
Introduction to EPIGRAM
or: how to turn a proof assistant into an IDE for programs

James McKinna
based on joint work with

Conor McBride

Foundations/Intelligent Systems, Radboud Universiteit Nijmegen

“Proof Assistants” presentations, Nijmegen 2010-06-09



problems-as-types

“Curry-Howard-de Bruijn”: proofs of a proposition yield
computations of associated data
but for us. . .

(certified) programming is
interactive,
type-directed,
problem solving



problems-as-types

“Curry-Howard-de Bruijn”: proofs of a proposition yield
computations of associated data
but for us. . .

(certified) programming is
interactive,
type-directed,
problem solving



problems-as-types

“Curry-Howard-de Bruijn”: proofs of a proposition yield
computations of associated data
but for us. . .

(certified) programming is
interactive,
type-directed,
problem solving



past

I LEGO (1987–1999): proof checker for Calculus of
Constructions; inductive types only added as primitive
1992; script (tactic) based interaction, leading to
ProofGeneral; not tactical language;

I COQ (1985–present): proof checker for Calculus of
Constructions; inductive types only added as primitive
1992; script (tactic) based interaction, leading to CoqIDE;
tactical language Ltac added 1999

I ALF (???–???): superseded by Agda(2) (2001–present);
direct editing of proof-terms,
context-sensitive/type-directed



past/present

I I OLEG (McBride, 1995–2000): to do (dependently-typed)
programming in LEGO is a pain: tactics don’t let you see
the term being constructed;

I tactics for: declaring a new function definition
I applying primitive recursors and case analysis
I solving open leaf ‘problem’s

I EPIGRAM (1) (McBride, McKinna, 2000–2004):
“problems-as-types”

I programming problems become (labelled) types
I OLEG tactics become primitives
I case analysis and recursion become programmable

“An ALF-like editor with extensible pattern matching”
I The View from the Left, journal paper (2004) describing

how to translate back to type theory, motivation, examples
etc.



past/present

I I OLEG (McBride, 1995–2000): to do (dependently-typed)
programming in LEGO is a pain: tactics don’t let you see
the term being constructed;

I tactics for: declaring a new function definition
I applying primitive recursors and case analysis
I solving open leaf ‘problem’s

I EPIGRAM (1) (McBride, McKinna, 2000–2004):
“problems-as-types”

I programming problems become (labelled) types
I OLEG tactics become primitives
I case analysis and recursion become programmable

“An ALF-like editor with extensible pattern matching”
I The View from the Left, journal paper (2004) describing

how to translate back to type theory, motivation, examples
etc.



past/present

I I OLEG (McBride, 1995–2000): to do (dependently-typed)
programming in LEGO is a pain: tactics don’t let you see
the term being constructed;

I tactics for: declaring a new function definition
I applying primitive recursors and case analysis
I solving open leaf ‘problem’s

I EPIGRAM (1) (McBride, McKinna, 2000–2004):
“problems-as-types”

I programming problems become (labelled) types
I OLEG tactics become primitives
I case analysis and recursion become programmable

“An ALF-like editor with extensible pattern matching”
I The View from the Left, journal paper (2004) describing

how to translate back to type theory, motivation, examples
etc.



past/present

I I OLEG (McBride, 1995–2000): to do (dependently-typed)
programming in LEGO is a pain: tactics don’t let you see
the term being constructed;

I tactics for: declaring a new function definition
I applying primitive recursors and case analysis
I solving open leaf ‘problem’s

I EPIGRAM (1) (McBride, McKinna, 2000–2004):
“problems-as-types”

I programming problems become (labelled) types
I OLEG tactics become primitives
I case analysis and recursion become programmable

“An ALF-like editor with extensible pattern matching”
I The View from the Left, journal paper (2004) describing

how to translate back to type theory, motivation, examples
etc.



past/present

I I OLEG (McBride, 1995–2000): to do (dependently-typed)
programming in LEGO is a pain: tactics don’t let you see
the term being constructed;

I tactics for: declaring a new function definition
I applying primitive recursors and case analysis
I solving open leaf ‘problem’s

I EPIGRAM (1) (McBride, McKinna, 2000–2004):
“problems-as-types”

I programming problems become (labelled) types
I OLEG tactics become primitives
I case analysis and recursion become programmable

“An ALF-like editor with extensible pattern matching”
I The View from the Left, journal paper (2004) describing

how to translate back to type theory, motivation, examples
etc.



present: EPIGRAM (1)

I EPIGRAM is dead, long live EPIGRAM!
I EPIGRAM (1): codebase static; needs XEmacs21.4 (!);

changes to the underlying haskell run-time mean death is
inevitable, eventually

I but let’s demo it anyway!
I the ‘real’ implementation of the VfL language is. . . Agda!



present: EPIGRAM (1)

I EPIGRAM is dead, long live EPIGRAM!
I EPIGRAM (1): codebase static; needs XEmacs21.4 (!);

changes to the underlying haskell run-time mean death is
inevitable, eventually

I but let’s demo it anyway!
I the ‘real’ implementation of the VfL language is. . . Agda!



present: EPIGRAM (1)

I EPIGRAM is dead, long live EPIGRAM!
I EPIGRAM (1): codebase static; needs XEmacs21.4 (!);

changes to the underlying haskell run-time mean death is
inevitable, eventually

I but let’s demo it anyway!
I the ‘real’ implementation of the VfL language is. . . Agda!



present: EPIGRAM (1)

I EPIGRAM is dead, long live EPIGRAM!
I EPIGRAM (1): codebase static; needs XEmacs21.4 (!);

changes to the underlying haskell run-time mean death is
inevitable, eventually

I but let’s demo it anyway!
I the ‘real’ implementation of the VfL language is. . . Agda!



present: EPIGRAM (1)

I EPIGRAM is dead, long live EPIGRAM!
I EPIGRAM (1): codebase static; needs XEmacs21.4 (!);

changes to the underlying haskell run-time mean death is
inevitable, eventually

I but let’s demo it anyway!
I the ‘real’ implementation of the VfL language is. . . Agda!



alternative present

My former PhD student, Edwin Brady, has
I a theorem prover (Ivor),
I a programming language (Idris),
I a supercombinator compiler (Epic), and
I a haskell-like run-time system

It rocks: faster than Java, slower to within an order of
magnitude of gcc (ICFP 2010)



present/future: EPIGRAM (2)

I underlying type theory insufficiently robust to deal with new
phenomena

I co-induction on the same footing as induction
I extensional equality on function spaces
I universes for generic programming
I . . .

McBride leads a sizeable development team, based in
Strathclyde/Tallinn/Nottingham: long-anticipated release of
EPIGRAM (2). . . soon (even if not Real Soon)



present/future: EPIGRAM (2)

I underlying type theory insufficiently robust to deal with new
phenomena

I co-induction on the same footing as induction
I extensional equality on function spaces
I universes for generic programming
I . . .

McBride leads a sizeable development team, based in
Strathclyde/Tallinn/Nottingham: long-anticipated release of
EPIGRAM (2). . . soon (even if not Real Soon)



present/future: EPIGRAM (2)

I underlying type theory insufficiently robust to deal with new
phenomena

I co-induction on the same footing as induction
I extensional equality on function spaces
I universes for generic programming
I . . .

McBride leads a sizeable development team, based in
Strathclyde/Tallinn/Nottingham: long-anticipated release of
EPIGRAM (2). . . soon (even if not Real Soon)



present/future: EPIGRAM (2)

I underlying type theory insufficiently robust to deal with new
phenomena

I co-induction on the same footing as induction
I extensional equality on function spaces
I universes for generic programming
I . . .

McBride leads a sizeable development team, based in
Strathclyde/Tallinn/Nottingham: long-anticipated release of
EPIGRAM (2). . . soon (even if not Real Soon)



present/future: EPIGRAM (2)

I underlying type theory insufficiently robust to deal with new
phenomena

I co-induction on the same footing as induction
I extensional equality on function spaces
I universes for generic programming
I . . .

McBride leads a sizeable development team, based in
Strathclyde/Tallinn/Nottingham: long-anticipated release of
EPIGRAM (2). . . soon (even if not Real Soon)



present/future: EPIGRAM (2)

I underlying type theory insufficiently robust to deal with new
phenomena

I co-induction on the same footing as induction
I extensional equality on function spaces
I universes for generic programming
I . . .

McBride leads a sizeable development team, based in
Strathclyde/Tallinn/Nottingham: long-anticipated release of
EPIGRAM (2). . . soon (even if not Real Soon)



Questions?


