,e.g.#let re
 Re
 f = f(fun x -> Re
 f x);;Re
 : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>#let fa
t = Re
 (fun f n -> if n = 0 then 1 else n * f(n - 1));;fa
t : int -> int = <fun>#fa
t 3;;it : int = 6Note, however, that the fun
tion abstra
tion `fun x -> ...' in the de�nitionwas essential, otherwise the expression Re
 f goes into an in�nite re
ursion whenevaluated, before it is even applied to its argument:#let re
 Re
 f = f(Re
 f);;Re
 : ('a -> 'a) -> 'a = <fun>#let fa
t = Re
 (fun f n -> if n = 0 then 1 else n * f(n - 1));;Un
aught ex
eption: Out_of_memory3.4 Type de�nitionsCAML has fa
ilities for de
laring new type 
onstru
tors, so that 
omposite types 
anbe built up out of existing ones. In fa
t, CAML goes further and allows a 
ompositetype to be built up not only out of preexisting types but also from the 
ompositetype itself. Su
h types, naturally enough, are said to be re
ursive, even if they don'tavail themselves of the 
han
e to use the type being de�ned in the de�nition. Theyare de
lared using the type keyword followed by an equation indi
ating how thenew type is built up from existing ones and itself. We will illustrate this by a fewexamples. The �rst one is the de�nition of a sum type, intended to 
orrespond tothe disjoint union of two existing types.#type ('a,'b)sum = inl of 'a | inr of 'b;;Type sum defined.Roughly, an obje
t of type ('a,'b)sum is either something of type 'a or some-thing of type 'b. More formally, however, all these things have di�erent types.The type de
laration also de
lares the so-
alled 
onstru
tors inl and inr. Theseare fun
tions that take obje
ts of the 
omponent types and inje
t them into thenew type. Indeed, we 
an see their types in the CAML system and apply them toobje
ts:#inl;;it : 'a -> ('a, 'b) sum = <fun>#inr;;it : 'a -> ('b, 'a) sum = <fun>#inl 5;;it : (int, 'a) sum = inl 5#inr false;;it : ('a, bool) sum = inr falseWe 
an visualize the situation via the following diagram. Given two existingtypes � and �, the type (�; �)sum is 
omposed pre
isely of separate 
opies of �and �, and the two 
onstru
tors map onto the respe
tive 
opies:
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�

(�; �)sum
�������������:

inl
inr

XXXXXXXXXXXXXz
This is similar to a union in C, but in CAML the 
opies of the 
omponent typesare kept apart and one always knows whi
h of these an element of the union belongsto. By 
ontrast, in C the 
omponent types are overlapped, and the programmer isresponsible for this book-keeping.3.4.1 Pattern mat
hingThe 
onstru
tors in su
h a de�nition have three very important properties:� They are exhaustive, i.e. every element of the new type is obtainable eitherby inl x for some x or inr y for some y. That is, the new type 
ontainsnothing besides 
opies of the 
omponent types.� They are inje
tive, i.e. an equality test inl x = inl y is true if and only ifx = y, and similarly for inr. That is, the new type 
ontains a faithful 
opyof ea
h 
omponent type without identifying any elements.� They are distin
t, i.e. their ranges are disjoint. More 
on
retely this means inthe above example that inl x = inr y is false whatever x and y might be.That is, the 
opy of ea
h 
omponent type is kept apart in the new type.The se
ond and third properties of 
onstru
tors justify our using pattern mat
h-ing. This is done by using more general varstru
ts as the arguments in a fun
tionexpression, e.g.#fun (inl n) -> n > 6| (inr b) -> b;;it : (int, bool) sum -> bool = <fun>This fun
tion has the property, naturally enough, that when applied to inl n itreturns n > 6 and when applied to inr b it returns b. It is pre
isely be
ause ofthe se
ond and third properties of the 
onstru
tors that we know this does givea wellde�ned fun
tion. Be
ause the 
onstru
tors are inje
tive, we 
an uniquelyre
over n from inl n and b from inr b. Be
ause the 
onstru
tors are distin
t,we know that the two 
lauses 
annot be mutually in
onsistent, sin
e no value 
an
orrespond to both patterns.In addition, be
ause the 
onstru
tors are exhaustive, we know that ea
h valuewill fall under one pattern or the other, so the fun
tion is de�ned everywhere.A
tually, it is permissible to relax this last property by omitting 
ertain patterns,though the CAML system then issues a warning:



3.4. TYPE DEFINITIONS 27#fun (inr b) -> b;;Toplevel input:>fun (inr b) -> b;;>^^^^^^^^^^^^^^^^Warning: this mat
hing is not exhaustive.it : ('a, 'b) sum -> 'b = <fun>If this fun
tion is applied to something of the form inl x, then it will not work:#let f = fun (inr b) -> b;;Toplevel input:>let f = fun (inr b) -> b;;> ^^^^^^^^^^^^^^^^Warning: this mat
hing is not exhaustive.f : ('a, 'b) sum -> 'b = <fun>#f (inl 3);;Un
aught ex
eption: Mat
h_failure ("", 452, 468)Though booleans are built into CAML, they are e�e
tively de�ned by a rathertrivial instan
e of a re
ursive type, often 
alled an enumerated type, where the
onstru
tors take no arguments:#type bool = false | true;;Indeed, it is perfe
tly permissible to de�ne things by mat
hing over the truthvalues. The following two phrases are 
ompletely equivalent:#if 4 < 3 then 1 else 0;;it : int = 0#(fun true -> 1 | false -> 0) (4 < 3);;it : int = 0Pattern mat
hing is, however, not limited to 
asewise de�nitions over elementsof re
ursive types, though it is parti
ularly 
onvenient there. For example, we 
ande�ne a fun
tion that tells us whether an integer is zero as follows:#fun 0 -> true | n -> false;;it : int -> bool = <fun>#(fun 0 -> true | n -> false) 0;;it : bool = true#(fun 0 -> true | n -> false) 1;;it : bool = falseIn this 
ase we no longer have mutual ex
lusivity of patterns, sin
e 0 mat
heseither pattern. The patterns are examined in order, one by one, and the �rstmat
hing one is used. Note 
arefully that unless the mat
hes are mutually ex
lusive,there is no guarantee that ea
h 
lause holds as a mathemati
al equation. Forexample in the above, the fun
tion does not return false for any n, so the se
ond
lause is not universally valid.Note that only 
onstru
torsmay be used in the above spe
ial way as 
omponentsof patterns. Ordinary 
onstants will be treated as new variables bound inside thepattern. For example, 
onsider the following:



28 CHAPTER 3. FURTHER CAML#let true_1 = true;;true_1 : bool = true#let false_1 = false;;false_1 : bool = false#(fun true_1 -> 1 | false_1 -> 0) (4 < 3);;Toplevel input:>(fun true_1 -> 1 | false_1 -> 0) (4 < 3);;> ^^^^^^^Warning: this mat
hing 
ase is unused.it : int = 1In general, the unit element (), the truth values, the integer numerals, the string
onstants and the pairing operation (in�x 
omma) have 
onstru
tor status, as wellas other 
onstru
tors from prede�ned re
ursive types. When they o

ur in a patternthe target value must 
orrespond. All other identi�ers mat
h any expression and inthe pro
ess be
ome bound.As well as the varstru
ts in fun
tion expressions, there are other ways of per-forming pattern mat
hing. Instead of 
reating a fun
tion via pattern mat
hing andapplying it to an expression, one 
an perform pattern-mat
hing over the expressiondire
tly using the following 
onstru
tion:mat
h expression with pattern1->E1 j � � � j patternn->EnThe simplest alternative of all is to uselet pattern = expressionbut in this 
ase only a single pattern is allowed.3.4.2 Re
ursive typesThe previous examples have all been re
ursive only va
uously, in that we have notde�ned a type in terms of itself. For a more interesting example, we will de
lare atype of lists (�nite ordered sequen
es) of elements of type 'a.#type ('a)list = Nil | Cons of 'a * ('a)list;;Type list defined.Let us examine the types of the 
onstru
tors:#Nil;;it : 'a list = Nil#Cons;;it : 'a * 'a list -> 'a list = <fun>The 
onstru
tor Nil, whi
h takes no arguments, simply 
reates some obje
t oftype ('a)list whi
h is to be thought of as the empty list. The other 
onstru
torCons takes an element of type 'a and an element of the new type ('a)list andgives another, whi
h we think of as arising from the old list by adding one elementto the front of it. For example, we 
an 
onsider the following:



3.4. TYPE DEFINITIONS 29#Nil;;it : 'a list = Nil#Cons(1,Nil);;it : int list = Cons (1, Nil)#Cons(1,Cons(2,Nil));;it : int list = Cons (1, Cons (2, Nil))#Cons(1,Cons(2,Cons(3,Nil)));;it : int list = Cons (1, Cons (2, Cons (3, Nil)))Be
ause the 
onstru
tors are distin
t and inje
tive, it is easy to see that allthese values, whi
h we think of as lists [℄, [1℄, [1; 2℄ and [1; 2; 3℄, are distin
t. Indeed,purely from these properties of the 
onstru
tors, it follows that arbitrarily long listsof elements may be en
oded in the new type. A
tually, CAML already has a typelist just like this one de�ned. The only di�eren
e is synta
ti
: the empty list iswritten [℄ and the re
ursive 
onstru
tor ::, has in�x status. Thus, the above listsare a
tually written:#[℄;;it : 'a list = [℄#1::[℄;;it : int list = [1℄#1::2::[℄;;it : int list = [1; 2℄#1::2::3::[℄;;it : int list = [1; 2; 3℄The lists are printed in an even more natural notation, and this is also allowed forinput. Nevertheless, when the exa
t expression in terms of 
onstru
tors is needed,it must be remembered that this is only a surfa
e syntax. For example, we 
ande�ne fun
tions to take the head and tail of a list, using pattern mat
hing.#let hd (h::t) = h;;Toplevel input:>let hd (h::t) = h;;> ^^^^^^^^^^^^^Warning: this mat
hing is not exhaustive.hd : 'a list -> 'a = <fun>#let tl (h::t) = t;;Toplevel input:>let tl (h::t) = t;;> ^^^^^^^^^^^^^Warning: this mat
hing is not exhaustive.tl : 'a list -> 'a list = <fun>The 
ompiler warns us that these both fail when applied to the empty list, sin
ethere is no pattern to 
over it (remember that the 
onstru
tors are distin
t). Letus see them in a
tion:#hd [1;2;3℄;;it : int = 1#tl [1;2;3℄;;it : int list = [2; 3℄#hd [℄;;Un
aught ex
eption: Mat
h_failure



30 CHAPTER 3. FURTHER CAMLNote that the following is not a 
orre
t de�nition of hd. In fa
t, it 
onstrainsthe input list to have exa
tly two elements for mat
hing to su

eed, as 
an be seenby thinking of the version in terms of the 
onstru
tors:#let hd [x;y℄ = x;;Toplevel input:>let hd [x;y℄ = x;;> ^^^^^^^^^^^^Warning: this mat
hing is not exhaustive.hd : 'a list -> 'a = <fun>#hd [5;6℄;;it : int = 5#hd [5;6;7℄;;Un
aught ex
eption: Mat
h_failurePattern mat
hing 
an be 
ombined with re
ursion. For example, here is a fun
-tion to return the length of a list:#let re
 length =fun [℄ -> 0| (h::t) -> 1 + length t;;length : 'a list -> int = <fun>#length [℄;;it : int = 0#length [5;3;1℄;;it : int = 3Alternatively, this 
an be written in terms of our earlier `destru
tor' fun
tionshd and tl:#let re
 length l =if l = [℄ then 0else 1 + length(tl l);;This latter style of fun
tion de�nition is more usual in many languages, notablyLISP, but the dire
t use of pattern mat
hing is often more elegant.Some other 
lassi
 list fun
tions are appending (joining together) two lists, map-ping a fun
tion over a list (i.e. applying it to ea
h element) and reversing a list.We 
an de�ne all these by re
ursion:



3.4. TYPE DEFINITIONS 31#let re
 append l1 l2 =mat
h l1 with[℄ -> l2| (h::t) -> h::(append t l2);;append : 'a list -> 'a list -> 'a list = <fun>#append [1;2;3℄ [4;5℄;;it : int list = [1; 2; 3; 4; 5℄#let re
 map f =fun [℄ -> [℄| (h::t) -> (f h)::(map f t);;map : ('a -> 'b) -> 'a list -> 'b list = <fun>#map (fun x -> 2 * x) [1;2;3℄;;it : int list = [2; 4; 6℄#let re
 rev =fun [℄ -> [℄| (h::t) -> append (rev t) [h℄;;#rev [1;2;3;4℄;;it : int list = [4; 3; 2; 1℄3.4.3 Tree stru
turesIt is often helpful to visualize the elements of re
ursive types as tree stru
tures,with the re
ursive 
onstru
tors at the bran
h nodes and the other datatypes at theleaves. The re
ursiveness merely says that plugging subtrees together gives anothertree. In the 
ase of lists the `trees' are all rather spindly and one-sided, with thelist [1;2;3;4℄ being represented as:��� ��������� ������ ������
1 2 3 4 [℄It is not diÆ
ult to de�ne re
ursive types whi
h allow more balan
ed trees, e.g.#type ('a)btree = Leaf of 'a| Bran
h of ('a)btree * ('a)btree;;In general, there 
an be several di�erent re
ursive 
onstru
tors, ea
h with adi�erent number of des
endants. This gives a very natural way of representing thesyntax trees of programming (and other formal) languages. For example, here is atype to represent arithmeti
al expressions built up from integers by addition andmultipli
ation:#type expression = Integer of int| Sum of expression * expression| Produ
t of expression * expression;;



32 CHAPTER 3. FURTHER CAMLand here is a re
ursive fun
tion to evaluate su
h expressions:#let re
 eval =fun (Integer i) -> i| (Sum(e1,e2)) -> eval e1 + eval e2| (Produ
t(e1,e2)) -> eval e1 * eval e2;;eval : expression -> int = <fun>#eval (Produ
t(Sum(Integer 1,Integer 2),Integer 5));;it : int = 15Su
h abstra
t syntax trees are a useful representation whi
h allows all sorts ofmanipulations. Often the �rst step programming language 
ompilers and relatedtools take is to translate the input text into an `abstra
t syntax tree' a

ording tothe parsing rules. Note that 
onventions su
h as pre
eden
es and bra
ketings arenot needed on
e we have rea
hed the level of abstra
t syntax; the tree stru
turemakes these expli
it. Re
ursive types similar to these are used in HOL Light tode�ne logi
al entities like terms.3.4.4 The subtlety of re
ursive typesA re
ursive type may 
ontain nested instan
es of other type 
onstru
tors, in
ludingthe fun
tion spa
e 
onstru
tor. For example, 
onsider the following:#type ('a)embedding = K of ('a)embedding->'a;;Type embedding defined.If we stop to think about the underlying semanti
s, this looks disquieting. Con-sider for example the spe
ial 
ase when 'a is bool. We then have an inje
tivefun
tion K:((bool)embedding->bool)->(bool)embedding. This dire
tly 
ontra-di
ts Cantor's theorem that the set of all subsets of X 
annot be inje
ted into X .4Hen
e we need to be more 
areful with the semanti
s of types. In fa
t � ! �
annot be interpreted as the full fun
tion spa
e, or re
ursive type 
onstru
tionslike the above are in
onsistent. However, sin
e all fun
tions we 
an a
tually 
reateare 
omputable, it is reasonable to restri
t ourselves to 
omputable fun
tions only.With that restri
tion, a 
onsistent semanti
s is possible, although the details are
ompli
ated.The above de�nition also has interesting 
onsequen
es for the type system. Forexample, we 
an now de�ne a re
ursion operator without any expli
it use of re
ur-sion, by using K as a kind of type 
ast.5 The use of let is only used for the sake ofeÆ
ien
y, but we do need the extra argument z in order to prevent looping underCAML's evaluation strategy.#let Y h =let g (K x) z = h (x (K x)) z ing (K g);;Y : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>#let fa
t = Y (fun f n -> if n = 0 then 1 else n * f(n - 1));;fa
t : int -> int = <fun>#fa
t 6;;it : int = 7204Proof: 
onsider C = fi(s) j s 2 }(X) and i(s) 62 sg. If i : }(X) ! X is inje
tive, we havei(C) 2 C � i(C) 62 C, a 
ontradi
tion. This is similar to the Russell paradox, and in fa
t probablyinspired it. The analogy is even 
loser if we 
onsider the equivalent form that there is no surje
tionj : X ! }(X), and prove it by 
onsidering fs j s 62 j(s)g.5Readers familiar with untyped �-
al
ulus may note that if theKs are deleted, this is essentiallythe usual de�nition of the Y 
ombinator.
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ursive types are a powerful addition to the language.
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Chapter 4E�e
tive CAMLIn this 
hapter, we dis
uss some of the te
hniques and tri
ks that CAML program-mers 
an use to make programs more elegant and more eÆ
ient. We then go onto dis
uss some additional imperative features that 
an be used when the purelyfun
tional style seems inappropriate.4.1 Useful 
ombinatorsThe 
exibility of higher order fun
tions often means that one 
an write some veryuseful little fun
tions that 
an be re-used for a variety of related tasks. These areoften 
alled 
ombinators. It often turns out that these fun
tions are so 
exible thatpra
ti
ally anything 
an be implemented by plugging them together, rather than,say, expli
itly making a re
ursive de�nition. For example, a very useful 
ombinatorfor list operations, often 
alled `itlist' or `fold', performs the following operation:itlist f [x1; x2; : : : ;xn℄ b = f x1 (f x2 (f x3 (� � � (f xn b))))A straightforward de�nition in CAML is:#let re
 itlist f =fun [℄ b -> b| (h::t) b -> f h (itlist f t b);;itlist : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>Quite 
ommonly, when de�ning a re
ursive fun
tion over lists, all one is doingis repeatedly applying some operator in this manner. By using itlist with theappropriate argument, one 
an implement su
h fun
tions very easily without expli
ituse of re
ursion. A typi
al use is a fun
tion to add all the elements of a list ofnumbers:#let sum l = itlist (fun x sum -> x + sum) l 0;;sum : int list -> int = <fun>#sum [1;2;3;4;5℄;;it : int = 15#sum [℄;;it : int = 0#sum [1;1;1;1℄;;it : int = 4Those espe
ially keen on brevity might prefer to 
ode sum as:35



36 CHAPTER 4. EFFECTIVE CAML#let sum l = itlist (prefix +) l 0;;It is easy to modify this fun
tion to form a produ
t rather than a sum:#let prod l = itlist (prefix *) l 1;;Many useful list operations 
an be implemented in this way. For example hereis a fun
tion to �lter out only those elements of a list satisfying a predi
ate:#let filter p l = itlist (fun x s -> if p x then x::s else s) l [℄;;filter : ('a -> bool) -> 'a list -> 'a list = <fun>#filter (fun x -> x mod 2 = 0) [1;6;4;9;5;7;3;2℄;;it : int list = [6; 4; 2℄Here are fun
tions to �nd whether either all or some of the elements of a list satisfya predi
ate:#let forall p l = itlist (fun h a -> p(h) & a) l true;;forall : ('a -> bool) -> 'a list -> bool = <fun>#let exists p l = itlist (fun h a -> p(h) or a) l false;;exists : ('a -> bool) -> 'a list -> bool = <fun>#forall (fun x -> x < 3) [1;2℄;;it : bool = true#forall (fun x -> x < 3) [1;2;3℄;;it : bool = falseand here are alternative versions of old favourites length, append and map:#let length l = itlist (fun x s -> s + 1) l 0;;length : 'a list -> int = <fun>#let append l m = itlist (fun h t -> h::t) l m;;append : 'a list -> 'a list -> 'a list = <fun>#let map f l = itlist (fun x s -> (f x)::s) l [℄;;map : ('a -> 'b) -> 'a list -> 'b list = <fun>Some of these fun
tions 
an themselves be
ome useful 
ombinators, and so onupwards. For example, if we are interested in treating lists as sets, i.e. avoidingdupli
ate elements, then many of the standard set operations 
an be expressed verysimply in terms of the 
ombinators above:#let mem x l = exists (fun y -> y = x) l;;mem : 'a -> 'a list -> bool = <fun>#let insert x l =if mem x l then l else x::l;;insert : 'a -> 'a list -> 'a list = <fun>#let union l1 l2 = itlist insert l1 l2;;union : 'a list -> 'a list -> 'a list = <fun>#let setify l = union l [℄;;setify : 'a list -> 'a list = <fun>#let Union l = itlist union l [℄;;Union : 'a list list -> 'a list = <fun>#let interse
t l1 l2 = filter (fun x -> mem x l2) l1;;interse
t : 'a list -> 'a list -> 'a list = <fun>#let subtra
t l1 l2 = filter (fun x -> not mem x l2) l1;;subtra
t : 'a list -> 'a list -> 'a list = <fun>#let subset l1 l2 = forall (fun t -> mem t l2) l1;;subset : 'a list -> 'a list -> bool = <fun>



4.2. WRITING EFFICIENT CODE 37The setify fun
tion is supposed to turn a list into a set by eliminating any dupli
ateelements.4.2 Writing eÆ
ient 
odeHere we a

umulate some 
ommon tri
ks of the trade, whi
h 
an often make CAMLprograms substantially more eÆ
ient. In order to justify some of them, we need tosket
h in general terms how 
ertain 
onstru
ts are exe
uted in hardware.4.2.1 Tail re
ursion and a

umulatorsThe prin
ipal 
ontrol me
hanism in fun
tional programs is re
ursion. If we areinterested in eÆ
ient programs, it behoves us to think a little about how re
ursionis implemented on 
onventional hardware. In fa
t, there is not, in this respe
tat least, mu
h di�eren
e between the implementation of CAML and many otherlanguages with dynami
 variables, su
h as C.If fun
tions 
annot be 
alled re
ursively, then we are safe in storing their lo
alvariables (whi
h in
ludes the values of arguments) at a �xed pla
e in memory | thisis what FORTRAN does. However, this is not possible in general if the fun
tion
an be 
alled re
ursively. A 
all to a fun
tion f with one set of arguments mayin
lude within it a 
all to f with a di�erent set of arguments. The old ones wouldbe overwritten, even if the outer version of f needs to refer to them again after theinner 
all has �nished. For example, 
onsider the fa
torial fun
tion yet again:#let re
 fa
t n = if n = 0 then 1else n * fa
t(n - 1);;A 
all to fa
t 6 
auses another 
all to fa
t 5 (and beyond), but when this
all is �nished and the value of fa
t 5 is obtained, we still need the original valueof n, namely 6, in order to do the multipli
ation yielding the �nal result. Whatnormally happens in implementations is that ea
h fun
tion 
all is allo
ated a newframe on a sta
k. Every new fun
tion 
all moves the sta
k pointer further down1 thesta
k, 
reating spa
e for new variables. When the fun
tion 
all is �nished the sta
kpointer moves up and so the unwanted inner variables are dis
arded automati
ally.A diagram may make this 
learer:

SP - n = 0n = 1n = 2n = 3n = 4n = 5n = 6

This is an imagined snapshot of the sta
k during exe
ution of the innermostre
ursive 
all, i.e. fa
t 0. All the lo
al variables for the upper stages are sta
ked1Despite the name, sta
ks 
onventionally grow downwards.



38 CHAPTER 4. EFFECTIVE CAMLup above, with ea
h instan
e of the fun
tion having its own sta
k frame, and whenthe 
alls are �nished the sta
k pointer SP moves ba
k up.Therefore, our implementation of fa
t requires n sta
k frames when applied toargument n. By 
ontrast, 
onsider the following implementation of the fa
torialfun
tion:#let re
 tfa
t x n =if n = 0 then xelse tfa
t (x * n) (n - 1);;tfa
t : int -> int -> int = <fun>#let fa
t n = tfa
t 1 n;;fa
t : int -> int = <fun>#fa
t 6;;it : int = 720Although tfa
t is also re
ursive, the re
ursive 
all is the whole expression; itdoes not o

ur as a proper subexpression of some other expression involving valuesof variables. Su
h a 
all is said to be a tail 
all (be
ause it is the very last thing the
alling fun
tion does), and a fun
tion where all re
ursive 
alls are tail 
alls is saidto be tail re
ursive.What is signi�
ant about tail 
alls? When making a re
ursive 
all to tfa
t,there is no need to preserve the old values of the lo
al variables. Exa
tly thesame, �xed, area of storage 
an be used. This of 
ourse depends on the 
ompiler'sbeing intelligent enough to re
ognize the fa
t, but most 
ompilers, in
luding CAMLLight, are. Consequently, re-
oding a fun
tion so that the re
ursive 
ore of it istail re
ursive 
an dramati
ally 
ut down the use of storage. For fun
tions like thefa
torial, it is hardly likely that they will be 
alled with large enough values of n tomake the sta
k over
ow. However the naive implementations of many list fun
tions
an 
ause su
h an e�e
t when the argument lists are long.The additional argument x of the tfa
t fun
tion is 
alled an a

umulator, be-
ause it a

umulates the result as the re
ursive 
alls ra
k up, and is then returnedat the end. Working in this way, rather than modifying the return value on the wayba
k up, is a 
ommon way of making fun
tions tail re
ursive.We have remarked that a �xed area of storage 
an be used for the arguments toa tail re
ursive fun
tion. On this view, one 
an look at a tail re
ursive fun
tion asa thinly-veiled imperative implementation. There is an obvious parallel with our Cimplementation of the fa
torial as an iterative fun
tion:int fa
t(int n){ int x = 1;while (n > 0){ x = x * n;n = n - 1;}return x;} The initialization x = 1 
orresponds to our setting of x to 1 by an outer wrapperfun
tion fa
t. The 
entral while loop 
orresponds to the re
ursive 
alls, the onlydi�eren
e being that the arguments to the tail re
ursive fun
tion make expli
itthat part of the state we are interested in assigning to. Rather than assigning andlooping, we make a re
ursive 
all with the variables updated. Using similar tri
ksand making the state expli
it, one 
an easily write essentially imperative 
ode inan ostensibly fun
tional style, with the knowledge that under standard 
ompileroptimizations, the e�e
t inside the ma
hine will, in fa
t, be mu
h the same.
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onsingWe have already 
onsidered the use of sta
k spa
e. But various 
onstru
ts in fun
-tional programs use another kind of store, usually allo
ated from an area 
alled theheap. Whereas the sta
k grows and shrinks in a sequential manner based on the
ow of 
ontrol between fun
tions, other storage used by the CAML system 
annotbe re
laimed in su
h a simple way. Instead, the runtime system o

asionally needsto 
he
k whi
h bits of allo
ated memory aren't being used any more, and re
laimthem for future use, a pro
ess known as garbage 
olle
tion. A parti
ularly importantexample is the spa
e used by 
onstru
tors for re
ursive types, e.g. ::. For example,when the following fragment is exe
uted:let l = 1::[℄ in tl l;;a new blo
k of memory, 
alled a `
ons 
ell', is allo
ated to store the instan
e ofthe :: 
onstru
tor. Typi
ally this might be three words of storage, one being anidenti�er for the 
onstru
tor, and the other two being pointers to the head andtail of the list. Now in general, it is diÆ
ult to de
ide when this memory 
an bere
laimed. In the above example, we immediately sele
t the tail of the list, so itis 
lear that the 
ons 
ell 
an be re
y
led immediately. But in general this 
an'tbe de
ided by looking at the program, sin
e l might be passed to various fun
tionsthat may or may not just look at the 
omponents of the list. Instead, one needsto analyze the memory usage dynami
ally and perform garbage 
olle
tion of whatis no longer needed. Otherwise one would eventually run out of storage even whenonly a small amount is ever needed simultaneously.Implementors of fun
tional languages work hard on making garbage 
olle
tioneÆ
ient. Some 
laim that automati
 memory allo
ation and garbage 
olle
tionoften works out faster than typi
al uses of expli
it memory allo
ation in languageslike C (mallo
 et
.) While we wouldn't go that far, it is 
ertainly very 
onvenientthat memory allo
ation is always done automati
ally. It avoids a lot of tedious andnotoriously error-prone parts of programming.Many 
onstru
ts beloved of fun
tional programmers use storage that needs tobe re
laimed by garbage 
olle
tion. While worrying too mu
h about this would
ripple the style of fun
tional programs, there are some simple measures that 
anbe taken to avoid gratuitous 
onsing (
reation of 
ons 
ells). One very simple ruleof thumb is to avoid using append if possible. As 
an be seen by 
onsidering theway the re
ursive 
alls unroll a

ording to the de�nition#let re
 append l1 l2 =mat
h l1 with[℄ -> l2| (h::t) -> h::(append t l2);;this typi
ally generates n 
ons 
ells where n is the length of the �rst argumentlist. There are often ways of avoiding appending, su
h as adding extra a

umulatorarguments to fun
tions that 
an be augmented by dire
t use of 
onsing. A strikingexample is the list reversal fun
tion, whi
h we 
oded earlier as:#let re
 rev =fun [℄ -> [℄| (h::t) -> append (rev t) [h℄;;This typi
ally generates about n2=2 
ons 
ells, where n is the length of the list.The following alternative, using an a

umulator, only generates n of them:
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 reverse a

 =fun [℄ -> a

| (h::t) -> reverse (h::a

) t inreverse [℄;;Moreover, the re
ursive 
ore reverse is tail re
ursive, so we also save sta
kspa
e, and win twi
e over.For another typi
al situation where we 
an avoid appending by judi
ious use ofa

umulators, 
onsider the problem of returning the fringe of a binary tree, i.e. alist of the leaves in left-to-right order. If we de�ne the type of binary trees as:#type btree = Leaf of string| Bran
h of btree * btree;;then a simple 
oding is the following#let re
 fringe =fun (Leaf s) -> [s℄| (Bran
h(l,r)) -> append (fringe l) (fringe r);;However the following more re�ned version performs fewer 
onses:#let fringe =let re
 fr t a

 =mat
h t with(Leaf s) -> s::a

| (Bran
h(l,r)) -> fr l (fr r a

) infun t -> fr t [℄;;Note that we have written the a

umulator as the se
ond argument, so that there
ursive 
all has a more natural left-to-right reading. Here is a simple example ofhow either version of fringe may be used:#fringe (Bran
h(Bran
h(Leaf "a",Leaf "b"),Bran
h(Leaf "
",Leaf "d")));;it : string list = ["a"; "b"; "
"; "d"℄The �rst version 
reates 6 
ons 
ells, the se
ond only 4. On larger trees thee�e
t 
an be more dramati
. Another situation where gratuitous 
onsing 
an 
ropup is in pattern mat
hing. For example, 
onsider the 
ode fragment:fun [℄ -> [℄| (h::t) -> if h < 0 then t else h::t;;The `else' arm 
reates a 
ons 
ell even though what it 
onstru
ts was in fa
tthe argument to the fun
tion. That is, it is taking the argument apart and thenrebuilding it. One simple way of avoiding this is to re
ode the fun
tion as:fun l ->mat
h l with[℄ -> [℄| (h::t) -> if h < 0 then t else l;;However CAML o�ers a more 
exible alternative: using the as keyword, a namemay be identi�ed with 
ertain 
omponents of the pattern, so that it never needs tobe rebuilt. For example:fun [℄ -> [℄| (h::t as l) -> if h < 0 then t else l;;
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ing evaluationWe have emphasized that, sin
e CAML does not evaluate underneath fun
tionabstra
tions, one 
an use su
h 
onstru
ts to delay evaluation. We will see someinteresting examples later. Conversely, however, it 
an happen that one wants tofor
e evaluation of expressions that are hidden underneath fun
tion abstra
tions.For example, re
all the tail re
ursive fa
torial above:#let re
 tfa
t x n =if n = 0 then xelse tfa
t (x * n) (n - 1);;#let fa
t n = tfa
t 1 n;;Sin
e we never really want to use tfa
t dire
tly, it seems a pity to bind it to aname. Instead, we 
an make it lo
al to the fa
torial fun
tion:#let fa
t1 n =let re
 tfa
t x n =if n = 0 then xelse tfa
t (x * n) (n - 1) intfa
t 1 n;;This, however, has the defe
t that the lo
al re
ursive de�nition is only evaluatedafter fa
t1 re
eives its argument, sin
e before that it is hidden under a fun
tionabstra
tion. Moreover, it is then reevaluated ea
h time fa
t is 
alled. We 
an
hange this as follows#let fa
t2 =let re
 tfa
t x n =if n = 0 then xelse tfa
t (x * n) (n - 1) intfa
t 1;;Now the lo
al binding is only evaluated on
e, at the point of de
laration of fa
t2.A

ording to our tests, the se
ond version of fa
t is about 20% faster when 
alledon the argument 6. The additional evaluation doesn't amount to mu
h in this 
ase,more or less just unravelling a re
ursive de�nition, yet the speedup is signi�
ant.In instan
es where there is a lot of 
omputation involved in evaluating the lo
albinding, the di�eren
e 
an be spe
ta
ular. In fa
t, there is a sophisti
ated resear
h�eld of `partial evaluation' devoted to performing optimizations like this, and mu
hmore sophisti
ated ones besides, automati
ally. In a sense, it is a generalization ofstandard 
ompiler optimizations for ordinary languages su
h as `
onstant folding'.In produ
tion ML systems, however, it is normally the responsibility of the user tofor
e it, as it is here in CAML Light.We might note, in passing, that if fun
tions are implemented by plugging to-gether 
ombinators, with fewer expli
it fun
tion abstra
tions, there is more 
han
ethat as mu
h of the expression as possible will be evaluated at de
laration time. Totake a trivial example, f Æ g will perform any evaluation of f and g that may bepossible, whereas �x: f(g x) will perform none at all until it re
eives its argument.On the other side of the 
oin, when we a
tually want to delay evaluation, we reallyneed lambdas, so a purely 
ombinatory version is impossible.4.3 Imperative featuresCAML has a fairly full 
omplement of imperative features. We will not spendmu
h time on the imperative style of programming, and we assume readers already
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ient experien
e. Therefore, we treat these topi
s fairly qui
kly with fewillustrative examples. However some imperative features are used in HOL Light,and some knowledge of what is available will stand the reader in good stead forwriting pra
ti
al CAML 
ode.4.3.1 Ex
eptionsWe have seen on o

asion that 
ertain evaluations fail, e.g. through a failure inpattern mat
hing. There are other reasons for failure, e.g. attempts to divide byzero.#1 / 0;;Un
aught ex
eption: Division_by_zeroIn all these 
ases the 
ompiler 
omplains about an `un
aught ex
eption'. Anex
eption is a kind of error indi
ation, but it need not always be propagated to thetop level. There is a type exn of ex
eptions, whi
h is e�e
tively a re
ursive type,though it is usually re
ursive only va
uously. Unlike with ordinary types, one 
anadd new 
onstru
tors for the type exn at any point in the program via an ex
eptionde
laration, e.g.#ex
eption Died;;Ex
eption Died defined.#ex
eption Failed of string;;Ex
eption Failed defined.While 
ertain built-in operations generate (one usually says raise) ex
eptions,this 
an also be done expli
itly using the raise 
onstru
t, e.g.#raise (Failed "I don't know why");;Un
aught ex
eption: Failed "I don't know why"For example, we might invent our own ex
eption to 
over the 
ase of taking thehead of an empty list:#ex
eption Head_of_empty;;Ex
eption Head_of_empty defined.#let hd = fun [℄ -> raise Head_of_empty| (h::t) -> h;;hd : 'a list -> 'a = <fun>#hd [℄;;Un
aught ex
eption: Head_of_emptyNormally ex
eptions propagate out to the top, but they 
an be `
aught' insidean outer expression by using try ...with followed by a series of patterns to mat
hex
eptions, e.g.#let headstring sl =try hd slwith Head_of_empty -> ""| Failed s -> "Failure be
ause "^s;;headstring : string list -> string = <fun>#headstring ["hi"; "there"℄;;it : string = "hi"#headstring [℄;;it : string = ""



4.3. IMPERATIVE FEATURES 43It is a matter of opinion whether ex
eptions are really an imperative feature.On one view, fun
tions just return elements of a disjoint sum 
onsisting of theirvisible return type and the type of ex
eptions, and all operations impli
itly passba
k ex
eptions. Another view is that ex
eptions are a highly non-lo
al 
ontrol 
owperversion, analogous to goto.2 Whatever the semanti
 view one takes, ex
eptions
an often be quite useful.4.3.2 Referen
es and arraysCAML does have real assignable variables, and expressions 
an, as a side-e�e
t,modify the values of these variables. They are expli
itly a

essed via referen
es(pointers in C parlan
e) and the referen
es themselves behave more like ordinaryCAML values. A
tually this approa
h is quite 
ommon in C too. For example, if onewants so-
alled `variable parameters' in C, where 
hanges to the formal parametersof a fun
tion propagate outside, the only way to do it is to pass a pointer, so that thefun
tion 
an dereferen
e it. Similar te
hniques are often used where the fun
tion isto pass ba
k 
omposite data.In CAML, one sets up a new assignable memory 
ell with the initial 
ontents xby writing ref x. (Initialization is 
ompulsory.) This expression yields a referen
e(pointer) to the 
ell. Subsequent a

ess to the 
ontents of the 
ell requires an expli
itdereferen
e using the ! operator, similar to unary * in C. The 
ell is assigned tousing a 
onventional-looking assignment statement. For example:#let x = ref 1;;x : int ref = ref 1#!x;;it : int = 1#x := 2;;it : unit = ()#!x;;it : int = 2#x := !x + !x;;it : unit = ()#x;;it : int ref = ref 4#!x;;it : int = 4Note that in most respe
ts ref behaves like a type 
onstru
tor, so one 
anpattern-mat
h against it. Thus one 
ould a
tually de�ne an indire
tion operatorlike !:#let 
ontents_of (ref x) = x;;
ontents_of : 'a ref -> 'a = <fun>#
ontents_of x;;it : int = 4As well as being mutable, referen
es are sometimes useful for 
reating expli
itlyshared data stru
tures. One 
an easily 
reate graph stru
tures where numerousnodes 
ontain a pointer to some single subgraph.Apart from single 
ells, one 
an also use arrays in CAML. In CAML these are
alled ve
tors. An array of elements of type � has type � ve
t. A fresh ve
tor of sizen, with ea
h element initialized to x | on
e again the initialization is 
ompulsory| is 
reated using the following 
all:2Perhaps more pre
isely, to C's setjmp and longjmp.
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t n x;;One 
an then read element m of a ve
tor v using:#ve
t_item v m;;and write value y to element m of v using:#ve
t_assign v m y;;These operations 
orrespond to the expressions v[m℄ and v[m℄ = y in C. Theelements of an array are numbered from zero. For example:#let v = make_ve
t 5 0;;v : int ve
t = [|0; 0; 0; 0; 0|℄#ve
t_item v 1;;it : int = 0#ve
t_assign v 1 10;;it : unit = ()#v;;it : int ve
t = [|0; 10; 0; 0; 0|℄#ve
t_item v 1;;it : int = 10All reading and writing is 
onstrained by bounds 
he
king, e.g.#ve
t_item v 5;;Un
aught ex
eption: Invalid_argument "ve
t_item"4.3.3 Sequen
ingThere is no need for an expli
it sequen
ing operation in CAML, sin
e the normalrules of evaluation allow one to impose an order. For example one 
an do:#let _ = x := !x + 1 inlet _ = x := !x + 1 inlet _ = x := !x + 1 inlet _ = x := !x + 1 in();;and the expressions are evaluated in the expe
ted order. Here we use a spe
ialpattern whi
h throws away the value, but we 
ould use a dummy variable nameinstead. Nevertheless, it is more attra
tive to use the 
onventional notation forsequen
ing, and this is possible in CAML by using a single semi
olon:#x := !x + 1;x := !x + 1;x := !x + 1;x := !x + 1;;



4.3. IMPERATIVE FEATURES 454.3.4 Intera
tion with the type systemWhile polymorphism works very well for the pure fun
tional 
ore of CAML, it hasunfortunate intera
tions with some imperative features. For example, 
onsider thefollowing:#let l = ref [℄;;Then l would seem to have polymorphi
 type � list ref . In a

ordan
e withthe usual rules of let-polymorphism we should be able to use it with two di�erenttypes, e.g. �rst#l := [1℄;;and then#hd(!l) = true;;But this isn't reasonable, be
ause we would a
tually be writing something as anobje
t of type int then reading it as an obje
t of type bool. Consequently, somerestri
tion on the usual rule of let polymorphism is 
alled for where referen
es are
on
erned. There have been many attempts to arrive at a sound but 
onvenientrestri
tion of the ML type system, some of them very 
ompli
ated. Re
ently, dif-ferent versions of ML seem to be 
onverging on a relatively simple method, 
alledthe value restri
tion, due to Wright (1996), and CAML implements this restri
tion,with a twist regarding toplevel bindings. Indeed, the above sequen
e fails. But theintermediate behaviour is interesting. If we look at the �rst line we see:#let l = ref [℄;;l : '_a list ref = ref [℄The unders
ore on the type variable indi
ates that l is not polymorphi
 inthe usual sense; rather, it has a single �xed type, although that type is as yetundetermined. The se
ond line works �ne:#l := [1℄;;it : unit = ()but if we now look at the type of l, we see that:#l;;it : int list ref = ref [1℄The pseudo-polymorphi
 type has now been �xed. Granted this, it is 
lear thatthe last line must fail:#hd(!l) = true;;Toplevel input:>hd(!l) = true;;> ^^^^This expression has type bool,but is used with type int.So far, this seems quite reasonable, but we haven't yet explained why the sameunders
ored type variables o

ur in apparently quite inno
ent purely fun
tionalexpressions, and why, moreover, they often disappear on eta-expansion, e.g.



46 CHAPTER 4. EFFECTIVE CAML#let I x = x;;I : 'a -> 'a = <fun>#I o I;;it : '_a -> '_a = <fun>#let I2 = I o I in fun x -> I2 x;;it : '_a -> '_a = <fun>#fun x -> (I o I) x;;it : 'a -> 'a = <fun>Other te
hniques for polymorphi
 referen
es often rely on en
oding in the typesthe fa
t that an expression may involve referen
es. This seems natural, but it 
anlead to the types of fun
tions be
oming 
luttered with this spe
ial information. Itis unattra
tive that the parti
ular implementation of the fun
tion, e.g. imperativeor fun
tional, should be re
e
ted in its type.Wright's solution, on the other hand, uses just the basi
 syntax of the expressionbeing let-bound, insisting that it is a so-
alled value before generalizing the type.What is really wanted is knowledge of whether the expression may 
ause side-e�e
tswhen evaluated. However sin
e this is unde
idable in general, the simple synta
ti

riterion of its being or not being a value is used. Roughly speaking, an expressionis a value if it admits no further evaluation a

ording to the CAML rules | thisis why an expression 
an often be made into a value by performing a reverse eta
onversion. Unfortunately this works against the te
hniques for for
ing evaluation.Further readingHints and tips for pra
ti
al programming 
an be found in many fun
tional program-ming books, e.g. Paulson (1991). Methods used by language implementations toperform garbage 
olle
tion are dis
ussed in depth by Jones and Lins (1996).
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Chapter 5Primitive basis of HOL LightThe introdu
tory 
hapter gave a brief introdu
tion to the key ideas behind HOL andsimple intera
tion with the system. Here we explain more systemati
ally how math-emati
al and logi
al assertions are represented in HOL, and list all the primitiveways of produ
ing theorems.We should distinguish 
arefully between abstra
t and 
on
rete syntax. The ab-stra
t syntax of a term, whi
h HOL deals with internally, is a tree-like CAML datastru
ture indi
ating how the term is built up from its 
omponents. While this is
onvenient to manipulate, humans are more used to representing terms by a linearsequen
e of 
hara
ters, the 
on
rete syntax. HOL's quotation parser automati
allytranslates the 
on
rete syntax into the abstra
t syntax, and its prettyprinter per-forms an inverse mapping ba
k to 
on
rete syntax. For simple use of HOL, it is notne
essary to think mu
h about the distin
tion, still less to understand details of theabstra
t syntax. However, we think it is best to 
over this early, sin
e it shows howsimple the underlying stru
tures really are. The present 
hapter 
an be read as anabstra
t des
ription of the HOL logi
, without 
onsidering the a
tual implementa-tion in CAML. However when we dis
uss 
on
rete syntax, we are impli
itly talkingabout that a

epted by HOL's parser.5.1 TermsHOL's logi
 is based on �-
al
ulus, a formalism invented by Alonzo Chur
h. In HOL,as in �-
al
ulus, terms are built up starting just from 
onstants and variables usingappli
ation and abstra
tion. All mathemati
al and logi
al assertions are representedin this uniform way.Constants and variables are probably familiar to the reader from an informalunderstanding of mathemati
s. They are used as the building-blo
ks of terms.Variables 
an have any name, e.g. n, x, p. Constants, e.g. [℄ (the empty list), >(true) and ? (false), are intended to be abbreviations for other terms, and ex
eptfor a 
ouple of primitive ones su
h as equality itself, need to have been de�nedbefore they 
an be used in terms. We will see below how the user 
an de�ne new
onstants.Appli
ation is appli
ation of a fun
tion to an argument, an operation used 
on-stantly in mathemati
s. The 
ustomary 
on
rete syntax for the appli
ation of afun
tion f to an argument t is f(t). HOL, following lambda-
al
ulus 
onvention,allows the parentheses to be omitted, unless they are needed be
ause t is itself a
ompound term. For example, f(g(x)) needs at least the outer pair of parentheses,as HOL's parser interprets f g x to mean (f(g))(x), for reasons explained shortly.Abstra
tion is in a pre
ise sense a 
onverse operation to appli
ation. Given49



50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHTa variable x and a term t, whi
h may or may not 
ontain x, one 
an 
onstru
tthe so-
alled lambda-abstra
tion �x: t, whi
h means `the fun
tion of x that yieldst'. (In HOL's ASCII 
on
rete syntax the ba
kslash is used, e.g. \x. t.) Forexample, �x: x+ 1 is the fun
tion that adds one to its argument. Abstra
tions arenot often seen in informal mathemati
s, but they have at least two merits. First,they allow one to write anonymous fun
tion-valued expressions without namingthem (o

asionally one sees x 7! t[x℄ used for this purpose), and sin
e our logi
 isavowedly higher order, it's desirable to pla
e fun
tions on an equal footing with �rst-order obje
ts in this way. Se
ondly, they make variable dependen
ies and bindingexpli
it; by 
ontrast in informal mathemati
s one often writes f(x) in situationswhere one really means �x: f(x).We should give some idea of how ordinary mathemati
al and logi
al vo
abulary(like x + 1 above) is represented in this simple term stru
ture. The basi
 idea isquite simple. Fixed operations that one wants to use have 
onstants 
orrespondingto them. For example, the negation of a real number is represented by a 
onstant--, and so �x is represented by the appli
ation of the 
onstant -- to the variablex. Exa
tly the same idea is used for logi
al operations like negation (`not'), so :p(`not p') is represented by the appli
ation of the logi
al negation 
onstant ~ to theterm p, whatever it may be.Appli
ation makes no spe
ial provision for fun
tions of more than one argument,su
h as addition. The tri
k used is known as 
urrying, after the logi
ian Curry(1930). (A
tually the devi
e had previously been used by both Frege (1893) andS
h�on�nkel (1924), but it's easy to understand why the 
orresponding appellationshaven't 
aught the publi
 imagination.) The tri
k is to make the operation takeits arguments `one at a time'. For example, rather than 
onsidering addition as afun
tion R � R ! R, 
onsider it as a fun
tion R ! (R ! R). It a

epts a singleargument a, and yields a new fun
tion of one argument that adds a to its argument.This intermediate fun
tion is applied to the se
ond argument, say b, and yields the�nal result a + b. In other words, what we write as a + b is represented by HOLas (+ a)(b). (Certain operations like + are written in�x in the 
on
rete syntax, forthe sake of familiarity. But the use of 
urrying is independent of this.)This approa
h is used for many multiple-argument fun
tions in HOL. However,there is also a pairing operation `,', on
e again written in�x in the 
on
rete syntax,that 
an also be used to form pairs of terms into new terms. Of 
ourse, this itselfhas to be 
urried, but all other fun
tions 
an be written in `un
urried' form to takea tuple as its argument. Thus, what is written in the 
on
rete syntax as f(x; y) isa
tually represented in HOL as f((; x)(y)).Operations that bind variables are 
ommon in mathemati
s. For example, inlimx!1 1x , the variable x is bound by a variable-binding operation lim, and servesmerely to 
onne
t di�erent parts of the term. It 
an be renamed 
onsistently, e.g.limy!1 1y . By 
ontrast, the inner term 1x on its own depends on the value of x, andhere x is said to be free. Some other examples of bound variables in mathemati
sand logi
 are the variable x in the set abstra
tion fx j Pg (`the set of all x su
h thatP '), the variable n in �Nn=1n (`the sum of all n from 1 up to N ') and the variable z in8z: P (`for all z, P holds'). All these variable-binding operations are represented inHOL using spe
ial 
onstants but with the a
tual variable-binding implemented bylambda-abstra
tion. For example, there is a 
onstant liminf (`limit at in�nity') andone then represents limx!1 1x by liminf(�x: 1x ), or expanding the body 
ompletely,liminf(�x: (= 1)(x)). This means one should think of liminf as a fun
tion fromreal fun
tions to reals, i.e. (R ! R) ! R. Similarly, the logi
al assertion 8x: P isrepresented using the 
onstant ! as !(�x: P ).It is well-known that there is a 1-1 
orresponden
e between sets of elements(drawn from some global `universe' set U), and predi
ates or `
hara
teristi
 fun
-tions' U ! 2, where 2 is some 2-element set of truth values. In HOL, there is no



5.2. TYPES 51separate notion of `set': they are identi�ed with predi
ates, i.e. Boolean-valuedfun
tions. Thus, one 
an simply write s x instead of x 2 s, though the latter isalso possible using the in�x 
onstant IN, e.g. x IN s. It is thus normal and often
onvenient to slip between thinking of truth-fun
tions as predi
ates or as sets, evenwithin the same term.5.2 TypesAppli
ation and abstra
tion are 
onverse in the pre
ise sense that (�x: t)(x) isequal to t, and there is a primitive HOL rule to make this inferen
e and produ
ethe theorem ` (�x: t)(x) = t. More generally, HOL is 
apable of proving that` (�x: t)(s) = t[s=x℄ where the right-hand side denotes the appropriate (see later)repla
ement of ea
h instan
e of x in t by s. For example, (�x: 1 + x)(y) = 1 + y.Unfortunately, even these banalities would allow one to get in
onsisten
ies withoutfurther restri
tions. For example, using the logi
al negation operation, we 
an derivethe Russell paradox about the set of all sets that do not 
ontain themselves (thinkof P x as x 2 P if preferred):` (�x: :(x x))(�x: :(x x)) = :((�x: :(x x))(�x: :(x x)))In other words, something is equal to its own logi
al negation! The problemseems to arise be
ause no proper distin
tion of levels is made: x is treated both asa predi
ate and the argument to a predi
ate. Even if it didn't lead to in
onsisten
y,one might argue that it looks a bit strange. Normally one likes to have a 
lear idea ofwhat sort of mathemati
al obje
t a term denotes | our explanation of 
urrying, forexample, leaned on the idea that addition is thought of as a fun
tion R ! (R ! R).A

ordingly, Chur
h (1940) augmented �-
al
ulus with a theory of types, simpli-fying Russell's system from Prin
ipia Mathemati
a (Whitehead and Russell 1910)and giving what is often 
alled `simple type theory'. HOL follows this system quite
losely. Every term has a unique type whi
h is either one of the basi
 types or theresult of applying a type 
onstru
tor to other types. The only basi
 type in HOLis initially the type of booleans bool and the only type operator is the fun
tionspa
e 
onstru
tor !. (Many others are added later, as we shall see.) HOL extendsChur
h's system by allowing also `type variables' whi
h give a form of polymor-phism. Constants with polymorphi
 type are generi
, and 
an have various typesresulting from �xing the names of the type variables. For example, the equalityrelation has type � ! � ! bool where � is a type variable. This means it 
an beused with any types, even if they themselves involve type variables, repla
ing �.Just as in typed programming languages, fun
tions may only be applied toarguments of the right type; only a fun
tion of type f : 
 ! : : : may be applied toan argument of type 
.For familiarity, types are written in a 
on
rete syntax with some type 
onstru
-tors like ! written in�x. Just as with 
onstant and variable terms, type variablesand type 
onstants are not distinguished synta
ti
ally: HOL's parser assumes thateverything whose name 
orresponds to a 
onstant is a 
onstant, and every otheridenti�er is a variable. However, it's 
ustomary to use names beginning with anupper
ase letter for type variables, e.g. A and State. Examples of HOL types then,in
lude bool and A ! bool (where A is a type variable). We write t : 
 to indi
atethat a term t has type 
. Readers familiar with set theory may like to think of typesas sets within whi
h the obje
ts denoted by the terms live, so t : 
 
an be read ast 2 
. Note that the use of the 
olon is already standard in set theory when usedfor fun
tion spa
es, i.e. one typi
ally writes f : A! B rather than f 2 A! B.



52 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT5.3 Primitive inferen
e rulesThe HOL formal system allows the dedu
tion of arbitrary sequents of the form�1; : : : ; �n `  (read as `if �1 and . . . and �n then  ') where the terms involvedhave type bool. (Where there are no assumptions it is 
ustomary to write just `  .)There are no additional logi
al 
onstants involved in the basi
 dedu
tive system.The derivable sequents are those that 
an be generated by the following inferen
erules. Ea
h rule is written with the 
on
lusion below a line and the hypothesesabove, and with the standard name for the inferen
e rule, 
orresponding in fa
t toa CAML identi�er in HOL, at the right.` t = t REFLThis rule says that equality is re
exive.� ` s = t � ` t = u� [� ` s = u TRANSThis rule says that equality is transitive. It is of 
ourse ne
essary to in
lude inthe 
on
lusion theorem any assumption that may have played a role in dedu
ingthe top two theorems. � ` s = t � ` u = v� [� ` s(u) = t(v) MK COMBThis says that equal fun
tions applied to equal arguments give equal results.We have assumed without 
omment that the types agree, e.g. s : � ! � , t : � ! � ,u : � and v : �. � ` s = t� ` (�x: s) = (�x: t) ABSThis rule requires that x is not a free variable in any of the assumptions �. It saysthat if, without using any spe
ial properties of x, we dedu
ed that two expressionsinvolving x are equal, then the fun
tions that take x to those values are equal.` (�x: t)x = t BETAThis expresses the fa
t that 
ombination and abstra
tion are 
onverse opera-tions, i.e. `the fun
tion that takes an argument x to t', applied to an argument x,gives t. fpg ` p ASSUMEThis says simply that from any p we 
an dedu
e p. Of 
ourse, p must have typebool. � ` p = q � ` p� [� ` q EQ MPThis 
onne
ts equality with dedu
tion, saying that if p and q are equal, and we
an dedu
e p, then we 
an dedu
e q (from the appropriately 
ombined assumptions).� ` p � ` q(�� fqg) [ (�� fpg) ` p = q DEDUCT ANTISYM RULEThis rule also 
onne
ts equality and dedu
tion, e�e
tively saying that equalityon the boolean type represents logi
al equivalen
e. Ignoring extra hypotheses fora moment, it says that if we 
an dedu
e p from q and q from p, then p and q areequal, under the a

umulated assumptions.



5.4. DEFINITIONS 53�[x1; : : : ; xn℄ ` p[x1; : : : ; xn℄�[t1; : : : ; tn℄ ` p[t1; : : : ; tn℄ INSTThis rule expresses the fa
t that variables are to be interpreted as s
hemati
,i.e. if p is true for variables x1; : : : ; xn, then we 
an repla
e those variables by anyterms of the same type and still get something true. Note that the substitution isalso applied to all hypotheses.�[�1; : : : ; �n℄ ` p[�1; : : : ; �n℄�[
1; : : : ; 
n℄ ` p[
1; : : : ; 
n℄ INST TYPEThis is the same, but for substitution of type variables rather than term vari-ables.5.4 De�nitionsAll theorems in HOL are dedu
ed using just the above rules, starting from a smallset of axioms, whi
h we will dis
uss shortly. Mathemati
s in HOL is derived justfrom these very basi
 axioms. However there is a spe
ial rule of de�nition, whi
hallows the addition of new 
onstants and 
orresponding new axioms provided theyare purely de�nitional in 
hara
ter.1 If t : � is any term without free (term or type)variables, and 
 : � an unused 
onstant, then 
 : � may be added to the sto
k of
onstants, and the axiom ` 
 = t in
luded as a theorem.One 
an also de�ne new types and type 
onstru
tors in HOL. Given any subsetof a type 
, marked out by its 
hara
teristi
 predi
ate P : 
 ! bool, then given atheorem asserting that P is nonempty, one 
an de�ne a new type Æ (or type operatorif 
 
ontains type variables) in bije
tion with this set.'
&

$
%

'&$% '&$%newtypeÆ existingtype
� bije
tions - P
Both these de�nitional prin
iples give a way of produ
ing new mathemati
altheories without 
ompromising soundness: one 
an easily prove that these prin
iplesare 
onsisten
y-preserving. E�e
tively, 
onstant de�nitions 
ould be avoided simplyby writing the de�nitional expansion out in full, while type de�nitions 
ould beavoided by in
orporating appropriate set 
onstraints into theorems: rather thansaying 8x : Æ: : : : one 
ould say 8y : 
: P (y)) : : :, with the appropriate isomorphi
mappings.21From a logi
al point of view, we may say that HOL is a
tually an evolving sequen
e of logi
alsystems, ea
h a 
onservative extension of previous ones.2In general, the logi
al 
ore of HOL is reasonably intuitionisti
, with 
lassi
al prin
iples intro-du
ed later as axioms. However the above de�nitional prin
iple jars slightly with this sin
e one ofthe type bije
tions is a total fun
tion 
 ! Æ. This is at least weakly non
onstru
tive, allowing usfor example to pass from p) 9x: q[x℄ to 9x: p) q[x℄.



54 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT5.5 Derived rulesHOL's logi
 is then built up by in
luding 
onstants for the usual logi
al operations.An attra
tive feature is that these do not need to be postulated: it has been knownsin
e Henkin (1963) how to de�ne all logi
al 
onstants in terms of equality, at leastfrom a 
lassi
al point of view. We do things in an `intuitionisti
' manner, givinguseful dedu
tive rules before we later assert the Law of the Ex
luded Middle, i.e.that every Boolean term is either true or false. While it is more typi
al (Prawitz1965) to take a few additional logi
al 
onstants su
h as 8 and ) as primitive, ourapproa
h is very similar to the usual de�nitions of the internal logi
 of a topos; seee.g. Lambek and S
ott (1986).We will now show how all the logi
al 
onstants are de�ned. These are > (true),^ (and), ) (implies), 8 (for all), 9 (there exists), _ (or), ? (false) : (not) and 9!(there exists a unique). Re
all that what we write as 8x:P [x℄ is a synta
ti
 sugaringof 8(�x: P [x℄). Using this te
hnique, quanti�ers and the Hilbert " operator 
an beused as if they bound variables, but with all binding implemented in terms of �-
al
ulus. There are several examples in this book.> = (�x: x) = (�x: x)^ = �p: �q: (�f: f p q) = (�f: f > >)) = �p: �q: p ^ q = p8 = �P: P = �x:>9 = �P: 8Q: (8x: P (x)) Q)) Q_ = �p: �q: 8r: (p) r)) (q ) r)) r? = 8P: P: = �t: t) ?9! = �P: 9P ^ 8x: 8y: P x ^ P y ) (x = y)While these might look puzzling at �rst sight, a little thought will 
onvin
ethe reader that they express what is intended. For example 8x: P [x℄, or withoutsugaring 8(�x: P [x℄), says that for any a, P [a℄, or equivalently (�x: P [x℄) a, is true.This is exa
tly the same as saying that �x: P [x℄ is a 
onstant fun
tion that alwaysreturns > (true), whi
h is how 8 is de�ned.From the above de�nitions and the primitive rules, it is then possible to de�nederived inferen
e rules that give 
onvenient ways of manipulating logi
al formulaswithout expli
itly taking everything ba
k to the de�nitions. Be
ause HOL is aprogrammable system in the LCF style, these 
an all be en
apsulated as CAMLfun
tions that look to the user the same as primitive rules.5.6 Classi
al axiomsThat 
on
ludes the logi
 proper, and in fa
t quite a bit of interesting mathemati
s,e.g. in�nitary indu
tive de�nitions, 
an be developed just from that basis (Harrison1995). But for general use we adopt three more axioms.� First, there is an axiom of extensionality, whi
h we en
ode as an �-
onversiontheorem: ` (�x: t x) = t.� Se
ondly, we introdu
e one new primitive logi
al 
onstant ", of polymorphi
type (�! bool)! �, the so-
alled Hilbert 
hoi
e operator. It is a

ompaniedby a new axiom giving the basi
 property of ", namely that it pi
ks outsomething satisfying P whenever there is something to pi
k:



5.6. CLASSICAL AXIOMS 55` 8x: P (x)) P ("x: P (x))The intuitive reading of "x: P (x) is `some x su
h that P (x)', whi
h is aninvaluable idiom when expressing some mathemati
al assertions. (Note thatif there isn't anything satisfying P (x), then "x: P (x) is still well-de�ned, butone 
an't prove any interesting properties of it.) However the above axiomisn't just an inno
ent 
onvenien
e: it is a form of the Axiom of (global)Choi
e; sin
e P 
an 
ontain other variables, one 
an pass from 8x: 9y: P [x; y℄to 8x: P [x; "y: P [x; y℄℄. Rather surprisingly, it also makes the logi
 
lassi
al,i.e. allows us to prove the theorem ` 8p: p _ :p; see Beeson (1984) for theproof we use.� Finally we introdu
e a new type ind of `individuals', and add an axiom ofin�nity, asserting that the type ind is in�nite. The Dedekind/Peir
e de�nitionof `in�nite' is used:` 9f : ind! ind: (8x1; x2: (f(x1) = f(x2))) (x1 = x2))^:(8y: 9x: y = f(x))That is, we assert the existen
e of a fun
tion from the type of individuals toitself that is inje
tive but not surje
tive. Su
h a mapping is impossible if thetype is �nite, sin
e it would entail that it 
an be put into 1-1 
orresponden
ewith a proper subset of itself.From that simple foundation, all the HOL mathemati
s and appli
ations, in-
luding those des
ribed here, is developed by de�nitional extension.
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Chapter 6Implementation in CAMLThe above des
ription of HOL's logi
al basi
s abstra
ted away somewhat from itsa
tual realization in CAML. However it has a fairly dire
t realization as three CAMLtypes to represent HOL types, terms and theorems. (Note the obje
t-meta distin
-tion here: one has a CAML type of data stru
tures representing HOL types.) TheseCAML types are all treated as abstra
t, with members only being 
reated via spe-
ial interfa
e fun
tions.1 This guards against 
onstru
tion of meaningless types(e.g. using unde�ned type 
onstru
tors), ill-typed terms, and theorems that havenot been proved using the primitive rules.6.1 TypesEa
h HOL type is either a type variables, or a type 
onstru
tor applied to othertypes. Primitive types like bool are treated as nullary 
onstru
tors, i.e. 
onstru
torswith no arguments. We will now show some of the most useful CAML fun
tions formanipulating types.get_type_arity :string -> int �nds the arity of the appropriately-namedtype 
onstru
tor. If there is no type 
onstru
tor with that name, it fails. Forexample:#get_type_arity "bool";;it : int = 0#get_type_arity "fun";;it : int = 2#get_type_arity "
on";;Un
aught ex
eption: Failure "find"The rest of the fun
tions divide ni
ely into three groups: those for 
reating HOLtypes, those for breaking them apart, and those for testing their stru
ture.mk_vartype :string -> hol_type 
reates a type variable with the requestedname. This is permissible even if there is also a type 
onstant of that name, but
an look 
onfusing. For example:#mk_vartype "A";;it : hol_type = `:A`#mk_vartype "bool";;it : hol_type = `:bool`1This 
ould a
tually be enfor
ed by the CAML system by separately 
ompiling the modules.57



58 CHAPTER 6. IMPLEMENTATION IN CAMLmk_type :string * hol_type list -> hol_type 
reates a 
omposite type giventhe name of a type 
onstru
tor and a list of 
omponent types of the right length.It fails if the name is not that of a 
onstru
tor, or if the 
onstru
tor's arity doesn'tmat
h the length of the list.#mk_type("bool",[mk_vartype "A"℄);;Un
aught ex
eption: Failure "mk_type: wrong number of arguments to bool"#mk_type("bool",[℄);;it : hol_type = `:bool`#mk_type("fun",[it; it℄);;it : hol_type = `:bool->bool`dest_vartype :hol_type -> string reverses the e�e
t of mk_vartype, i.e.takes a type variable and returns its name. It fails if the type isn't a type vari-able.#dest_vartype `:A`;;it : string = "A"#dest_vartype `:bool`;;Un
aught ex
eption: Failure "dest_vartype: type 
onstru
tor not a variable"#dest_vartype (mk_vartype "bool");;it : string = "bool"Analogously, dest_type :hol_type -> string * hol_type list reverses thee�e
t of mk_type, and fails if given a type variable.#dest_type `:bool`;;it : string * hol_type list = "bool", [℄#dest_type `:A`;;Un
aught ex
eption: Failure "dest_type: type variable not a 
onstru
tor"#dest_type `:bool->bool`;;it : string * hol_type list = "fun", [`:bool`; `:bool`℄The fun
tions is_type :hol_type -> bool and is_vartype :hol_type -> booltest whether a HOL type is a 
omposite type or a type variable respe
tively.6.2 TermsThe CAML fun
tion get_
onst_type :string -> hol_type �nds the type of theappropriately-named 
onstant, or fails if there is no 
onstant of that name. Some
onstants have polymorphi
 type, meaning a type in
luding type variables. Su
h a
onstant 
an have any type that arises from repla
ing the 
omponent type variables
onsistently by other types. For example the equality 
onstant is a 
urried operatorof two arguments, but the types of the arguments are arbitrary, provided they arethe same:#get_
onst_type "=";;it : hol_type = `:A->(A->bool)`In su
h 
ases, the type returned by get_
onst_type is a most general type, and
an be spe
ialized by setting type variables appropriately. In general, terms featureinstan
es of polymorphi
 
onstants. The type of an arbitrary term 
an by foundusing type_of :term -> hol_type, e.g.



6.2. TERMS 59#type_of `x:A`;;it : hol_type = `:A`#type_of `x = x`;;Warning: inventing type variablesit : hol_type = `:bool`By analogy with HOL types, the rest of the fun
tions divide ni
ely into thosefor 
reating HOL terms, those for breaking them apart, and those for testing theirstru
ture.mk_var :string * hol_type -> term 
reates a HOL variable with the 
hosenname and type.#mk_var("x",mk_vartype "A");;it : term = `x`#type_of it;;it : hol_type = `:A`#mk_var("p",`:bool`);;it : term = `p`mk_
onst :string * (hol_type * hol_type) list -> term is the analogous
onstru
tor for HOL 
onstants, but it's a bit more 
ompli
ated to use. The se
ondargument indi
ates not the desired type, but rather a list of settings for the typevariables in order to attain that type. For example:#mk_
onst("=",[℄);;it : term = `(=)`#type_of it;;it : hol_type = `:A->(A->bool)`#mk_
onst("=",[`:bool`,`:A`℄);;it : term = `(=)`#type_of it;;it : hol_type = `:bool->(bool->bool)`There is an alternative fun
tion mk_m
onst :string * hol_type -> termwhi
hworks out the instantiations itself. However it is not part of the logi
al 
ore, relyingas it does on higher-level fun
tions to mat
h up types. It will fail if the desired type
annot be realized:#mk_m
onst("=",`:bool->bool->bool`);;it : term = `(=)`#type_of it;;it : hol_type = `:bool->(bool->bool)`#mk_m
onst("=",`:A->B->C`);;Un
aught ex
eption: Failure "mk_
onst: generi
 type 
annot be instantiated"mk_
omb : term * term -> term 
reates an appli
ation; it is given two terms,one a fun
tion and one an argument, and tries to 
reate the 
orresponding appli
a-tion term, failing if the types don't mat
h up.#mk_
omb(`P:A->bool`,`x:A`);;it : term = `P x`#mk_
omb(`P:A->bool`,`x:B`);;Un
aught ex
eption: Failure "mk_
omb: types do not agree"mk_abs :term * term -> term 
reates an abstra
tion term, given a variableto abstra
t over and the term to a
t as body. It fails if the �rst term argument isn'ta variable.



60 CHAPTER 6. IMPLEMENTATION IN CAML#mk_abs(`x:A`,`x:A`);;it : term = `\x. x`#mk_abs(it,it);;Un
aught ex
eption: Failure "mk_abs: not a variable"There are now analogous destru
tor fun
tions dest_var, dest_
onst, dest_
omband dest_abs that a
t as inverses to the above. Stri
tly speaking dest_
onst is aninverse to mk_m
onst, sin
e it returns the 
onstant name and type, not the instan-tiation list. Similarly, there are dis
riminator fun
tions is_var, is_
onst, is_absand is_
omb to test whether a term is in ea
h 
lass.#dest_
omb `~p`;;it : term * term = `(~)`, `p`#dest_
omb `\p. ~p`;;Un
aught ex
eption: Failure "dest_
omb: not a 
ombination"#dest_abs `\p. ~p`;;it : term * term = `p`, `~p`#is_var `x:A`;;it : bool = true#is_var `~p`;;it : bool = falseAs well as the primitive syntax operations on terms, there are various derivedones, whi
h avoid the need to redu
e everything right down to the basi
 opera-tions above. For example, rator and rand (the names established lambda-
al
ulusjargon) take respe
tively the operator and operand of an appli
ation, i.e. returnrespe
tively f and x when applied to a term f x. They 
an be implemented justby applying dest 
omb to get a pair of terms, then applying the CAML fun
tionsfst or snd:#let rator tm = fst(dest_
omb tm);;rator : term -> term = <fun>#let rand tm = snd(dest_
omb tm);;rand : term -> term = <fun>#rand `SUC 2`;;it : term = `2`#rator `1 + 2`;;it : term = `(+) 1`#rand `1 + 2`;;it : term = `2`There are also derived fun
tions to 
reate, break apart and test for equations:#dest_eq `x = 1`;;it : term * term = `x`, `1`#is_eq `x = y + 3`;;it : bool = true#is_eq `x <= y + 3`;;it : bool = false#is_eq `p = q`;;it : bool = true#mk_eq(`T`,`F`);;it : term = `T = F`Similarly, when the other 
onstants are de�ned, they often have a 
orrespondingset of fun
tions to 
reate, test, and destroy them. For example, mk imp 
reates an



6.3. THEOREMS 61impli
ation p ==> q, dest 
onj breaks apart a 
onjun
tion p /\ q, and is_disjtests if a term is a disjun
tion p \/ q.6.3 TheoremsHOL theorems 
an be taken apart into a list of assumptions and a 
on
lusionusing the fun
tion dest_thm :thm -> term list * term. The hypotheses and
on
lusion 
an be grabbed separately using hyp and 
on
l. However they 
an onlybe 
reated by using one of the primitive rules, making a term or type de�nition,or �nally asserting an axiom. The last of these is only done three times for thebasi
 mathemati
al axioms, and thereafter HOL users are dis
ouraged from addingnew axioms, as this does not maintain the guarantee of 
onsisten
y. The primitiveinferen
e rules were listed earlier, and their CAML realizations are simply CAMLfun
tions returning something of type thm. For example:#BETA `(\p. ~p) p`;;it : thm = |- (\p. ~p) p = ~p#INST [`q:bool`,`p:bool`℄ it;;it : thm = |- (\p. ~p) q = ~q#TRANS (ASSUME `p:bool = q`) (ASSUME `q:bool = r`);;it : thm = p = q, q = r |- p = r#dest_thm it;;it : term list * term = [`p = q`; `q = r`℄, `p = r`New de�nitions are made using the fun
tion new definition, whi
h takes anequational term `
 = t', where 
 is a variable. The system introdu
es a new 
on-stant 
alled 
 and returns the theorem |- 
 = t for the new 
onstant. For example:#new_definition `true = T`;;it : thm = |- true = TLater on, more 
onvenient derived de�nitional prin
iples are built on top of this| even new definition is bound to a more powerful derived fun
tion that 
an, forexample, a

ept fun
tion de�nitions in the form `f x1 ... xn = ...'.The primitive fun
tion for performing type de�nitions is new_basi
_type_definition.The user gives the desired name for the new type and for the bije
tions that mapbetween the old and new types, and �nally a theorem asserting that the 
hosensubset of the existing type 
ontains some obje
t. For example, we 
an de�ne a newtype single in bije
tion with the 1-element subset of bool 
ontaining just T. Theappropriate predi
ate is the fun
tion that asks of its argument x whether it is equalto t, i.e. \x. x = T:#let th1 = BETA_CONV `(\x. x = T) T`;;th1 : thm = |- (\x. x = T) T = T = T#let th2 = EQ_MP (SYM th1) (REFL `T`);;th2 : thm = |- (\x. x = T) T#new_basi
_type_definition "single" ("mk_single","abs_single") th2;;it : thm * thm =|- mk_single (abs_single a) = a,|- (\x. x = T) r = abs_single (mk_single r) = rTwo theorems are returned as an ML pair, whi
h together imply that the 
hosenbije
tions map 1-1 between the new type and the 
hosen subset of the old one.



62 CHAPTER 6. IMPLEMENTATION IN CAML6.4 Some prede�ned 
onstantsHOL has a large number of 
onstants prede�ned. The most basi
 of these are thelogi
al operators whose de�nitions were given in passing above. Here is a tableshowing the 
onventional logi
al symbols, HOL's ASCII approximation, and theEnglish reading. In the 
on
rete syntax, they bind a

ording to their order in theabove table, negation being strongest and the variable-binding operations weakest.? F Falsity> T Truth: ~ Not^ /\ And_ \/ Or) ==> Implies� = If and only if8 ! For all9 ? There exists9! ?! There exists a unique" � Some . . . su
h that� \ The fun
tion taking . . . toReaders are no doubt used to writing symbols like + rather than the word `plus',but may well �nd these analogous logi
al operations less familiar. However, it'sworth spending some time getting a

ustomed to them, sin
e they are needed tounderstand most HOL terms. Here are a few examples:� T says `truth holds'.� F ==> p says `if falsity holds, so does any p'.� !x. x > 0 = (?y. x = y + 1) says `for all x, x is greater than zero if andonly if there exists a y su
h that x = y + 1'.� x >= y /\ u > v ==> x + u > y + v says `if x is greater than or equal toy and u is greater than v, then x+ u is greater than y + v'.� p /\ q ==> q \/ r says `if p and q are true, then either q or r is true'.� ~(p = ~p) says `it is always false that p holds if and only if p does not hold'.� (m * n = 0) = (m = 0) \/ (n = 0) says `mn is zero if and only if either mis zero or n is zero'.� (\x. x + 1) 3 = 4 says that the fun
tion mapping any x to x + 1, whenapplied to the argument 3, is equal to 4.� (?!x. P x) ==> !a. P(a) = (a = �x. P x) says `if there is a unique x sat-isfying P , then for all a, P holds of a if and only if a is equal to some 
anoni
alx satisfying P '.� !P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n expresses the prin-
iple of 
omplete mathemati
al indu
tion, i.e. `for every predi
ate P overnumbers, if for ea
h n, whenever P holds for ea
h smaller m, then P holdsfor n, then for every n, P holds'.



6.4. SOME PREDEFINED CONSTANTS 63There are also a lot of 
onstants de�ned in mathemati
al theories. Most of theseshould look familiar, and in any 
ase are summarized in a later 
hapter. However,the following is a list of some of the less obvious ones, whi
h may help the readerfollow some of the examples below.HOL notation Standard symbol MeaningSUC n n+ 1 Su

essor of n# (none) Natural map N ! R or N ! Z--x �x Unary negation of xinv(x) x�1 Multipli
ative inverse of xabs(x) jxj Absolute value of xm EXP n mn Natural m raised to natural power nx pow n xn Real x raised to natural number power nroot n x npx Positive nth root of xSum(n,d) f �n+d�1i=n f(i) Sum of d terms f(i) starting with f(n)x IN s x 2 s x is a member of set sEMPTY ; The empty setUNIV none Universe set for a typex INSERT s fxg [ s Set s with element xs DELETE x s� fxg Set s without element xs UNION t s [ t Union of sets s and ts INTER t s \ t Interse
tion of sets s and ts DIFF t s� t Di�eren
e of sets s and tUNIONS s S s Union of all members of sINTERS s T s Interse
tion of all members of sFormally, naturals, integers and reals are all di�erent types, hen
e the use of amapping # between then. The usual arithmeti
 operations like + are overloaded,meaning that they are used for addition of reals, integers, and natural numbers.(The main ex
eption is that EXP is used for natural numbers.) The next 
hapterexplains the translation from the usual symbols to di�erent 
onstants under thesurfa
e.
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Chapter 7Parsing and printingWe have already used the automati
 quotation parsers quite extensively, and it'stime we looked at the relationship between the underlying representations and thesurfa
e syntax in more detail. Many 
onvenient 
onstru
ts are representing usingsome spe
ial 
onstants inside HOL, and the parser and printer transform su
h inter-nal representations into more palatable surfa
e syntax. For example the 
onditionalexpressionif b then e1 else e2is represented inside the logi
 using a 
onstant COND:CONS b e1 e2Various other handy synta
ti
 
onstru
ts are also dealt with in this way, e.g.abstra
tions over non-variables, and let-terms. For example\(x,y,z). x + y + zis represented by:GABS (\f. !x y z. GEQ (f (x,y,z)) (x + y + z))andlet x = 1 and y = 2 in x + yis represented by:LET (\x y. LET_END (x + y)) 1 2Apart from spe
ial 
ase like these, the parser-printer transformations are prettystraightforward. Identi�ers may be de
lared in�x, and given a pre
eden
e andasso
iativity (right or left) using parse as infix. Here are a few genuine examplesfrom the sour
e 
ode:parse_as_infix("<",(12,"right"));;parse_as_infix("+",(16,"right"));;parse_as_infix("-",(18,"left"));;parse_as_infix("IN",(11,"right"));;parse_as_infix("UNION",(16,"right"));;65



66 CHAPTER 7. PARSING AND PRINTING7.1 OverloadingThe parser and printer allow front-end symbols to be overloaded, and tries to resolveambiguities by exploiting type information. Before a symbol 
an be overloaded, itmust be given a most general type, and any term it maps to must have a typethat is an instan
e of this type. During type
he
king, the overloaded symbol isgiven its most general type. If the type
he
king pro
ess �xes the type suÆ
ientlyto disambiguate, then the appropriate target is pi
ked. Otherwise some instan
eis defaulted, and type
he
king repeated until all symbols have been resolved. Forexample, the addition symbol is made overloadable:make_overloadable "+" `:A->A->A`;;Now in order to make "+" overloaded to natural number, integer and real ad-dition, we do:overload_interfa
e ("+",`(+):num->num->num`);overload_interfa
e ("+",`int_add:int->int->int`);overload_interfa
e ("+",`real_add:real->real->real`);Now the symbol + will map to one of three terms in the underlying represen-tation, de
ided a

ording to type. The default 
hosen is always the most re
entlyde
lared version, real addition after the above sequen
e. If the user wants to avoidany defaults, then type information sometimes needs to be supplied. All the follow-ing are unambiguous:#`x + 1`;;it : term = `x + 1`#`x:int + y`;;it : term = `x`#`(x + y):real`;;it : term = `x + y`Instead of mapping a symbol to multiple targets, one 
an always 
hoose just one.The fun
tion override interfa
e is similar to overload interfa
e, ex
ept thatit removes any existing mappings for the symbol �rst. For example, the user whodislikes the use of equality to mean logi
al equivalen
e 
ould remap HOL Light'sinterfa
e as follows:#parse_as_infix("<=>",(2,"right"));;it : unit = ()#override_interfa
e ("<=>",`(=):bool->bool->bool`);;it : unit = ()#`x = F`;;it : term = `x <=> F`#`x <=> F`;;it : term = `x <=> F`



Chapter 8ConversionsA 
onversion in HOL is a derived rule of type term -> thm that when given aterm t, always returns (assuming it doesn't fail) a theorem of the form |- t = t'.Conversions were introdu
ed into Cambridge LCF by Paulson (1983), who showedthat they gave a 
onvenient and regular way of implementing many handy derivedrules. Conversions 
an be 
onsidered as transforming a term into an equal one,and also giving a theorem to justify this equality. They are therefore useful asbuilding-blo
ks for larger transformations, similarly justi�ed.HOL has a variety of built-in 
onversions, and they often have names endingin CONV as a reminder that they are 
onversions. Rather trivially, for example, theprimitive inferen
e rule REFL is a 
onversion, whi
h takes a term t and returns atheorem |- t = t. If we think of 
onversions as transforming one term to another,REFL is a sort of `identity' 
onversion. In fa
t, for this reason, it is given a newname ALL CONV, sin
e it is a 
onversion that always, trivially, works on any term.Its 
onverse, in a sense, is a 
onversion NO CONV whi
h always fails:#let (ALL_CONV:
onv) = REFL;;ALL_CONV : 
onv = <fun>#let (NO_CONV:
onv) = fun tm -> failwith "NO_CONV";;NO_CONV : 
onv = <fun>A slightly more interesting 
onversion is BETA CONV, whi
h performs a beta re-du
tion step on terms of the form (\x. ...) t:#BETA_CONV `(\x. x + 1) 2`;;it : thm = |- (\x. x + 1) 2 = 2 + 1There are also some 
onversions spe
ial to parti
ular theories. For example thereis a 
onversion NUM RED CONV to evaluate the result of an arithmeti
 operation ontwo numerals:#NUM_RED_CONV `2 * 2`;;it : thm = |- 2 * 2 = 4#NUM_RED_CONV `2 EXP 10`;;it : thm = |- 2 EXP 10 = 1024#NUM_RED_CONV `100 DIV 7`;;it : thm = |- 100 DIV 7 = 148.1 ConversionalsThese 
onversions are building blo
ks. The me
hanism for building them up isa suite of higher order fun
tions 
alled `
onversionals' or `
onversion 
ombining67



68 CHAPTER 8. CONVERSIONSoperators'. These allow one to 
onstru
t 
omposite 
onversions in a user-de�nedway. For example, the 
onversional THENC, used in�x, uses one 
onversion and thenafterwards, another, e.g.#(BETA_CONV THENC NUM_RED_CONV) `(\x. x + 1) 2`;;it : thm = |- (\x. x + 1) 2 = 3The 
onversional REPEATC allows one to use a 
onversion repeatedly until it fails(maybe zero times), e.g.#REPEATC BETA_CONV `23`;;it : thm = |- 23 = 23#REPEATC BETA_CONV `(\x. x + 1)`;;it : thm = |- (\x. x + 1) = (\x. x + 1)#REPEATC BETA_CONV `(\x. x + 1) 2`;;it : thm = |- (\x. x + 1) 2 = 2 + 1#REPEATC BETA_CONV `(\x. (\y. x + y) 2) 1`;;it : thm = |- (\x. (\y. x + y) 2) 1 = 1 + 28.2 Depth 
onversionsThe 
onversions above are still only applied at the top level of a term. For example,the following fails be
ause the beta-redex is deeper inside the term than expe
ted:#BETA_CONV `1 + (\x. x + 1) 2`;;Un
aught ex
eption: Failure "BETA_CONV: Not a beta-redex"However there is an additional set of 
onversionals that apply the given 
onver-sion at depth inside the term. For example ONCE DEPTH CONV applies a 
onversionto the �rst appli
able term(s) en
ountered in a top-down traversal of the term. Nodeeper terms are examined, but several terms 
an be 
onverted provided they aredisjoint:#ONCE_DEPTH_CONV NUM_RED_CONV `1 + (2 + 3)`;;it : thm = |- 1 + 2 + 3 = 1 + 5#ONCE_DEPTH_CONV NUM_RED_CONV `(1 + 1) * (1 + 1)`;;it : thm = |- (1 + 1) * (1 + 1) = 2 * 2Conversions like NUM RED CONV 
an be used to redu
e a term 
ompletely by ap-plying it in a single bottom-up sweep. This is done by the 
onversional DEPTH CONV,e.g.#DEPTH_CONV NUM_RED_CONV `7 * (3 EXP 10) + 11`;;it : thm = |- 7 * 3 EXP 10 + 11 = 413354However, this isn't always what's needed; sometimes the a
t of applying a
onversion at one level 
an 
reate new appli
able terms lower down; in this 
aseDEPTH CONV will not reexamine them. Two other 
onversionals, TOP DEPTH CONVand REDEPTH CONV, will keep applying 
onversions as long as possible all over theterm.



8.2. DEPTH CONVERSIONS 69#DEPTH_CONV BETA_CONV `(\f x. f x) (\y. y + 1)`;;it : thm = |- (\f x. f x) (\y. y + 1) = (\x. (\y. y + 1) x)#REDEPTH_CONV BETA_CONV `(\f x. f x) (\y. y + 1)`;;it : thm = |- (\f x. f x) (\y. y + 1) = (\x. x + 1)#TOP_DEPTH_CONV BETA_CONV `(\f x. f x) (\y. y + 1)`;;it : thm = |- (\f x. f x) (\y. y + 1) = (\x. x + 1)#TOP_DEPTH_CONV NUM_RED_CONV `7 * (3 EXP 10) + 11`;;it : thm = |- 7 * 3 EXP 10 + 11 = 413354The di�eren
e is that the main sweeps are respe
tively top-down and bottom-up,whi
h 
an lead to one or the other being preferable, mainly for eÆ
ien
y reasons,in some situations. TOP DEPTH CONV is the default for HOL's rewriting, des
ribedin a later 
hapter.The 
onversionals all have fairly straightforward de�nitions using HOL's primi-tive and derived equality rules. For example, THENC just needs to apply the 
onver-sion to a term, getting a theorem, then take the right-hand side of this theorem's
on
lusion, apply the se
ond 
onversion to that and then link the equations togetherusing the primitive inferen
e rule TRANS. One 
ould write an equivalent fun
tion as:#let THENC' 
onv1 
onv2 t =let th1 = 
onv1 t inlet th2 = 
onv2 (rand(
on
l th1)) inTRANS th1 th2;;THENC' : ('a -> thm) -> (term -> thm) -> 'a -> thm = <fun>The depth 
onversionals 
an be implemented by a re
ursive traversal of the term,using primitive rules like MK COMB to lift the equational theorems up to the wholeterm. In fa
t, the implementations are a bit more sophisti
ated be
ause they are
areful to avoid 
reating trivial equations unless needed.
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Chapter 9Derived rulesHOL has a variety of other derived rules that are not 
onversions, or at least aren'tused mu
h as in the previous 
hapter. Here we 
over some of the most basi
 ones.9.1 Logi
al rulesAll the logi
al 
onstants are de�ned; we have seen the de�nitions above. From thede�nitions, rules for manipulating them dire
tly are derived, so for most purposesusers 
an forget that they aren't primitives. Most of the rules are so-
alled intro-du
tion and elimination rules of natural dedu
tion (Prawitz 1965).1 For example,the introdu
tion rule for 
onjun
tions, CONJ, takes two theorems and gives a newtheorem that results from 
onjoining (`anding') them, e.g.#CONJ (REFL `1`) (ASSUME `x = 2`);;it : thm = x = 2 |- (1 = 1) /\ (x = 2)Conversely, the elimination rules CONJUNCT1 and CONJUNCT2 take a theoremwith a 
onjun
tion as 
on
lusion, and give new theorems for the left and rightarms. CONJ PAIR gives a pair of both, while CONJUNCTS repeatedly breaks down a
onjun
tive theorem into a list of theorems.#let th1 = CONJ (REFL `T`) (ASSUME `p /\ q`);;th1 : thm = p /\ q |- (T = T) /\ p /\ q#let th2 = CONJ (REFL `1`) th1;;th2 : thm = p /\ q |- (1 = 1) /\ (T = T) /\ p /\ q#CONJ_PAIR th2;;it : thm * thm = p /\ q |- 1 = 1, p /\ q |- (T = T) /\ p /\ q#CONJUNCTS th2;;it : thm list = [p /\ q |- 1 = 1; p /\ q |- T = T; p /\ q |- p; p /\ q |- q℄#CONJUNCT2 th1;;it : thm = p /\ q |- p /\ qAbstra
ting away a bit from the implementation in CAML, we 
an representthe rules in the usual form as: � ` p � ` q� [� ` p ^ q CONJ1Although HOL uses a sequent presentation, the 
onventional derived rules are natural dedu
-tion rules, i.e. introdu
tion and elimination on the right, rather than left and right introdu
tion.71



72 CHAPTER 9. DERIVED RULES� ` p ^ q� ` p CONJUNCT1� ` p ^ q� ` q CONJUNCT2All the other de�ned 
onstants 
ome equipped with a similar suite of rules. Inmost 
ases the reader will be able to guess how the 
orresponding CAML fun
tionis used, and 
an experiment a little on the lines of the above examples.� ` p� ` p = > EQT INTRO� ` p = >� ` p EQT ELIM� ` p) q � ` p� [�) q MP� ` q�� fpg ` p) q DISCH� ` p) q� [ fpg ` q UNDISCH� ` 8x: p� ` p[t=x℄ SPECHere p[t=x℄ denotes the result of substituting t for all free instan
es of x inp. HOL automati
ally renames variables to avoid 
apture if ne
essary, by addingprime 
hara
ters. (This happens in the primitive fun
tion INST that is used in theimplementation.)#let th1 = ASSUME `!x. x >= 0`;;th1 : thm = !x. x >= 0 |- !x. x >= 0#let th2 = SPEC `y + 1` th1;;th2 : thm = !x. x >= 0 |- y + 1 >= 0#let th3 = ASSUME `!x. ?y. y > x`;;th3 : thm = !x. ?y. y > x |- !x. ?y. y > x#let th4 = SPEC `y:num` th3;;th4 : thm = !x. ?y. y > x |- ?y'. y' > yNote that the naive result of substituting would be the in
orre
t ?y. y > y.� ` p� ` 8x: p GENThis rule will fail if the variable x is free in the assumptions �. Again, thisrestri
tion arises naturally out of one in the underlying primitives, in this 
ase inABS.



9.1. LOGICAL RULES 73#let th1 = REFL `x:num`;;th1 : thm = |- x = x#let th2 = GEN `x:num` th1;;th2 : thm = |- !x. x = x#let th3 = GEN `y:num` th2;;th3 : thm = |- !y x. x = x#let th4 = ASSUME `x = 2`;;th4 : thm = x = 2 |- x = 2#let th5 = GEN `x:num` th4;;Un
aught ex
eption: Failure "GEN"#let th5 = GEN `y:num` th4;;th5 : thm = x = 2 |- !y. x = 2� ` p[t=x℄� ` 9x: p EXISTSThe ML invo
ations for this rule are relatively 
ompli
ated; the fun
tion requiresthe user to spe
ify the desired form of the result and the term t to 
hoose. It 
ouldwork out the latter for itself, but in general one 
an derive many existential theoremsfrom the same starting point, e.g.#let th1 = REFL `1`;;th1 : thm = |- 1 = 1#let th2 = EXISTS(`?x. x = 1`,`1`) th1;;th2 : thm = |- ?x. x = 1#let th3 = EXISTS(`?x:num. x = x`,`1`) th1;;th3 : thm = |- ?x. x = x#let th4 = EXISTS(`?x:num. 1 = 1`,`23`) th1;;th4 : thm = |- ?x. 1 = 1 � ` q�� fpg ` (9x: p)) q CHOOSEThis rule requires that x is not free in q nor in any of the � besides p.� ` p� ` p _ q DISJ1� ` q� ` p _ q DISJ2� ` r �0 ` r � ` p _ q(�� fpg) [ (�0 � fqg) [� ` r DISJ CASES� ` :p� ` p) ? NOT ELIM� ` p) ?� ` :p NOT INTRO� ` p � ?� ` :p EQF ELIM� ` :p� ` p � ? EQF INTRO



74 CHAPTER 9. DERIVED RULES9.2 Rewriting and simpli�
ationHOL has various rules and 
onversions at a somewhat higher level. Some of themost useful of these automati
ally work out how to instantiate variables to apply tothe 
ase in hand. For example, the above `Modus Ponens' rule requires the theoremsto mat
h up exa
tly:2#MP (ASSUME `x < 1 ==> x <= 1`) (ASSUME `x < 1`);;it : thm = x > 1 ==> x >= 1, x >= 1 |- x > 1#MP (ASSUME `y < 1 ==> y <= 1`) (ASSUME `x < 1`);;Un
aught ex
eption: Failure "MP: theorems do not agree"A more powerful rule, MATCH MP, tries to work out settings for free or universallyquanti�ed variables in the �rst theorem in order to make things mat
h up. we 
anillustrate this using a built-in theorem LT IMP LE:#let th1 = LT_IMP_LE;;th1 : thm = |- !m n. m < n ==> m <= n#MATCH_MP th1 (ASSUME `x < 1`);;it : thm = x < 1 |- x <= 1A similar rule, a
tually a 
onversion, is REWR CONV. It takes an equation, perhapsuniversally quanti�ed, and sets the variables if possible so that the left-hand sidemat
hes the pro�ered term, `rewriting' it. Again, we will illustrate it using a built-intheorem:#let th1 = NOT_LE;;th1 : thm = |- !m n. ~(m <= n) = n < m#REWR_CONV th1 `~(x + 1 <= x)`;;it : thm = |- ~(x + 1 <= x) = x < x + 1Sin
e it is a 
onversion, REWR CONV 
an be 
ombined with various depth 
on-versions to rewrite repeatedly at various levels of a term. Built-in fun
tions likeREWRITE CONV take a whole list of theorems, extra
t rewrites from them and re-peatedly apply them to a term.3 Moreover, they throw in a set of handy rewrites toget rid of trivial propositional 
lutter, e.g. redu
ing p /\ p to p. They are one ofthe workhorses in typi
al HOL proofs. If the additional propositional simpli�
ationsare not required, pre�x the name with PURE:#PURE_REWRITE_CONV[NOT_LE; LT_REFL℄ `~(x < x) \/ q`;;it : thm = |- ~(x < x) \/ q = ~F \/ q#REWRITE_CONV[NOT_LE; LT_REFL℄ `~(x < x) \/ q`;;it : thm = |- ~(x < x) \/ q = TAs in this example, one often rewrites Boolean terms. In 
ases where 
onversionsare applied to Boolean terms, it's often handy to 
onvert 
onversions to forwardinferen
e rules. This is done using CONV RULE, whose de�nition is simply:#let CONV_RULE 
onv th =EQ_MP (
onv(
on
l th)) th;;CONV_RULE : (term -> thm) -> thm -> thm = <fun>#CONV_RULE(REWRITE_CONV[NOT_LE; LT_REFL℄) (ASSUME `~(x < x) \/ q`);;it : thm = ~(x < x) \/ q |- T2A
tually, only up to alpha-equivalen
e, i.e. renaming of bound variables.3They do work by applying REWR CONV at depth, but are optimized using term nets to avoid toomany wasteful attempts to mat
h theorems against subterms.



9.3. ORDERED REWRITING 75Some 
onversions are made into rules and given names, be
ause they are usedso often. For example:#let BETA_RULE = CONV_RULE(REDEPTH_CONV BETA_CONV);;BETA_RULE : thm -> thm = <fun>#let REWRITE_RULE thl = CONV_RULE(REWRITE_CONV thl);;REWRITE_RULE : thm list -> thm -> thm = <fun>Still more powerful than rewriting is simpli�
ation. This allows the use of equa-tions that are 
onditional, i.e. of the form ` p ) l = r. After mat
hing up lwith the term if possible, setting the theorem to ` p0 ) l0 = r0 the 
onversion isre
ursively applied to the hypothesis p0, trying to redu
e it to > and so eliminateit. This 
an often avoid tedious 
hains of straightforward logi
al reasoning. Forexample, in#DIV_LT;;it : thm = |- !m n. m < n ==> (m DIV n = 0)#SIMP_CONV[DIV_LT; ARITH℄ `3 DIV 7 = 0`;;it : thm = |- (3 DIV 7 = 0) = Tthe built-in theorem DIV LT is used as a rewrite, giving a hypothesis 3 < 7 whi
his then atta
ked by more simpli�
ation, this time using a set of rewrites to dobasi
 arithmeti
 (des
ribed later). Simpli�
ation also a

umulates 
ontext, so whentraversing a term p ) q and des
ending to q, additional rewrites are derived fromp, e.g.#SIMP_CONV [℄ `p /\ q ==> p`;;it : thm = |- p /\ q ==> p = TThe rewrite p = T is extra
ted from the 
ontext p and this is used to rewritethe 
onsequent to T. The �nal result follows from an additional rewrite with thebuilt-in simpli�
ation p ==> T = T.9.3 Ordered rewritingIt is possible for rewriting and simpli�
ation to go into an in�nite loop, e.g. applyingtwo su

essive rewrites ` s = t and ` t = s alternately. However, HOL tries to avoidlooping in some 
ases, ignoring rewrites that would loop:#REWRITE_CONV[ASSUME `x = x + 1`℄ `x:num`;;Warning: dis
arding looping rewriteit : thm = |- x = xSome rewrites are said to be permutative, meaning that the left hand side 
anbe mat
hed to the right hand side and vi
e versa. For example, there is a built-intheorem ADD SYM asserting that addition of natural numbers is 
ommutative, andseveral others:#ADD_SYM;;it : thm = |- !m n. m + n = n + m#CONJ_SYM;;it : thm = |- !t1 t2. t1 /\ t2 = t2 /\ t1#INSERT_COMM;;it : thm = |- !x y s. x INSERT y INSERT s = y INSERT x INSERT s



76 CHAPTER 9. DERIVED RULESThe HOL Light approa
h to permutative rewrite rules has long been used inthe Boyer-Moore theorem prover, and more re
ently in Isabelle thanks to TobiasNipkow. They are only applied if, after instantiation, the left-hand side is \larger"than the right a

ording to some well-founded ordering. The basi
 building blo
k isORDERED_REWR_CONV. This 
alls REWR_CONV, but will then for
e failure unless in theresulting theorem � ` s0 = t0 one has t0 > s0 a

ording to the given ordering > onterms. In this way, one 
an rewrite freely with a theorem su
h as ` x + y = y + xwithout fear of in�nite looping.However in 
onjun
tion with other rewrites, in�nite looping 
an reappear. Forexample, rewriting with the above 
ommutative law and the asso
iative law ` (x+y) + z = x+ (y + z) one 
ould still have an in�nite rewrite:x+ (y + z) �! (y + z) + x�! y + (z + x)�! (z + x) + y�! z + (x+ y)�! (x+ y) + z�! x+ (y + z)This, however, 
an be prevented by a suitable 
hoi
e of ordering. In fa
t, giventhe right ordering, the asso
iative and 
ommutative laws together not only alwaysterminate, but a
tually redu
e AC 
ombinations to their 
anoni
al form. Martinand Nipkow (1990) give a slightly tri
ky ordering that makes the asso
iative and
ommutative laws alone give a normalizer. However a more obvious approa
h is toadd a third theorem, easily derived from the other two: ` x+(y+ z) = y+(x+ z).Now, suppose that the ordering has the following properties for any terms x, y andz: (x+ y) + z > x+ (y + z)x+ y > y + x i� x > yx+ (y + z) > y + (x + z) i� x > ySu
h an ordering, if it is also monotoni
 (if s > t then u[s℄ > u[t℄) and total andis wellfounded on ground terms, is said to be AC-
ompatible. Intuitively it is 
learthat ordered rewriting with these theorems will 
anoni
alize AC 
ombinations by`bubbling' terms in iterated additions to their proper pla
e. Theorems in this 
lassfor some asso
iative and 
ommutative operators are built into HOL, e.g.#ADD_AC;;it : thm =|- (m + n = n + m) /\ ((m + n) + p = m + n + p) /\ (m + n + p = n + m + p)#MULT_AC;;it : thm =|- (m * n = n * m) /\ ((m * n) * p = m * n * p) /\ (m * n * p = n * m * p)#REWRITE_CONV[ADD_AC; MULT_AC℄ `x * y + z * x + w * x + x * w =x * w + x * z + y * x + x * w`;;it : thm =|- (x * y + z * x + w * x + x * w = x * w + x * z + y * x + x * w) = TMartin and Nipkow (1990) show that one 
an also add laws of left and rightdistributivity for + and �, as well as idempoten
e laws ` x+x = x and ` x+(x+y) =x+y and get 
anoni
alizers under these laws too. (For example, if + is 
onjun
tionor disjun
tion.)



9.4. HIGHER ORDER MATCHING 77#CONJ_ACI;;it : thm =|- (p /\ q = q /\ p) /\((p /\ q) /\ r = p /\ q /\ r) /\(p /\ q /\ r = q /\ p /\ r) /\(p /\ p = p) /\(p /\ p /\ q = p /\ q)#REWRITE_CONV[CONJ_ACI℄ `p /\ q /\ p /\ r /\ q = r /\ q /\ p`;;it : thm = |- (p /\ q /\ p /\ r /\ q = r /\ q /\ p) = T9.4 Higher order mat
hingHOL Light supports a limited form of higher order mat
hing. This is immenselyuseful in order to express more general term transformations as rewrite rules. Ifonly simple `�rst order' mat
hing is used, the s
ope of rewriting, mat
hing modusponens et
. is rather restri
ted. Even quite simple s
hemati
 theorems need to beinstantiated manually | a very tedious task. For example, if we want to use thetheorem:#SKOLEM_THM;;it : thm = |- !P. (!x. ?y. P x y) = (?y. !x. P x (y x))to rewrite the term !n. ?m. m EXP 2 <= n /\ n < (SUC m) EXP 2, then simplerewriting won't work; one �rst needs to instantiate the theorem withP = (\n m. m EXP 2 <= n /\ n < (SUC m) EXP 2)then beta-redu
e it, and only then rewrite with it. HOL Light will do this automat-i
ally in some situations. For example, it will perform the following rewrite, eventhough the term isn't literally an instan
e of the theorem's left hand side:#NOT_FORALL_THM;;it : thm = |- !P. ~(!x. P x) = (?x. ~P x)#REWR_CONV NOT_FORALL_THM `~(!n. n < n - 1)`;;it : thm = |- ~(!n. n < n - 1) = (?n. ~(n < n - 1))The implementation of higher order mat
hing aims to make mat
hing as gen-eral as possible while keeping it deterministi
. It allows higher order mat
hes ofP x1 � � �xn where P is an instantiable variable, but only if it 
an de
ide with 
er-tainty how to instantiate the xi. Generally speaking, there are lots of possiblehigher order mat
hes; for example the pattern P (x + y) 
an be mat
hed against(a+ b) + (
+ d) in several di�erent ways, e.g. x = a+ b; y = 
+ d or x = a; y = b.In order to make the mat
hes determinate, information is taken from 
orrespondingvariable bindings. For example there is no doubt about the mat
hing of 8x: Pxto 8n: n < n + 1, whereas with the bound variables removed one 
ould have var-ious alternatives, e.g. P = �x: n < x + 1 and x = n. Our allowable patterns
orrespond quite 
losely to higher order patterns, for whi
h Miller (1991) provedeven the uni�
ation (two-way mat
hing) problem to be de
idable and deterministi
(`unitary'). We generalize higher order patterns in two ways. First, one need notsimply have variables in the patterns, but 
an have arbitrary terms involving onlythese `resolvable' variables. Thus one 
an mat
h:|- (!x. P(SUC x)) = !x. 0 < x ==> P xwith a term:



78 CHAPTER 9. DERIVED RULES!n. (m / SUC n) * SUC n = mWe allow variables to be repeated in patterns (in the jargon, `nonlinear' pat-terns); this does in theory introdu
e an element of nondetermina
y but this isresolved by always traversing the term to be mat
hed top-down and pi
king the�rst mat
h. For example:|- (!x. P (SUC x) x) = !x. 0 < x ==> P x (PRE x)mat
hed against:!n. (m / SUC n) * (n + 1) = mwill yield|- (!n. (m / SUC n) * (n + 1) = m) =(!n. 0 < n ==> (m / n) * (PRE n + 1) = m)rather than|- (!n. (m / SUC n) * (n + 1) = m) =(!n. 0 < n ==> (m / SUC(PRE n)) * (PRE n + 1) = m)Se
ond, as well as binding instan
es, �rst-order mat
hable parts of the term areused to resolve more variables. The implementation re
e
ts this: in a �rst pass, all�rst order parts are dealt with (in �rst order mat
hes, all the term is dealt with).Then the new variable assignments are used to keep the overall mat
h deterministi
.For example:|- C x y ==> P x y(where C is a 
onstant and so not eligible itself as a higher order pattern) willdeterministi
ally mat
h:C a b ==> (a + b = 27)whereas the respe
tive 
onsequents 
ould not be mat
hed deterministi
ally.Note, by the way, that even beta-
onversion 
an be implemented as a higherorder rewrite rule, and hen
e 
onveniently thrown into a bun
h of rewrites insteadof being 
alled separately.#BETA_THM;;it : thm = |- !f y. (\x. f x) y = f yBut note that rewrites with the following theorem go into an in�nite loop at anybeta-redex be
ause of higher order mat
hing!#ETA_AX;;it : thm = |- !t. (\x. t x) = t



9.5. OTHER RULES 799.5 Other rulesAs well as these handy general-purpose rules, there are some spe
ial ones for par-ti
ular theories, des
ribed later. For example, ARITH RULE is useful for disposing oftrivial fa
ts of linear arithmeti
 over the natural numbers:#ARITH_RULE `x < y ==> 4 * x + 3 < 4 * y`;;it : thm = |- x < y ==> 4 * x + 3 < 4 * yAnother easy rule, TAUT, proves propositional tautologies automati
ally, e.g.#TAUT `p /\ q ==> p`;;it : thm = |- p /\ q ==> p#TAUT `(p ==> q) \/ (q ==> p)`;;it : thm = |- (p ==> q) \/ (q ==> p)
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Chapter 10Ta
ti
sRules give a way of performing proofs in a step-by-step, forward manner. Howeverit's often more 
onvenient to prove theorems in a ba
kwards fashion, starting withthe goal and redu
ing it to various subgoals until these 
an be solved. The ta
ti
me
hanism of HOL Light allows one to ta
kle proofs in a mixture of forward andba
kward steps. The user starts with a goal, whi
h is roughly speaking, the theorem(sequent) that is desired: a list of assumptions and a 
on
lusion.A ta
ti
 takes a goal and redu
es it to a list of subgoals. But it also keeps tra
k ofhow to 
onstru
t a proof of the main goal if the user su

eeds in proving the subgoal;this is simply an ML fun
tion. So the user 
an keep applying ta
ti
s, and the forwardproof is re
onstru
ted by HOL. It's rather as if the ma
hine automati
ally reversesthe user's proof and 
onverts it to the standard primitive inferen
es. The user 
anperform the proof via a mixture of forward and ba
kward steps, as desired.10.1 The goalsta
kProofs 
an be dis
overed intera
tively using the goal sta
k. This allows ta
ti
 stepsto be performed, and if ne
essary retra
ted and 
orre
ted. The user sets up aninitial goal using g, e.g.#g `p /\ q ==> p`;;it : goalsta
k = 1 subgoal (1 total)`p /\ q ==> p`It is then possible to apply a ta
ti
 to the 
urrent goal, e.g.#e DISCH_TAC;;it : goalsta
k = 1 subgoal (1 total)`p`0 [`p /\ q`℄If the user makes a mistake, b() ba
ks up to the previous level. The goal 
anbe �nished here by rewriting:#e(ASM_REWRITE_TAC[℄);;it : goalsta
k = No subgoalsThere are no subgoals; the proof is �nished. To make HOL generate the desiredtheorem, use top thm(): 81



82 CHAPTER 10. TACTICS#top_thm();;it : thm = |- p /\ q ==> pIf a ta
ti
 splits a goal into more than one subgoal, they are presented one at atime. When one subgoal is solved the next unsolved one is presented. For example:#g `p /\ q /\ r ==> q /\ p /\ r`;;it : goalsta
k = 1 subgoal (1 total)`p /\ q /\ r ==> q /\ p /\ r`#e DISCH_TAC;;it : goalsta
k = 1 subgoal (1 total)`q /\ p /\ r`0 [`p /\ q /\ r`℄#e CONJ_TAC;;it : goalsta
k = 2 subgoals (2 total)`p /\ r`0 [`p /\ q /\ r`℄`q`0 [`p /\ q /\ r`℄#e(ASM_REWRITE_TAC[℄);;it : goalsta
k = 1 subgoal (1 total)`p /\ r`0 [`p /\ q /\ r`℄#e CONJ_TAC;;it : goalsta
k = 2 subgoals (2 total)`r`0 [`p /\ q /\ r`℄`p`0 [`p /\ q /\ r`℄#e(ASM_REWRITE_TAC[℄);;it : goalsta
k = 1 subgoal (1 total)`r`0 [`p /\ q /\ r`℄#e(ASM_REWRITE_TAC[℄);;it : goalsta
k = No subgoalsE�e
tively, the user is always at a point in the fringe of the partial proof tree.The position 
an be rotated by n goals by doing r n.



10.2. BASIC TACTICS 8310.2 Basi
 ta
ti
sThe most basi
 ta
ti
s 
orrespond to the basi
 logi
al derived rules, but workingthe other way round. We have seen some of them above. For example, where CONJtakes two theorems and gives their 
onjun
tion, the ta
ti
 CONJ TAC breaks down a
onjun
tive goal and returns the two subgoals. Similarly DISJ1 TAC redu
es a goalwith 
on
lusion p _ q to one with 
on
lusion p, i.e. allows the user to de
ide toprove the �rst disjun
t. Again, DISCH TAC reverses the e�e
t of the rule DISCH, i.e.it redu
es a goal � `? p) q to � [ fpg `? q.Ta
ti
s are espe
ially useful for using rules like CHOOSE. If one has a theorem` 9x: p, then one 
an just put p into the assumptions of the goal using CHOOSE TAC.Thereafter, it is as if one had pi
ked some x su
h that p holds and 
an use it tosolve the goal; HOL handles the appropriate appli
ation of CHOOSE.The ta
ti
s MP TAC and MATCH MP are a bit tri
ker to understand, in that it'snot quite so 
lear how they amount to reversals of MP and MATCH MP. In fa
t theirbehaviour is quite di�erent, going well beyond one performing mat
hing and onenot. Given a goal with 
on
lusion q and a theorem that after mat
hing is of theform p) q, then MATCH MP TAC redu
es the goal to p. For example:#g `0 <= SUC n`;;it : goalsta
k = 1 subgoal (1 total)`0 <= SUC n`#e(MATCH_MP_TAC LT_IMP_LE);;it : goalsta
k = 1 subgoal (1 total)`0 < SUC n`MP TAC, on the other hand, simply pla
es the theorem as an ante
edent of thegoal:#g `0 <= SUC n`;;it : goalsta
k = 1 subgoal (1 total)`0 <= SUC n`#e(MP_TAC LT_IMP_LE);;it : goalsta
k = 1 subgoal (1 total)`(!m n. m < n ==> m <= n) ==> 0 <= SUC n`However this e�e
t 
an be quite useful, sin
e it's often more 
onvenient to dothings like rewrite on the 
on
lusion of a goal, rather than the assumptions.None of the ta
ti
s we have 
onsidered so far solves goals 
ompletely. The mostprimitive ta
ti
 that does is ACCEPT TAC, whi
h is used with a theorem with thesame 
on
lusion as the goal. A slightly more general version, MATCH ACCEPT TAC,will do some mat
hing, e.g.#g `x + 1 = 1 + x`;;it : goalsta
k = 1 subgoal (1 total)`x + 1 = 1 + x`#e(MATCH_ACCEPT_TAC ADD_SYM);;it : goalsta
k = No subgoalsAnother group of ta
ti
s 
an be 
reated from 
onversions, using CONV TAC. This
reates a ta
ti
 that applies the given 
onversion to the goal, e.g.



84 CHAPTER 10. TACTICS#g `(\x. x + 1) 2 = 3`;;it : goalsta
k = 1 subgoal (1 total)`(\x. x + 1) 2 = 3`#e(CONV_TAC(ONCE_DEPTH_CONV BETA_CONV));;it : goalsta
k = 1 subgoal (1 total)`2 + 1 = 3`If the 
onversion transforms the goal to T, the ta
ti
 me
hanism a

epts that assolving the goal, rather than presenting T as the subgoal, e.g.#g `2 + 1 = 3`;;it : goalsta
k = 1 subgoal (1 total)`2 + 1 = 3`#e(CONV_TAC NUM_REDUCE_CONV);;it : goalsta
k = No subgoalsThe rewriting 
onversions are also all used as ta
ti
s, e.g. REWRITE TAC. Thesame names pre�xed with ASM also use the assumptions of the 
urrent goal asrewrites.10.3 Ta
ti
alsJust as basi
 
onversions are built up into 
omposite ones by 
onversionals, sota
ti
s are built up via ta
ti
als. For example the in�x THEN exe
utes two ta
ti
s insequen
e. On
e a proof has been found using the subgoal me
hanism, it's 
ommonto plug all the steps into one ta
ti
 using THEN, e.g.#g `!m n p. m * (n + p) = (m * n) + (m * p)`;;it : goalsta
k = 1 subgoal (1 total)`!m n p. m * (n + p) = m * n + m * p`#e(GEN_TAC THENINDUCT_TAC THENASM_REWRITE_TAC[ADD; MULT_CLAUSES; ADD_ASSOC℄);;it : goalsta
k = No subgoalsIf the �rst ta
ti
 sequen
ed by THEN generates more than one subgoal, then these
ond ta
ti
 is applied to all of them. If di�erent ta
ti
s are used for ea
h subgoal,they 
an be put into a list and sequen
ed using THENL, e.g.#g `p ==> p /\ (1 = 1)`;;it : goalsta
k = 1 subgoal (1 total)`p ==> p /\ (1 = 1)`#e(DISCH_TAC THENCONJ_TAC THENL[ASM_REWRITE_TAC[℄;ACCEPT_TAC (REFL `1`)℄);;it : goalsta
k = No subgoalsTa
ti
s 
an be exe
uted repeatedly by REPEAT, and there are various other usefulta
ti
als.



10.4. DEALING WITH ASSUMPTIONS 85If one uses THEN to 
ompress a proof into a single large ta
ti
, then one mightas well dispense with the goal sta
k 
ompletely. One 
an simple get the theorem byapplying prove to the goal and the ta
ti
, e.g.let LTE_ADD2 = prove(`!m n p q. m < p /\ n <= q ==> m + n < p + q`,ONCE_REWRITE_TAC[ADD_SYM; CONJ_SYM℄ THENMATCH_ACCEPT_TAC LET_ADD2);;10.4 Dealing with assumptionsVarious ta
ti
s like DISCH TAC push parts of the goal onto the assumption list. You
an put any theorem there yourself using ASSUME TAC. The problem then arises ofidentifying a parti
ular assumption when it is needed. Often it is not ne
essary, butwhen required there are several alternatives. One 
an design a ta
ti
 that will su
-
eed only on the desired assumption, and use FIRST ASSUM. For example the ta
ti
SUBST1 TAC expe
ts and equational theorem as an argument and substitutes in thegoal, so if there is only one equational assumption, FIRST ASSUM SUBST1 TAC willuse it. Alternatively, one 
an expli
itly re
reate the assumption as a theorem usingASSUME. Finally, it is possible to label things when putting them on the assumptionsusing LABEL TAC instead of ASSUME TAC. The appropriate assumption 
an then beused with USE ASSUM.10.5 Model eliminationAlthough proofs often need theory-spe
i�
 reasoning tools, e.g. linear arithmeti
,quite a lot of small parts of proofs 
an be �nished o� by a prover for pure logi
.HOL Light provides a ta
ti
 MESON TAC that 
an dispose of a lot of simple �rst orderreasoning. It also has a limited ability to do higher order and equality reasoning.This prover is based on the Prolog Te
hnology Theorem Prover (Sti
kel 1988),an implementation of model elimination (Loveland 1968). Su
h systems work byredu
ing to 
lausal form and then further to a set of pseudo-Horn 
lauses that 
anbe used for Prolog-style ba
kward sear
h. The default sear
h mode is one of ourown invention | see (Harrison 1996) for more details and a 
omparison with otherte
hniques. Here are a few examples of the HOL ta
ti
 in a
tion:#let LOS = prove(`(!x y z. P x y /\ P y z ==> P x z) /\(!x y z. Q x y /\ Q y z ==> Q x z) /\(!x y. P x y ==> P y x) /\(!(x:A) y. P x y \/ Q x y)==> (!x y. P x y) \/ (!x y. Q x y)`,MESON_TAC[℄);;LOS : thm =|- (!x y z. P x y /\ P y z ==> P x z) /\(!x y z. Q x y /\ Q y z ==> Q x z) /\(!x y. P x y ==> P y x) /\(!x y. P x y \/ Q x y)==> (!x y. P x y) \/ (!x y. Q x y)and11See message from Wishnu Prasetya to the info-hol mailing list on 18 O
tober 1993, availableon the Web as http://lal.
s.byu.edu/lal/holdo
/info-hol/15xx/1515.html.



86 CHAPTER 10. TACTICS#let WISHNU = prove(`(?!x. x=f(g x)) = (?!y. y=g(f y))`,MESON_TAC[℄);;WISHNU : thm = |- (?!x. x = f (g x)) = (?!y. y = g (f y))The ta
ti
 a

epts a list of theorems to use in the proof. ASM MESON TAC alsouses the assumptions of the goal.



Chapter 11Prin
iples of de�nitionHOL's basi
 prin
iples of de�nition are often quite in
onvenient to use. The fun
tionnew definition is extended quite soon to permit de�nitions of fun
tions with thearguments on the left, in
luding pairs and tuples of arguments:#let fun
 = new_definition`fun
 f x = f(x + 1) - 1`;;fun
 : thm = |- !f x. fun
 f x = f (x + 1) - 1#let add3 = new_definition`add3(x,y,z) = x + y + z`;;add3 : thm = |- !x y z. add3 (x,y,z) = x + y + zIt's often 
onvenient to make de�nitions re
ursively. HOL has some limited sup-port for so-
alled primitive re
ursive de�nitions, whi
h we examine below. Generalre
ursive fun
tions 
an be de�ned using some of the theorems in the theory of well-foundedness des
ribed below, but HOL Light doesn't provide any handy fun
tionsfor doing it elegantly. So one 
an't write down re
ursive fun
tions with the abandonthat one 
an in ML. This is inevitable to some extent, sin
e all HOL fun
tions aretotal and in general re
ursive de�nition s
hemes do not give well-de�ned or uniquetotal fun
tions. For example f(n) = f(n) + 1 has no solution, and neither (at leastfor fun
tions N ! N ) does f(n) = f(n+ 1) + 1, whereas f(n) = f(n � 1) + 1 hasmany possible solutions.11.1 Indu
tive de�nitionsWhat HOL does support in a more 
onvenient way is the de�nition of indu
tive pred-i
ates (or sets). Indu
tive de�nitions are very 
ommon in mathemati
s, espe
iallyin the de�nition of formal languages used in mathemati
al logi
 and programminglanguage semanti
s. Camilleri and Melham (1992) give some illustrative examples.Examples 
rop up in other parts of mathemati
s too, e.g. the de�nition of the Borelhierar
hy of subsets of R. A detailed dis
ussion, from an advan
ed point of view, isgiven by A
zel (1991).Indu
tive de�nitions de�ne a set S by means of a set of rules of the form `if. . . then t 2 S', where the hypothesis of the rule may make assertions about mem-bership in S. These rules are 
ustomarily written with a horizontal line separatingthe hypotheses (if any) from the 
on
lusion. For example, the set of even numbersE might be de�ned as a subset of the reals by:0 2 E87



88 CHAPTER 11. PRINCIPLES OF DEFINITIONn 2 E(n+ 2) 2 ERead literally, su
h a de�nition merely pla
es some 
onstraints on the set E,asserting its `
losure' under the rules, and does not, in general, determine it uniquely.For example, the set of even numbers satis�es the above, but so does the set ofnatural numbers, the set of integers, the set of rational numbers and even the thewhole set of real numbers! But impli
it in writing a de�nition like this is that Eis the least set whi
h is 
losed under the rules. It is when understood in this sensethat the above de�nes the even numbers.This 
onvention, however, needs to be justi�ed by showing that there is a leastset 
losed under the rules. A good try is to 
onsider the set of all sets whi
hare 
losed under the rules, and take their interse
tion. If only we knew that thisinterse
tion was 
losed under the rules, then it would 
ertainly be the least su
hset. But in general we don't know that, as the following example illustrates:n 62 En 2 EThere are no sets at all 
losed under this rule! However it turns out that a simplesynta
ti
 restri
tion on the rules is enough to guarantee that the interse
tion is
losed under the rules. Crudely speaking, the hypotheses must make only `positive'assertions about membership in S. To state this pre
isely, observe that we 
an
olle
t together all the rules in a single assertion of the form:8x: P [S; x℄) x 2 SThe following example for the even numbers should be a suitable paradigm toindi
ate how: 8n: (n = 0 _ 9m: n = m+ 2 ^m 2 E)) n 2 EIf we make the abbreviation f(S) = fx j P [S; x℄g the assertion 
an be writtenf(S) � S. Our earlier plan was to take the interse
tion of all subsets S whi
hhave this property, and hope that the interse
tion too is 
losed under the rules.A suÆ
ient 
ondition for this is given in the following �xpoint theorem due toKnaster (1927) and Tarski (1955) (whi
h holds for an arbitrary 
omplete latti
e):if f : }(X)! }(X) is monotone, i.e. for any S � X and T � XS � T ) f(S) � f(T )then if we de�ne F =\fS � X j f(S) � Sgnot only is f(F ) � F but F is a
tually a �xpoint of f , i.e. f(F ) = F . HOL Light
an take an indu
tive de�nition and generally manage to prove monotoni
ity foritself, providing the user with three useful theorems. The �rst says that the de�nedset is 
losed under the rules, the se
ond that it is the least set 
losed under therules, and the third gives a 
ase analysis theorem saying that everything in the setis generated by applying the rules to something else in the set. For example, we
an de�ne �niteness of sets (or, viewed as a set, the set of all �nite sets) as follows:



11.2. FREE RECURSIVE TYPES 89#let finite_RULES,finite_INDUCT,finite_CASES =new_indu
tive_definition`finite {} /\!x s. finite s ==> finite (x INSERT s)`;;Warning: inventing type variablesfinite_RULES : thm =|- finite EMPTY /\ (!x s. finite s ==> finite (x INSERT s))finite_INDUCT : thm =|- !finite'. finite' EMPTY /\ (!x s. finite' s ==> finite' (x INSERT s))==> (!a. finite a ==> finite' a)finite_CASES : thm =|- !a. finite a = (a = EMPTY) \/ (?x s. (a = x INSERT s) /\ finite s)HOL Light allows the user to de�ne mutually indu
tive relations. For examplehere are predi
ates for evenness and oddity:#let even_odd_RULES,even_odd_INDUCT,even_odd_CASES =new_indu
tive_definition`even 0 /\(!n. even(n) ==> odd(n + 1)) /\(!n. odd(n) ==> even(n + 1))`;;even_odd_RULES : thm =|- even 0 /\ (!n. even n ==> odd (n + 1)) /\ (!n. odd n ==> even (n + 1))even_odd_INDUCT : thm =|- !odd' even'.even' 0 /\(!n. even' n ==> odd' (n + 1)) /\(!n. odd' n ==> even' (n + 1))==> (!a0. odd a0 ==> odd' a0) /\ (!a1. even a1 ==> even' a1)even_odd_CASES : thm =|- (!a0. odd a0 = (?n. (a0 = n + 1) /\ even n)) /\(!a1. even a1 = (a1 = 0) \/ (?n. (a1 = n + 1) /\ odd n))The indu
tion theorem 
an be applied 
onveniently during ba
kward proof usingthe ta
ti
al RULE INDUCT THEN, or in simple 
ases just with MATCH MP TAC.11.2 Free re
ursive typesHOL Light's primitive type de�nition fa
ility is rather awkward to work with. Oneof the most useful, and 
ompli
ated, derived rules in HOL Light allows one to de�nere
ursive types mu
h as in CAML, even using a similar syntax. There are somerestri
tions; for example a fun
tion spa
e involving the type being de�ned 
annot beused. However types 
an be de�ned mutually re
ursively and 
an involve instan
esof previously de�ned type 
onstru
tors. The primitive fun
tion is define type, andit always returns two theorems, the �rst a kind of indu
tion theorem for the newtype, the se
ond a justi�
ation of de�nition by primitive re
ursion. For example we
an de�ne binary trees:



90 CHAPTER 11. PRINCIPLES OF DEFINITION#let btree_INDUCT,btree_RECURSION = define_type"btree = Leaf A| Bran
h btree btree";;btree_INDUCT : thm =|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Bran
h a0 a1))==> (!x. P x)btree_RECURSION : thm =|- !f0 f1.?fn. (!a. fn (Leaf a) = f0 a) /\(!a0 a1. fn (Bran
h a0 a1) = f1 a0 a1 (fn a0) (fn a1))This de�nes a new type 
onstru
tor (A)btree, sin
e the de�nition 
ontained afree type variable A. The re
ursion theorem 
an be used later to de�ne fun
tionsby `primitive re
ursion', i.e. de�ning a fun
tion on a type 
onstru
tor in terms ofthe fun
tion on its arguments. For example here are fun
tions to re
e
t a tree, i.e.swap left and right subtrees, and add up all the integers in an (int)btree:#let refle
t = new_re
ursive_definition btree_RECURSION`(refle
t(Leaf x) = Leaf x) /\(refle
t(Bran
h t1 t2) = Bran
h (refle
t t2) (refle
t t1))`;;Warning: inventing type variablesrefle
t : thm =|- (refle
t (Leaf x) = Leaf x) /\(refle
t (Bran
h t1 t2) = Bran
h (refle
t t2) (refle
t t1))#let addup = new_re
ursive_definition btree_RECURSION`(addup (Leaf n) = n) /\(addup (Bran
h t1 t2) = addup t1 + addup t2)`;;addup : thm =|- (addup (Leaf n) = n) /\ (addup (Bran
h t1 t2) = addup t1 + addup t2)The indu
tion theorem 
an be used to prove theorems about obje
ts of the newtype. In simple 
ases one 
an just use MATCH MP TAC; for example:#let ADDUP_REFLECT = prove(`!t. addup(refle
t t) = addup t`,MATCH_MP_TAC btree_INDUCT THENSIMP_TAC[addup; refle
t; ADD_AC℄);;ADDUP_REFLECT : thm = |- !t. addup (refle
t t) = addup tHaving de�ned a type 
onstru
tor like btree, it 
an itself be used in the de�ni-tion of new types. For example HOL Light already has a type of lists de�ned usingthe de�nition list = NIL | CONS A list, and we 
an 
reate a type of �nitely-bran
hing trees like this:



11.2. FREE RECURSIVE TYPES 91#let xtree_INDUCTION,xtree_RECURSION = define_type"xtree = Lf A| Br (xtree list)";;xtree_INDUCTION : thm =|- !P0 P1.(!a. P0 (Lf a)) /\(!a. P1 a ==> P0 (Br a)) /\P1 [℄ /\(!a0 a1. P0 a0 /\ P1 a1 ==> P1 (CONS a0 a1))==> (!x0. P0 x0) /\ (!x1. P1 x1)xtree_RECURSION : thm =|- !f0 f1 f2 f3.?fn0 fn1.(!a. fn1 (Lf a) = f0 a) /\(!a. fn1 (Br a) = f1 a (fn0 a)) /\(fn0 [℄ = f2) /\(!a0 a1. fn0 (CONS a0 a1) = f3 a0 a1 (fn1 a0) (fn0 a1))The indu
tion and re
ursion theorems are as if the list 
onstru
tor had beende�ned mutually re
ursively, but it uses the standard type of lists.



92 CHAPTER 11. PRINCIPLES OF DEFINITION



Chapter 12Mathemati
al theoriesTo prove theorems in HOL Light, one needs a reasonable grasp of the theoremproving infrastru
ture. But equally important is knowing what has already beenproved, and what the theorem one is after has been 
alled. The following is not anexhaustive list, but gives some of the main theorems, grouped a

ording to subje
tarea. The following gives only a general overview; the reader should browse thesour
e �les to be
ome more familiar with what is available.12.1 PairsThere is a type 
onstru
tor prod that 
onstru
ts Cartesian produ
t types. In the
on
rete syntax of the type parser it is written as #. For example num # num isthe type of pairs of natural numbers. Larger tuples 
an be built by iterating thepairing operation; the type 
onstru
tor and the term fun
tion that 
onstru
ts pairs(the in�x 
omma) are both right asso
iative. Destru
tors FST and SND are de�ned.Some of the main theorems about pairs are:PAIR_EQ = |- !x y a b. (x,y = a,b) = (x = a) /\ (y = b)PAIR_SURJECTIVE = |- !p. ?x y. p = x,yFST = |- !x y. FST (x,y) = xSND = |- !x y. SND (x,y) = yPAIR = |- !x. FST x,SND x = xpair_INDUCT = |- (!x y. P (x,y)) ==> (!p. P p)pair_RECURSION = |- !PAIR'. ?fn. !a0 a1. fn (a0,a1) = PAIR' a0 a1The last two are 
hosen as if pairs had been de�ned as a re
ursive type, thoughin fa
t they logi
ally pre
ede other re
ursive types.12.2 Natural numbersThe type of natural numbers is 
arved out, using an indu
tive de�nition, from thein�nite type ind. The Peano axioms are derived from the de�nition and the axiomsof in�nity. As with pairs, two theorems mimi
 those resulting from re
ursive typede�nitions, allowing proofs by indu
tion and de�nitions by primitive re
ursion:93



94 CHAPTER 12. MATHEMATICAL THEORIESnum_INDUCTION = |- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)num_RECURSION = |- !e f. ?fn. (fn 0 = e) /\ (!n. fn (SUC n) = f (fn n) n)The latter is used to de�ne most of the arithmeti
 operations, in
luding the
omparisons:ADD = |- (!n. 0 + n = n) /\ (!m n. SUC m + n = SUC (m + n))MULT = |- (!n. 0 * n = 0) /\ (!m n. SUC m * n = m * n + n)EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP SUC n = m * m EXP n)LE = |- (!m. m <= 0 = m = 0) /\(!m n. m <= SUC n = (m = SUC n) \/ m <= n)LT = |- (!m. m < 0 = F) /\ (!m n. m < SUC n = (m = n) \/ m < n)EVEN = |- (EVEN 0 = T) /\ (!n. EVEN (SUC n) = ~EVEN n)ODD = |- (ODD 0 = F) /\ (!n. ODD (SUC n) = ~ODD n)Numerals are prettyprinted forms of an internal binary representation using two
onstants:BIT0 = |- BIT0 n = n + nBIT1 = |- BIT1 n = SUC(n + n)The rather arti�
ial de�nition of the se
ond is be
ause multipli
ation (whi
huses numeral 1 in its de�nition) has not yet been de�ned. Now these 
onstants aresuÆ
ient to express any number in binary. For example, we implement 37 as:NUMERAL (BIT1 (BIT0 (BIT1 (BIT0 (BIT0 (BIT1 _0))))))The reader may wonder why we use the 
onstant NUMERAL at all, instead of justusing BIT0, BIT1 and 0. The reason is that in that 
ase one number be
omes asubterm of another (e.g. 1 is a subterm of 2), whi
h 
an lead to some surprising a

i-dental rewrites. Besides, the NUMERAL 
onstant is a useful tag for the prettyprinter.The parser and printer transformations established, the theory of natural num-bers 
an now be developed as usual. Most of the arithmeti
 operations are de�nedby primitive re
ursion, indi
ating a simple evaluation strategy for unary notation.For example one 
an evaluate 3 + 5 as follows:3 + 5SUC 2 + 5SUC (2 + 5)SUC (SUC 1 + 5)SUC (SUC (1 + 5))SUC (SUC (SUC 0 + 5)))SUC (SUC (SUC (0 + 5)))SUC (SUC (SUC 5))SUC (SUC 6)SUC 78



12.3. LISTS 95But many of them have an almost equally dire
t strategy in terms of our binarynotation.1 For example the following theorems, easily proved, 
an be used dire
tlyas rewrite rules to perform arithmeti
 evaluation.|- (!n. SUC (NUMERAL n) = NUMERAL (SUC n)) /\(SUC _0 = BIT1 _0) /\(!n. SUC (BIT0 n) = BIT1 n) /\(!n. SUC (BIT1 n) = BIT0 (SUC n))or|- (!m n. (NUMERAL m = NUMERAL n) = (m = n)) /\((_0 = _0) = T) /\(!n. (BIT0 n = _0) = (n = _0)) /\(!n. (BIT1 n = _0) = F) /\(!n. (_0 = BIT0 n) = (_0 = n)) /\(!n. (_0 = BIT1 n) = F) /\(!m n. (BIT0 m = BIT0 n) = (m = n)) /\(!m n. (BIT0 m = BIT1 n) = F) /\(!m n. (BIT1 m = BIT0 n) = F) /\(!m n. (BIT1 m = BIT1 n) = (m = n))Most arithmeti
 operations 
an be implemented as a set of rewrite rules likethe above, and applied using the standard rewriting me
hanism. A suite of su
hrewrites is 
olle
ted together into a single rewrite rule ARITH that will evaluate mostground expressions using just the standard rewriting me
hanism. For example:#let 
onv = PURE_REWRITE_CONV[ARITH℄;;
onv : 
onv = <fun>#
onv `12345 * 12345`;;it : thm = |- 12345 * 12345 = 152399025However, a few operations are hard to evaluate eÆ
iently with the standardrewriting me
hanism; even ARITH_SUB is a bit ineÆ
ient, sin
e the same 
onditionis tested repeatedly. Therefore we also provide a full suite of 
onversions, and 
olle
tthem together as NUM RED CONV and NUM REDUCE CONV.12.3 ListsA HOL re
ursive type of lists is de�ned, and various standard list 
ombinatorsde�ned by re
ursion. These often have the same names as their CAML 
ounterparts,but in upper 
ase.HD = |- HD (CONS h t) = hTL = |- TL (CONS h t) = tAPPEND =|- (!l. APPEND [℄ l = l) /\(!h t l. APPEND (CONS h t) l = CONS h (APPEND t l))1Another ni
e example, though we don't a
tually implement it, is the GCD fun
tion. Knuth(1969) gives a simple algorithm based on g
d(2m; 2n) = 2g
d(m; n), g
d(2m + 1; 2n) = g
d(2m +1; n) and g
d(2m+1; 2n+1) = g
d(m�n; 2n+1). This outperforms Eu
lid's method on ma
hineswhere bitwise operations are relatively eÆ
ient; our in-logi
 implementation would surely exhibitthe same 
hara
teristi
s even if our `bits' are rather large!



96 CHAPTER 12. MATHEMATICAL THEORIESREVERSE =|- (REVERSE [℄ = [℄) /\ (REVERSE (CONS x l) = APPEND (REVERSE l) [x℄)LENGTH =|- (LENGTH [℄ = 0) /\ (!h t. LENGTH (CONS h t) = SUC (LENGTH t))MAP = |- (!f. MAP f [℄ = [℄) /\(!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t))LAST = |- LAST (CONS h t) = (if t = [℄ then h else LAST t)REPLICATE = |- (REPLICATE 0 x = [℄) /\(REPLICATE (SUC n) x = CONS x (REPLICATE n x))NULL = |- (NULL [℄ = T) /\ (NULL (CONS h t) = F)FORALL = |- (FORALL P [℄ = T) /\(FORALL P (CONS h t) = P h /\ FORALL P t)EX = |- (EX P [℄ = F) /\ (EX P (CONS h t) = P h \/ EX P t)ITLIST =|- (ITLIST f [℄ b = b) /\ (ITLIST f (CONS h t) b = f h (ITLIST f t b))MEM = |- (MEM x [℄ = F) /\ (MEM x (CONS h t) = (x = h) \/ MEM x t)A somewhat ad ho
 
olle
tion of fa
ts about these fun
tions is 
olle
ted, forexample:APPEND_ASSOC = |- !l m n. APPEND l (APPEND m n) = APPEND (APPEND l m) nLENGTH_APPEND = |- !l m. LENGTH (APPEND l m) = LENGTH l + LENGTH mLENGTH_MAP = |- !l f. LENGTH (MAP f l) = LENGTH lREVERSE_REVERSE = |- !l. REVERSE (REVERSE l) = lMAP_o = |- !f g l. MAP (g o f) l = MAP g (MAP f l)NOT_EX = |- !P l. ~EX P l = FORALL (\x. ~P x) l12.4 Well-founded relationsWellfoundedness of a binary relation 
an be expressed in many equivalent ways.HOL Light in
ludes a de�nition of wellfoundedness and a proof that it equivalentto several other important properties, like the admissibility of 
omplete indu
tionand wellfounded re
ursion. For example, the last theorem below, whi
h also has a
onverse, says that one 
an de�ne re
ursive fun
tions provided the value of f(x) isde�ned in terms of f(y) for y below x in the wellfounded ordering.WF =|- WF (<<) = (!P. (?x. P x) ==> (?x. P x /\ (!y. y << x ==> ~P y)))



12.5. REAL NUMBERS 97WF_IND =|- WF (<<) = (!P. (!x. (!y. y << x ==> P y) ==> P x) ==> (!x. P x))WF_DCHAIN = |- WF (<<) = ~(?s. !n. s (SUC n) << s n)WF_REC =|- WF (<<)==> (!H. (!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x))==> (?f. !x. f x = H f x))12.5 Real numbersHOL Light 
onstru
ts the real numbers and then proves various properties of them.Algebrai
 trivialities in
lude:REAL_OF_NUM_SUB : thm = |- !m n. m <= n ==> (&n - &m = &(n - m))REAL_ADD_RID : thm = |- !x. x + &0 = xREAL_LT_IMP_LE : thm = |- !x y. x < y ==> x <= yREAL_LT_LADD_IMP : thm = |- !x y z. y < z ==> x + y < x + zREAL_LT_LNEG : thm = |- !x y. -- x < y = &0 < x + yREAL_ABS_TRIANGLE : thm = |- !x y. abs (x + y) <= abs x + abs yREAL_ABS_MUL : thm = |- !x y. abs (x * y) = abs x * abs yREAL_INV_MUL : thm = |- !x y. inv (x * y) = inv x * inv yNote that the inverse is de�ned with 0�1 = 0. Most theorems not involvingmultipli
ation 
an be proved automati
ally using REAL ARITH or the ta
ti
 formREAL ARITH TAC:#REAL_ARITH `abs(x) < y ==> x < y`;;it : thm = |- abs x < y ==> x < yThe key higher-order property of the reals asserts that any nonempty boundedset of reals has a least upper bound:#REAL_COMPLETE;;it : thm =|- !P. (?x. P x) /\ (?M. !x. P x ==> x <= M)==> (?M. (!x. P x ==> x <= M) /\(!M'. (!x. P x ==> x <= M') ==> M <= M'))There is not mu
h real analysis in the basi
 system, but there is a reasonabledevelopment in
luded with the examples.12.6 IntegersA theory of integers is also available, with theorems named by analogy with thereals, e.g. INT LT IMP LE rather than REAL LT IMP LE. Similarly, there is a de
isionpro
edure for linear integer arithmeti
 
alled INT ARITH.



98 CHAPTER 12. MATHEMATICAL THEORIES12.7 SetsSets in HOL Light are just predi
ates, but the usual set operations are de�ned:EMPTY = |- EMPTY = (\x. F)UNIV = |- UNIV = (\x. T)UNION = |- !s t. s UNION t = {x | x IN s \/ x IN t}UNIONS = |- !s. UNIONS s = {x | ?u. u IN s /\ x IN u}INTER = |- !s t. s INTER t = {x | x IN s /\ x IN t}INTERS = |- !s. INTERS s = {x | !u. u IN s ==> x IN u}DIFF = |- !s t. s DIFF t = {x | x IN s /\ ~(x IN t)}INSERT = |- x INSERT s = {y | y IN s \/ (y = x)}DELETE = |- !s x. s DELETE x = {y | y IN s /\ ~(y = x)}SUBSET = |- !s t. s SUBSET t = (!x. x IN s ==> x IN t)PSUBSET = |- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t)DISJOINT = |- !s t. DISJOINT s t = s INTER t = EMPTYThe parser and printer support set enumerations and set abstra
tions. Triv-ial fa
ts of set theory, whi
h are just liftings of �rst order fa
ts, 
an be provedautomati
ally in a ta
ti
 framework using SET TAC, e.g.#prove(`x INSERT (s UNION t) = (x INSERT s) UNION (x INSERT t)`,SET_TAC[℄);;it : thm = |- x INSERT (s UNION t) = x INSERT s UNION x INSERT tThere are quite a lot of su
h theorems pre-proved. Some more interesting pre-proved theorems 
on
ern the �niteness and 
ardinality of sets, and in general thede�nition of fun
tion over �nite sets by re
ursion:CARD_CLAUSES =|- (CARD EMPTY = 0) /\(!x s.FINITE s==> (CARD (x INSERT s) =if x IN s then CARD s else SUC (CARD s)))HAS_SIZE = |- !s n. s HAS_SIZE n = FINITE s /\ (CARD s = n)CARD_SUBSET_LE =|- !a b. FINITE b /\ a SUBSET b /\ CARD b <= CARD a ==> (a = b)FINITE_RECURSION =|- !f b.(!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))



12.7. SETS 99==> (ITSET f EMPTY b = b) /\(!x s.FINITE s==> (ITSET f (x INSERT s) b =if x IN s then ITSET f s b else f x (ITSET f s b)))
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Chapter 13ExamplesA few examples are in
luded in Examples dire
tory. These just give some indi
ationof how the system 
an be used. They aren't held up as parti
ularly good examplesexploiting HOL Light's fa
ilities; indeed many of them are 
rudely ported fromolder versions of HOL. A few of them might be useful to some readers, but they aregenerally not polished or do
umented.� analysis.ml is a development of elementary real analysis, e.g. sequen
es,series, limits, 
ontinuity, di�erentiation and integration.� lagrange.ml shows how to prove some numeri
al identities using orderedrewriting and/or de
ision pro
edures.� mizar.ml is a system for writing HOL proofs in a more readable de
larativestyle based on Trybule
's Mizar system (Rudni
ki 1992).� prog.ml is a simple embedding of the semanti
s of a toy imperative program-ming language, derivation of weakest pre
onditions and Floyd-Hoare rules,and a ta
ti
 that performs veri�
ation 
ondition generation on an annotatedprogram.� re
types.ml de�nes a wide variety of (mutual, nested) re
ursive types.� redu
t.ml de�nes some basi
 notions for redu
tions, e.g. 
on
uen
e, nor-malization, and proves a few theorems like Newman's Lemma. It requiresrst
.ml to have been loaded �rst.� rst
.ml de�nes various 
ombinations of re
exive, symmetri
 and transitive
losures of binary relations, and proves a 
omprehensive set of theorems aboutthem.� trans
.ml de�nes and proves properties of the elementary trans
endentalfun
tions like exp, sin and ln. It requires analysis.ml to have been loaded�rst.� wo.ml proves some important version of the Axiom of Choi
e, e.g. the wellorder-ing prin
iple and Zorn's Lemma.
101
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Appendix ACompatibility with otherHOLsHere is a brief list of some of the major in
ompatibilities with other versions ofHOL:� CAML, the underlying ML is di�erent from previous HOL versions, some-where between `Classi
 ML' and Standard ML.� There is no theory me
hanism; every theorem is just bound to an ML name.It is possible to save and load theorems via CAML primitives, but this isnot re
ommended sin
e it subverts the usual me
hanisms for 
onstru
tingelements of the thm type.� Parsing status is orthogonal to whether an identi�er is a 
onstant or a variable.Parsing status is not indi
ated at the time 
onstants are de�ned. To suppressspe
ial parse status, HOL Light requires the identi�er to be put in parentheseslike (+), whereas other HOL versions use $+.� Higher order mat
hing is applied pervasively throughout the system, and insome 
ases this 
an lead to a di�erent result from a �rst order mat
h evenwhen both su

eed.� All permutative rewrite rules are automati
ally ordered by the rewriting fun
-tions.� Operator overloading is permitted in the surfa
e syntax. There are howeverstill some limitations on overloading of polymorphi
 operators. The interfa
emap feature in previous HOLs has been abolished and operator overloadingis used instead.� De
ision pro
edures for linear arithmeti
 are available for integers and realsas well as naturals.� A 
omprehensive theory of wellfounded relations is provided, but no tools forautomating general re
ursive de�nitions.� The resolution ta
ti
s have been removed, or more a

urately repla
ed bytrivial ones that do not attempt multiple 
haining.� Goals have theorems as assumptions, rather than terms to be assumed. Theta
ti
 me
hanism allows the use of instantiable metavariables, and assump-tions may be labelled with names. The internal type of ta
ti
s has 
hangedto re
e
t these 
hanges. 103



104 APPENDIX A. COMPATIBILITY WITH OTHER HOLS� The names of many theorems, espe
ially about natural numbers, are di�erent.Some of the operations on natural numbers are de�ned di�erently.� Various fa
ilities are in the 
ore system rather than loadable libraries, e.g. tau-tology 
he
king, higher order mat
hing, �rst order reasoning, quotient types,integers, reals and nested re
ursive types.� The axiomatization of the logi
 is simpler and all `derived rules' are genuinelyderived. There is no separate boolean 
ases axiom, sin
e it follows from theaxiom of 
hoi
e.� The preferred 
on
rete syntax for 
onditional expressions is `if . . . then . . . else. . . ', although the old HOL syntax is still a

epted.� The internal en
odings of paired abstra
tions and let-terms are di�erent. Theformer is an instan
e of a more general method of allowing abstra
tions overarbitrary expressions.� The term syntax uses a name-
arrying representation like HOL88, rather thana de Bruijn representation as in hol90. It was felt that this would be moreeÆ
ient on average, even if it makes a 
ouple of primitive term operations likesubstitution tri
ky to get right.Despite the above, readers familiar with older HOLs should �nd the systemreasonably familiar. Many of the di�eren
es do not greatly a�e
t day-to-day use ofthe system.
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