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Legal notie
HOL Light version 1.0, hereinafter referred to as \the software", is aomputer theorem proving system written by John Harrison, a researhworker at the University of Cambridge Computer Laboratory, New Mu-seums Site, Pembroke Street, Cambridge, CB2 3QG, England. The soft-ware is opyright, University of Cambridge 1998.Permission to use, opy, modify, and distribute the software and itsdoumentation for any purpose and without fee is hereby granted. In thease of further distribution of the software the present text, inludingopyright notie, liene and dislaimer of warranty, must be inludedin full and unmodi�ed form in any release. Distribution of derivativesoftware obtained by modifying the software, or inorporating it intoother software, is permitted, provided the inlusion of the software isaknowledged and that any hanges made to the software are learlydoumented.John Harrison and the University of Cambridge dislaim all war-ranties with regard to the software, inluding all implied warranties ofmerhantability and �tness. In no event shall John Harrison or theUniversity of Cambridge be liable for any speial, indiret, inidentalor onsequential damages or any damages whatsoever, inluding, butnot limited to, those arising from omputer failure or malfuntion, workstoppage, loss of pro�t or loss of ontrats.
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PrefaeHOL Light is a relatively new version of the HOL theorem prover (Gordon andMelham 1993). The whole implementation, even the axiomatization of the logi,has been re-engineered and simpli�ed. Compared with other versions of HOL, it isrelatively small and lean, and makes modest demands on the mahine it is run on.The material that follows is not only a tutorial on the use of HOL Light and itsinteration language, but also provides a detailed disussion of the implementation.HOL Light proves theorems in a system of lassial higher order logi basedon polymorphi simple type theory. All proof proeeds by the appliation of low-level primitive rules, maintaining a high degree of reliability. However, a suite ofderived rules for proving various useful theorems automatially is provided, as is afull programming language in whih users an implement their own derived rules.A number of useful mathematial theories, e.g. real analysis, are already available.To beome an expert user of HOL Light, it is neessary to know somethingabout programming in CAML Light, whih is the implementation and interationlanguage. However, for readers primarily interested in theorem proving, it's nodoubt somewhat dispiriting to spend a long time studying funtional programmingbefore even beginning to prove theorems. We have tried to minimize this problemin the organization that follows.We begin with a short introdutory hapter highlighting the basi features ofCAML and HOL, inluding the basi mehanism of user interation and the prini-ples behind derived inferene rules. Features of HOL and CAML are illustrated aswe go, and most readers will be able to pik up the general ideas. This introdutionis followed by the two larger Parts, omprising systemati introdutions to CAMLand HOL respetively. While these an be takled in sequene, the impatient readeran read them in parallel, or even read the HOL part �rst and refer bak to theCAML part as needed. (Indeed, there are a number of obvious parallels betweenCAML and the HOL logi, with both being an enrihed version of lambda alulus,and both having a similar system of types. Reading these parts in parallel will showmany similar onepts like urrying and polymorphism in two di�erent ontexts.)Sine HOL Light is aimed partiularly at the enthusiast who wants to implementustom theorem-proving tools, a third Part gives an overview of the implementation,explaining the basi struture of the system and disussing various design deisions.We hope that users interested in building ustom theorem proving tools, or justin understanding the arhiteture of a modern theorem prover, will �nd somethingof interest in HOL Light and the present doument. While we are writing primarilyfor those interested in theorem proving, the system might be onsidered interestingfor two other reasons: it is a large appliation of (impure) funtional programming,and it inludes a systemati logial development of nontrivial mathematis from itsvery foundations �a la Prinipia Mathematia (Whitehead and Russell 1910).I do not assume that the reader is familiar with HOL or any similar system.Some knowledge of programming and of basi logi would be of great bene�t, butnot essential. However the present introdution is not omprehensive, and theserious user will need to spend time browsing through the soure ode.iii
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Chapter 1IntrodutionIn the following hapter we explain the key ideas behind HOL Light and over thebasis of interation with the system. It is intended merely to give a brief taste,and readers wanting a more systemati introdution should study the subsequenthapters.1.1 What is HOL Light?There are many omputer programs, e.g. as used in ordinary poket alulators,for dealing with numerial problems like adding 2 and 2. Other programs, suh asthe omputer algebra systems Maple1 and Mathematia2, an ope not just withpartiular numbers, but also with expressions involving variables. For example theyan alulate that the derivative of x2 with respet to x evaluated at the point x is2x. These programs are usually thought of as alulating the answers to problems.But one an also look at them as systems that produe, on demand, mathematialtheorems in a ertain lass. If we use the symbol ` to indiate that an assertion isatually a true theorem of mathematis, we might say that these programs produethe following theorems, when given the appropriate left-hand sides:` 2 + 2 = 4or ` ddxx2 = 2xHOL Light is similar: it is a system for produing theorems on demand. Com-pared with alulators or omputer algebra systems (CASs), it has two great ad-vantages:� HOL Light an produe theorems overing a wide mathematial range, e.g.involving in�nite sets and so-alled quanti�ers like `there exists some integersuh that . . . ' or `for any set of real numbers . . . '. By ontrast, alulators andCASs mainly produe unonditional equations with any variables impliitlyregarded as universal.� The theorems it produes an be relied on to be unambiguous in meaning andrigorously proven. By ontrast, the exat readings of `theorems' produed by1Maple is a registered trademark of Waterloo Maple Software.2Mathematia is a registered trademark of Wolfram Researh In.1



2 CHAPTER 1. INTRODUCTIONalulators and CASs are often open to doubt | even for something as trivialas expliit alulation involving approximations like sin(0:7) = 0:6442176872.Moreover, CASs often leave out essential sideonditions suh as denominatorsof frations being nonzero.Needless to say, this greater power and reliability omes at a prie.� Only in limited problem domains an HOL Light produe its theorems om-pletely automatially. In general, the user needs to desribe a suitable math-ematial proof in reasonable detail | HOL Light merely �lls in some of thesimpler gaps and heks that the user doesn't make mistakes.� Whereas alulators and CASs are highly eÆient and optimized for the typi-al problems, HOL Light derives its theorems via a uniform mehanism whihtends to be less eÆient in partiular ases.Like good alulators and CASs, HOL Light is programmable. This means thatone an start with the available funtions for proving ertain theorems automat-ially, and produe new ones for partiular tasks by implementing them in termsof the original ones. Similarly, a simple sienti� alulator might have a built-infuntion to approximate sin, but none for evaluating, say, areas under the normaldistribution urve | the user has to program the latter. One this has been done,it an itself beome a subroutine in more omplex operations.The majority of the HOL Light system is a tower of suh funtions. Right at thebottom, a very small set of primitive operations ultimately produe all theorems.In terms of these, more onvenient higher-level funtions are de�ned, these arethemselves used to build up additional layers, and so on. Any user an build upthis tower further. Beause theorems are ultimately produed by the primitive rules,errors in higher-level funtions annot lead to false `theorems' being produed; thisexplains the laim that HOL Light is relatively reliable. (A similar laim annotbe made for ordinary alulators sine the answers are often approximate, and it'shard to analyze how the inauray builds up.)This approah to theorem proving, using programmability to build up from asmall and reliable logial ore, originated with the Edinburgh LCF projet (Gordon,Milner, and Wadsworth 1979). For the approah to be palatable, the programminglanguage must be well suited to the task, and as part of the LCF projet a ompletelynew programming language alled ML3 was developed. ML has sine taken on a lifeof its own and is urrently being widely touted as a general-purpose language. Itis a higher-order funtional programming language, featuring a novel polymorphitype system (Milner 1978) and a simple but useful exeption mehanism as well assome traditional imperative features.The version of ML used in HOL Light is CAML Light (Weis and Leroy 1993).This language and an exellent lightweight interpreter for it have been developedby a team at INRIA Roquenourt in Paris. HOL Light has no separate userinterfae: the user atually works inside the CAML interpreter with all the HOLLight infrastruture loaded in.HOL Light is the latest in a line of theorem provers going bak to the mid-eighties, using the LCF approah to implement a theorem prover for lassial HigherOrder Logi (hene the name HOL). Previous versions have inluded HOL88, hol90,ICL ProofPower, and more reently hol98. HOL Light is intended to be a moresimple and elegant version targeted at users who really want to understand how the3ML for metalanguage; following Tarski (1936) and Carnap (1937), it has beome usual to en-fore a strit separation between the `objet language' under onsideration and the `metalanguage'used to talk about it. For example in a ourse in Russian given in English, Russian is the objetlanguage and English the metalanguage.



1.2. GETTING STARTED 3system works, or who want to build their own appliation-spei� theorem provingtools.1.2 Getting startedAfter starting up CAML and loading HOL, the user is onfronted with CAMLLight's prompt (`#'). CAML Light is expeting the user to type something in, andit will then evaluate it and print the result. CAML will only at after the userterminates the input with a double semiolon (`;;') and newline. For example, onean use CAML like a poket alulator:#2 + 2;;it : int = 4The user enters the expression 2 + 2, and CAML evaluates it and prints theanswer, 4. It also prints out the type of the expression, namely int (short forinteger, i.e. whole number). We will explain CAML's types in more detail later.CAML also abbreviates the result by `it', to save the user retyping. For example,one an now do:#it + 3;;it : int = 7Instead of using the default name it, whih is overwritten every time a newexpression is evaluated, one an bind an expression to a name by using let. Forexample, after the following interation, x has the value 4, at least until another`let x = ...' overwrites it.#let x = 2 + 2;;x : int = 4The above was only intended as an introdution to interation with CAML. Weare really interested in manipulating not numbers but logial entities like theorems.In fat, there are three key logial notions in HOL Light, eah with a orrespondingML type: types (hol type), terms (term) and theorems (thm). HOL Light is, atits ore, a system for manipulating these objets. (Note the objet-meta distintionhere: one has an ML (meta) type of data strutures representing HOL (objet)types.)A HOL term represents a mathematial assertion like x + 1 = y or just somemathematial expression like x+ 1. Every term has a type, indiating what sort ofmathematial entity it is, e.g. a boolean value (true or false), a real number, a setof real funtions et. For example, x+1 has type num indiating that it is a naturalnumber, while x + 1 = y has type bool indiating that it is either true or false.A HOL theorem simply asserts that some boolean-typed term is valid, or at least,follows from a �nite list of assumptions.Terms and types are represented by ML data strutures that we desribe inmore detail below. However, it is tiresome to desribe partiular terms and types,espeially large ones, by reating suh data strutures expliitly. Instead, HOLhas parsers and printers that allow types and terms to be represented in somethingloser to familiar mathematial notation, subjet to the limitations of ASCII. Termsare entered rather like strings, enlosed within bakquotes:#`x + 1`;;it : term = `x + 1`#`x + y <= z`;;it : term = `x + y <= z`



4 CHAPTER 1. INTRODUCTIONThis however hides quite a lot of proessing. Quotations are expanded (by afront-end �lter separate from CAML proper) into a all of a term parser and typeinferener. This not only analyzes the syntati struture of the term but worksout types for the term as a whole and all its subterms. For example, it knows thatthe onstant 1 has type num, and that the left and right arguments of + must havethe same type, whih is also the type of the result. Hene it deides that x andthe term as a whole must also have type num. If the user tries to enter a term thatannot be typed, e.g. `(1 <= 2) + 3`, the typeheker will fail. If, on the otherhand, there is not enough type information to �x the types of all subterms, typevariables are invented and a warning given:#`x`;;Warning: inventing type variablesit : term = `x`The use an annotate the term or any subterms with types by writing a olonfollowed by a type, e.g.#`x:num`;;it : term = `x`The parser does not allow the same variable to have di�erent types in the sameterm.4 It is possible to reate suh terms by hand using the funtions desribedlater, but is apt to look onfusing. Note that identially-named variables withdi�erent types are treated as di�erent. Types, rather than terms, an be enteredby simply omitting the term, i.e. starting the quotation with a olon, e.g.#`:bool`;;it : hol_type = `:bool`HOL types and terms are not atually ML abstrat types (they ould easily bemade so by separately ompiling the modules), but the user is expeted to use thestandard interfae funtions. These restrit formation to those that are well-formedand well-typed. So even using the basi onstrutors, it is impossible to reate, forexample, a term that adds a number and a boolean value. Theorems an also onlybe reated by, at bottom, a small set of basi funtions. One of these is the funtionREFL whih takes a term t as an argument and returns a rather trivial theoremsaying that t is equal to itself:#REFL `x + 1`;;it : thm = |- x + 1 = x + 1HOL prints theorems using an ASCII approximation to the onventional `turn-stile' symbol `. If a theorem has assumptions, these are printed to the left of theturnstile. For example, another primitive funtion ASSUME takes a term p of Booleantype and returns the theorem (one again rather trivial) that under the assumptionthat p holds, p holds:#ASSUME `p:bool`;;it : thm = p |- p#ASSUME `1`;;Unaught exeption: Failure "ASSUME: not a proposition"4Or more preisely, in the same sope. Separately bound instanes an have di�erent types |see later.



1.3. DERIVED RULES 5While the user an enter any (typeable) term in quotations and have it elevatedto a HOL term, it is not possible to do this with theorems. While there's a om-putable proedure for deiding if a term is well-typed, HOL has no way in general ofdeiding whether it is possible to onstrut a theorem from the primitive funtions.However, there are some high-level funtions that aept a term of a ertain formand prove it automatially, turning it into a theorem. For example ARITH RULE anprove many basi fats of natural number arithmeti:#ARITH_RULE `2 * x < 2 * (x + 1)`;;it : thm = |- 2 * x < 2 * (x + 1)Note, however, that the theorem is still reated under the surfae by a (some-times quite lengthy) series of appliations of the primitive rules, maintaining theguarantee of reliability.1.3 Derived rulesIn general, an inferene rule in HOL is simply any ML funtion that return a theoremor theorems (objets with ML type thm). Ones like ARITH RULE that turn laimsinto theorems are partiularly simple to use, but in general HOL inferene rulesmay require other theorems as input. For example MK COMB aepts two theoremsas input, one saying that two funtions (say f and g) are equal, the other sayingtwo arguments (say x and y) are equal, and if the types math up orretly so itmakes sense to apply f to x and g to y, MK COMB returns a theorem saying that f(x)and g(y) are equal.#let th1 = ASSUME `f:num->num = g`;;th1 : thm = f = g |- f = g#let th2 = ASSUME `m:num = n`;;th2 : thm = m = n |- m = n#MK_COMB(th1,th2);;it : thm = f = g, m = n |- f m = g nHOL rules an be separated into the primitive rules like REFL, ASSUME andMK COMB, of whih there are ten, and all the others, whih are alled derived rules,sine they are built up from the primitives. A lot of HOL Light's soure ode is asystemati building up of a useful set of higher-level derived rules, and the use ofthe rules, primitive and derived, to prove useful mathematial theorems. Here is avery simple but genuine example, one of HOL Light's simplest inbuilt derived rulesalled AP TERM. It aepts a term representing a funtion f and a theorem assertingthat x and y are equal, and if the types math up, returns a theorem asserting thatf(x) = f(y):#let AP_TERM tm th =MK_COMB(REFL tm,th);;AP_TERM : term -> thm -> thm = <fun>#AP_TERM `h:num->num` (ASSUME `m = 1`);;it : thm = m = 1 |- h m = h 1The de�nition of AP TERM is a simple 2-line ML program, whih �rst derivesthe trivial theorem that the funtion is equal to itself, using REFL, and then allsMK COMB to get the �nal result. Note that this just expresses generially the wayone would prove suh a theorem given only the primitive rules to work with. Aderived rule doesn't yield a single theorem, but rather a whole family of theorems



6 CHAPTER 1. INTRODUCTIONdepending on the input. It orresponds naturally to what a logiian would think ofas a `derived rule'.CAML Light, desribed in the next Part, is a full programming language, soone an perform essentially any kinds of inferene one wants, provided it is reduedto the existing infrastruture of primitive and derived rules. Derived rules oftenhave a reursive struture, passing over the input term and transforming it into anappropriate theorem. They may also do di�erent things depending, for example, onthe logial struture of the input, the names of variables, and so on. All this willbe illustrated in more detail in what follows.Further readingThe original textbook on Edinburgh LCF by Gordon, Milner, andWadsworth (1979)introdues many of the basi ideas in HOL Light; see also the later book by Paul-son (1987) on a re-engineered version `Cambridge LCF'. The general approah totheorem-proving desribed above is, as emphasized by Gordon (1982), largely in-dependent of the partiular logi one works with, e.g. the original LCF (logi ofomputable funtions), higher order logi, or �rst order set theory. The originalHOL was born when Gordon used the Cambridge LCF system to implement las-sial higher order logi. There is a book by Gordon and Melham (1993) desribingan early version of the system `HOL88', while an interesting historial survey ofthe development of LCF and HOL is given by Gordon (1996). The original ML isalso desribed in the early LCF publiations. CAML Light has extensive on-linedoumentation and a book (in Frenh) by Weis and Leroy (1993) devoted to it.Another ML version, Standard ML, is desribed by Paulson (1991).
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Chapter 2A taste of CAMLCAML Light feels rather di�erent from ommon programming languages like C orFORTRAN. The major di�erene is that it is a funtional rather than imperativelanguage. While it does have imperative features, we won't make very great useof them. The following setion explains the ontrast; readers with no previousprogramming experiene may hoose to skip or just skim this material.2.1 Imperative vs funtional programmingPrograms in traditional languages, suh as FORTRAN, Algol, C and Modula-3,rely heavily on modifying the values of a olletion of variables, alled the state.Before exeution, the state has some initial value �, representing the inputs tothe program, and when the program has �nished, the state has a new value �0inluding the result(s). During exeution, eah ommand hanges the state, whihhas therefore proeeded through some �nite sequene of values:� = �0 ! �1 ! �2 ! � � � ! �n = �0For example in a sorting program, the state initially inludes an array of values,and when the program has �nished, the state has been modi�ed in suh a way thatthese values are sorted, while the intermediate states represent progress towardsthis goal.The state is typially modi�ed by assignment ommands, often written in theform v = E or v := E where v is a variable and E some expression. These ommandsan be exeuted in a sequential manner by writing them one after the other in theprogram, often separated by a semiolon. By using statements like if and while,one an exeute these ommands onditionally, and repeatedly, depending on otherproperties of the urrent state. The program amounts to a set of instrutions onhow to perform these state hanges, and therefore this style of programming is oftenalled imperative or proedural. Correspondingly, the traditional languages intendedto support it are known as imperative or proedural languages.Funtional programming represents a radial departure from this model. Essen-tially, a funtional program is simply an expression, and exeution means evaluationof the expression.1 We an see how this might be possible, in general terms, as fol-lows. Assuming that an imperative program (as a whole) is deterministi, i.e. theoutput is ompletely determined by the input, we an say that the �nal state, orwhihever fragments of it are of interest, is some funtion of the initial state, say1Funtional programming is often alled `appliative programming' sine the basi mehanismis the appliation of funtions to arguments. 9



10 CHAPTER 2. A TASTE OF CAML�0 = f(�).2 In funtional programming this view is emphasized: the program isatually an expression that orresponds to the mathematial funtion f . Funtionallanguages support the onstrution of suh expressions by allowing rather powerfulfuntional onstruts.Funtional programming an be ontrasted with imperative programming eitherin a negative or a positive sense. Negatively, pure funtional programs do not usevariables | there is no state. Consequently, they annot use assignments, sinethere is nothing to assign to. Furthermore the idea of exeuting ommands in se-quene is meaningless, sine the �rst ommand an make no di�erene to the seond,there being no state to mediate between them. Positively however, funtional pro-grams an use funtions in muh more sophistiated ways. Funtions an be treatedin exatly the same way as simpler objets like integers: they an be passed to otherfuntions as arguments and returned as results, and in general alulated with. In-stead of sequening and looping, funtional languages use reursive funtions, i.e.funtions that are de�ned in terms of themselves. By ontrast, most traditional lan-guages provide poor failities in these areas. C allows some limited manipulation offuntions via pointers, but does not allow one to reate new funtions dynamially.FORTRAN does not even support reursion at all.A potential advantage of funtional languages is the following. Sine the eval-uation of expressions has no side-e�et on any state, separate subexpressions anbe evaluated in any order without a�eting eah other. This makes programs moreomprehensible and debugging easier, sine there is no danger of one part of aprogram unexpetedly a�eting others. Moreover, funtional programs may lendthemselves well to parallel implementation, i.e. the omputer an automatiallyfarm out di�erent subexpressions to di�erent proessors. By ontrast, imperativeprograms often impose a fairly rigid order of exeution, and even the limited inter-leaving of instrutions in modern pipelined proessors turns out to be ompliatedand full of tehnial problems.Atually, CAML is not a purely funtional programming language; it does havevariables and assignments if required. Most of the time, we will work inside thepurely funtional subset. But even when we do use assignments, and lose some ofthe preeding bene�ts, there are advantages in the more exible use of funtionsthat languages like CAML allow. Programs an often be expressed in a very on-ise and elegant style using higher-order funtions (funtions that operate on otherfuntions). Code an be made more general, sine it an be parametrized even overother funtions. For example, a program to add up a list of numbers and a pro-gram to multiply a list of numbers an be seen as instanes of the same program,parametrized by the pairwise arithmeti operation and the orresponding identity.In one ase it is given + and 0 and in the other ase, � and 1.2.2 Basi use of CAMLWe will use CAML in its interative and interpretive mode. When it is started itpresents its prompt (`#'):> Caml Light version 0.74# (In order to exit the system, simply type trl/d or quit();; at the prompt.)When CAML presents you with its prompt, you an type in expressions, terminated2Compare Naur's remarks (Raphael 1966) that he an write any program in a single statementOutput = Program(Input).



2.2. BASIC USE OF CAML 11by two suessive semiolons, and it will evaluate them and print the result. Inomputing jargon, the CAML system sits in a read-eval-print loop: it repeatedlyreads an expression, evaluates it, and prints the result. For example, CAML an beused as a simple alulator:#10 + 5;;it : int = 15The system not only returns the answer, but also the type of the expression,whih it has inferred automatially. (We will have more to say about CAML'stypes in a later setion.) It an do this beause it knows the type of the built-inaddition operator +. On the other hand, if an expression is not typable, the systemwill rejet it, and try to give some idea about how the types fail to math up. Inompliated ases, the error messages an be quite triky to understand.#1 + true;;Toplevel input:>let it = 1 + true;;> ^^^^This expression has type bool,but is used with type int.Sine CAML is a funtional language, expressions are allowed to be funtions.Funtions an be written in CAML using the syntax fun x -> t[x℄ for the funtionthat maps an argument x to t[x℄, the latter being any expression involving x. Suhan expression involving `fun x -> ...' is said to be a funtion abstration. Forexample we an de�ne the suessor funtion:#fun x -> x + 1;;it : int -> int = <fun>Again, the type of the expression, this time int -> int, meaning a funtionfrom integers to integers, is inferred and displayed. However the funtion itselfis not printed; the system merely writes <fun>. This is beause, in general, theinternal representations of funtions are not very readable.3 In normal mathematialnotation, appliation of a funtion f to an argument x is written f(x). In CAML,the parentheses an be omitted unless they are needed to enfore grouping, e.g.#(fun x -> x + 1) 1 * 2;;it : int = 4#(fun x -> x + 1) (1 * 2);;it : int = 3#((fun x -> x + 1) 1) * 2;;it : int = 4Every funtion in CAML takes just a single argument. However there are twoways of getting the e�et of funtions of more than one argument. One way isto have a single argument but of a more omplex type, suh as pairs (see later)of integers. The other is to use `urrying' (after the logial Haskell Curry), wherethe funtion takes one argument and yields another funtion that takes the seondargument, and so on. For example, a urried funtion of two arguments that addsthe arguments together an be written and used as follows:3CAML does not store them simply as syntax trees, but ompiles them into byteode.



12 CHAPTER 2. A TASTE OF CAML#fun x -> (fun y -> x + y);;it : int -> int -> int = <fun>#(fun x -> (fun y -> x + y)) 1;;it : int -> int = <fun>#((fun x -> (fun y -> x + y)) 1) 2;;it : int = 3Note that the funtion has type int -> int -> int, meaning int -> (int ->int). When applied to one argument, 1, it yields another funtion, whih takes theseond argument and maps it to the orresponding sum. Currying is used a lot infuntional programming, sine it allows funtions to be used quite exibly. Someother syntati onventions support it; for example, without parentheses to enforegrouping, funtion appliation assoiates to the left, i.e. f g x means (f g)(x) notf(g(x)). We an write the above example more suintly as:#(fun x y -> x + y) 1 2;;it : int = 32.3 Bindings and delarationsA nontrivial funtional program is a very omplex expression, and it is of oursenot onvenient to evaluate it all in one go. Instead, useful subexpressions an beevaluated and bound to names using let. (In fat, a �lter in front of CAML Light,part of HOL Light, automatially binds the last anonymous expression evaluatedto the speial name it, hene its appearane above.) For example:#let suessor = fun x -> x + 1;;suessor : int -> int = <fun>#suessor 5;;it : int = 6Delarations an be made loal to the evaluation of an expression, so they areinvisible afterwards, using in. For example:#let su = fun x -> x + 1 insu(su 1);;it : int = 3#su 1;;Toplevel input:>let it = su 1;;> ^^^The value identifier su is unbound.The arguments to funtions an be written on the left of the equation, whihmost people �nd more natural:#let suessor x = x + 1;;suessor : int -> int = <fun>#suessor 5;;it : int = 6Funtions an be reursive, i.e. de�ned in terms of themselves. To ahieve this,simply inlude the keyword re. For example, the fatorial n! = 1�2�� � ��(n�1)�nan be evaluated as follows: evaluate (n� 1)! reursively, then multiply by n:



2.3. BINDINGS AND DECLARATIONS 13#let re fat n = if n = 0 then 1else n * fat(n - 1);;fat : int -> int = <fun>#fat 6;;it : int = 720By using and, one an make several binding simultaneously, and de�ne mutuallyreursive funtions. For example, here are two simple, though highly ineÆient,funtions to deide whether or not a natural number is odd or even:#let re even n = if n = 0 then true else odd (n - 1)and odd n = if n = 0 then false else even (n - 1);;even : int -> bool = <fun>odd : int -> bool = <fun>#even 12;;it : bool = true#odd 14;;it : bool = falseIf delarations do not inlude the re keyword, then any instane of the nameurrently being bound on the right is taken to be the previous value. For example:#let suessor n = suessor(suessor n);;suessor : int -> int = <fun>#suessor 2;;it : int = 4#suessor 5;;it : int = 7The old binding is now overwritten. But note that we are not making assign-ments to variables. Eah binding is only done one when the system analyses theinput; it annot be repeated or modi�ed. It an be overwritten by a new de�ni-tion using the same name, but this is not assignment in the usual sense, sine thesequene of events is only onneted with the ompilation proess, not with thedynamis of program exeution. Indeed, apart from the more interative feedbakfrom the system, we ould equally replae all the double semiolons after the de-larations by in and evaluate everything at one. On this view we an see that theoverwriting of a delaration really orresponds to the de�nition of a new loal vari-able that hides the outer one, aording to the soping rules usual in programminglanguages. For example:#let x = 1;;x : int = 1#let y = 2;;y : int = 2#let x = 3;;x : int = 3#x + y;;- : int = 5is the same as:#let x = 1 inlet y = 2 inlet x = 3 inx + y;;- : int = 5



14 CHAPTER 2. A TASTE OF CAMLNote arefully that variable binding is stati, i.e. the �rst binding of x is stillused until an inner binding ours, and any uses of it until that point are not a�etedby the inner binding.4 For example:#let x = 1;;x : int = 1#let f w = w + x;;f : int -> int = <fun>#let x = 2;;x : int = 2#f 0;;it : int = 12.4 Evaluation rulesIn essene, CAML is quite simple to understand, sine it just evaluates expressions.However there are subtle questions over the preise order of evaluation. For example,onsider the following reursive funtion:#let re f x = f(x + 1);;f : int -> 'a = <fun>#f 2;;Interrupted.Evaluation of f 2 looped inde�nitely, until interrupted by trl/. Now supposewe use f in another expression, but in a way that doesn't require f to be evaluatedon any arguments:#(fun x -> 1) (f 2);;Interrupted.Even so, an inde�nite loop results. The reason is that aording to CAML'sevaluation rules, all arguments to a funtion are evaluated before being insertedin the funtion body. This strategy is alled eager, in ontrast to leverer lazyapproahes that try to avoid evaluating subexpressions until they are de�nitelyneeded (and then no more than one).CAML adopts eager evaluation for two main reasons. Choreographing the redu-tions and sharings that our in lazy evaluation is quite triky, and implementationstend to be relatively ineÆient and ompliated. Unless the programmer is veryareful, memory an �ll up with pending unevaluated expressions, and in generalit is hard to understand the spae behaviour of programs. In fat many imple-mentations of lazy evaluation try to optimize it to eager evaluation in ases wherethere is no semanti di�erene. By ontrast, in CAML, we always �rst evaluate thearguments to funtions and only then inserts them in the body | this is simpleand eÆient, and is easy to implement using standard ompiler tehnology.The seond reason for preferring eager evaluation is that CAML is not a purefuntional language, but inludes imperative features (variables, assignments et.).Therefore the order of evaluation of subexpressions an make a big di�erene. Iflazy evaluation is used, it seems to beome diÆult for the programmer to visualize,4The �rst version of LISP used dynami binding, where a rebinding of a variable propagated toearlier uses of the variable. This was in fat originally regarded as a bug, but soon programmersstarted to appreiate its onveniene. The feature survived for a long time in many LISP dialets,but eventually the view that stati binding is better prevailed. In Common LISP, stati bindingis the default, but dynami binding is available if desired via the keyword speial.



2.5. TYPES AND POLYMORPHISM 15in a nontrivial program, exatly when eah subexpression gets evaluated. In theeager CAML system, one just needs to remember the simple evaluation rules. Tobe expliit, they are as follows:� Constants (e.g. prede�ned values and funtions like 1 and +) evaluate tothemselves.� Evaluation stops immediately at expressions of the form fun x -> ..., anddoes not look inside them. This only happens when suh an expression isapplied to an argument.� When evaluating an appliation s t, then �rst both s and t are evaluated.5Then, assuming that the evaluated form of s is a funtion fun x -> ..., thebody is evaluated with eah instane of x replaed by the evaluated form oft. If the evaluated form of s is a built-in funtion like +, the appropriateevaluation is performed.� When evaluating if E1 then E2 else E3, �rst E1 is evaluated, and depend-ing on whether it yields true or false, either E2 or E3 respetively (and notthe other) is evaluated.One an regard let x = E1 in E2 as an abbreviation for (fun x -> E2) E1,and the above evaluation rules then give the right answer: E1 is evaluated, and thenthe evaluated form replaes eah x in E1, whih is then itself evaluated. Let us seesome examples of evaluating expressions:(fun x -> (fun y -> y + y) x) (2 + 2)= (fun x -> (fun y -> y + y) x) 4= (fun y -> y + y) 4= 4 + 4= 8Note that the subterm (fun y -> y + y) x is not redued, sine it is inside thefuntion abstration `fun x -> ...'. However, terms that are reduible and not soenlosed in both funtion and argument get redued before the funtion appliationitself is evaluated, e.g. the seond step in the following:((fun f x -> f x) (fun y -> y + y)) (2 + 2)= ((fun f x -> f x) (fun y -> y + y)) 4= (fun x -> (fun y -> y + y) x) 4= (fun y -> y + y) 4= 4 + 4= 8The fat that CAML does not evaluate under funtion abstrations is of ruialimportane to advaned programmers. It gives preise ontrol over the evaluation ofexpressions, and an be used to mimi many of the helpful ases of lazy evaluation,or sometimes to fore earlier evaluation of expressions by moving them outside funx -> ....2.5 Types and polymorphismSome funtions do not have a �xed type. For example, the identity funtion thatreturns its argument unhanged doesn't are whether its argument is an integer, a5CAML Light atually evaluates t �rst.



16 CHAPTER 2. A TASTE OF CAMLboolean, or another funtion. Therefore, it is said to have polymorphi type, andCAML displays a type involving type variables. These an later be set to somepartiular type when it is used, di�erent instanes with di�erent types.#let I = fun x -> x;;I : 'a -> 'a = <fun>CAML prints type variables as 'a, 'b et.; these are supposed to be ASCIIrepresentations of �, � and so on. We an now use the polymorphi funtionseveral times with di�erent types:#I true;;- : bool = true#I 1;;- : int = 1#I I I I 12;;- : int = 12Eah instane of I in the last expression has a di�erent type, and intuitivelyorresponds to a di�erent funtion. CAML always assigns the most general typepossible for an expression, without speializing it unneessarily, using an algorithmdue to Milner (1978). For example, the following is a more omplex de�nition of anidentity funtion; the reader may wish to study it to see why CAML gives all theseexpressions the types it does,6 and why I' ats as an identity funtion. Note thatin ontrast to most programming languages, CAML allows the prime harater invariable names, reeting its bakground in logi and mathematis where variableslike x0 are ommon.#let K x y = x;;K : 'a -> 'b -> 'a = <fun>#let S f g x = (f x) (g x);;S : ('a -> 'b -> ') -> ('a -> 'b) -> 'a -> ' = <fun>#let I' = S K K;;I' : '_a -> '_a = <fun>#I' 2;;it : int = 2In the above examples of polymorphi funtions, the system very quikly infers amost general type for eah expression, and the type it infers is simple. This usuallyhappens in pratie, but there are pathologial ases, e.g. the following example dueto Mairson (1990). The type of this expression takes about 10 seonds to alulate,and oupies over 4000 lines on an 80-olumn terminal.let pair x y = fun z -> z x y inlet x1 = fun y -> pair y y inlet x2 = fun y -> x1(x1 y) inlet x3 = fun y -> x2(x2 y) inlet x4 = fun y -> x3(x3 y) inlet x5 = fun y -> x4(x4 y) inx5(fun z -> z);;Beause of CAML's automati type inferene, the programmer need never entera type. At least, CAML will already alloate as general a type as possible to an6Ignore the undersores for now. This is onneted with the typing of imperative features, andwe will disuss it later.



2.6. EQUALITY OF FUNCTIONS 17expression. However it may sometimes be onvenient to restrit the generality ofa type. This annot make ode work that didn't work before, but it may serve asdoumentation regarding the intended purpose of the ode; it is also possible touse shorter synonyms for ompliated types. Type restrition an be ahieved inCAML by adding type annotations after some expression(s). These type annotationsonsist of a olon followed by a type. It usually doesn't matter exatly wherethese annotations are added, provided they enfore the appropriate onstraints.For example, here are some alternative ways of onstraining the identity funtionto type int -> int:#let I (x:int) = x;;I : int -> int = <fun>#let I x = (x:int);;I : int -> int = <fun>#let (I:int->int) = fun x -> x;;I : int -> int = <fun>#let I = fun (x:int) -> x;;I : int -> int = <fun>#let I = ((fun x -> x):int->int);;I : int -> int = <fun>2.6 Equality of funtionsInstead of omparing the ations of I and I 0 on partiular arguments like 3, itwould seem that we an settle the matter de�nitively by omparing the funtionsthemselves. However this doesn't work:#I' = I;;Unaught exeption: Invalid_argument "equal: funtional value"It is in general forbidden to ompare funtions for equality, though a few speialinstanes, where the funtions are obviously the same, yield true:#let f x = x + 1;;f : int -> int = <fun>#let g x = x + 1;;g : int -> int = <fun>#f = f;;it : bool = true#f = g;;Unaught exeption: Invalid_argument "equal: funtional value"#let h = g;;h : int -> int = <fun>#h = f;;Unaught exeption: Invalid_argument "equal: funtional value"#h = g;;it : bool = trueWhy these restritions? Aren't funtions supposed to be �rst-lass objets inCAML? Yes, but unfortunately, (extensional) funtion equality is not omputable.This follows from a number of lassi theorems in reursion theory, suh as theunsolvability of the halting problem and Rie's theorem.7 Let us give a onrete7Rie's theorem is an extremely strong undeidability result whih asserts that any nontrivialproperty of the funtion orresponding to a program is unomputable from its text. An exellentomputation theory textbook is Davis, Sigal, and Weyuker (1994).



18 CHAPTER 2. A TASTE OF CAMLillustration of why this might be so. It is still an open problem whether the followingfuntion terminates for all arguments, the assertion that it does being known as theCollatz onjeture:8#let re ollatz n =if n <= 1 then 0else if even(n) then ollatz(n / 2)else ollatz(3 * n + 1);;ollatz : int -> int = <fun>What is lear, though, is that if it does halt it returns 0. Now onsider thefollowing trivial funtion:#let f (x:int) = 0;;f : int -> int = <fun>By deiding the equation ollatz = f, the omputer would settle the Collatzonjeture. It is easy to onot other examples for open mathematial problems.It is possible to trap out appliations of the equality operator to funtions anddatatypes built up from them as part of typeheking, rather than at runtime. Thisis the approah taken by Standard ML. Types that do not involve funtions inthese ways are known as equality types, sine it is always valid to test objets ofsuh types for equality. On the negative side, this makes the type system muhmore ompliated. However one might argue that stati typeheking should beextended as far as feasibility allows.Further readingNumerous textbooks on `funtional programming' inlude a general introdutionto the �eld and a ontrast with imperative programming | browse through a fewand �nd one that you like. A detailed and polemial advoay of the funtionalstyle is given by Bakus (1978), the main inventor of FORTRAN. A good elementaryintrodution to CAML Light and funtional programming is Mauny (1995). Paulson(1991) is another good textbook, though based on Standard ML.

8A good survey of this problem, and attempts to solve it, is given by Lagarias (1985). Stritly,we should use unlimited preision integers rather than mahine arithmeti. We will see later howto do this.



Chapter 3Further CAMLIn this hapter, we onsolidate the previous examples by speifying the basi fail-ities of CAML and the syntax of phrases more preisely, and then go on to treatsome additional features suh as reursive types. We might start by saying moreabout interation with the system.So far, we have just been typing phrases into CAML's toplevel read-eval-printloop and observing the result. However this is not a good method for writingnontrivial programs. Typially, you should write the expressions and delarationsin a �le. To try things out as you go, they an be inserted in the CAML windowusing `ut and paste'. This operation an be performed using X-windows and similarsystems, or in an editor like Emas with multiple bu�ers. However, this beomeslaborious and time-onsuming for large programs. Instead, you an use CAML'sinlude funtion to read in the �le diretly. For example, if the �le myprog.mlontains:let pythag x y z =x * x + y * y = z * z;;pythag 3 4 5;;pythag 5 12 13;;pythag 1 2 3;;then the toplevel phrase inlude "myprog.ml";; results in:#inlude "myprog.ml";;pythag : int -> int -> int -> bool = <fun>- : bool = true- : bool = true- : bool = false- : unit = ()That is, the CAML system responds just as if the phrases had been entered atthe top level. The �nal line is the result of evaluating the inlude expression itself.HOL Light runs a �lter in front of CAML to expand bakquotes into alls of termand type parser and typeheker. In order to make this happen when loading a �le,use loadt instead of inlude.In large programs, it is often helpful to inlude omments. In CAML, these arewritten between the symbols (* and *), e.g.19



20 CHAPTER 3. FURTHER CAML(* ------------------------------------------------------ *)(* This funtion tests if (x,y,z) is a Pythagorean triple *)(* ------------------------------------------------------ *)let pythag x y z =x * x + y * y = z * z;;(*omments*) pythag (*an*) 3 (*go*) 4 (*almost*) 5 (*anywhere*)(* and (* an (* be (* nested *) quite *) arbitrarily *) *);;3.1 Basi datatypes and operationsCAML features several built-in primitive types. From these, omposite types maybe built using various type onstrutors. For the moment, we will only use thefuntion spae onstrutor -> and the Cartesian produt onstrutor *, but we willsee in due ourse whih others are provided, and how to de�ne new types and typeonstrutors. The primitive types that onern us now are:� The type unit. This is a 1-element type, whose only element is written ().Obviously, something of type unit onveys no information, so it is ommonlyused as the return type of imperatively written `funtions' that perform aside-e�et, suh as inlude above. It is also a onvenient argument wherethe only use of a funtion type is to delay evaluation.� The type bool. This is a 2-element type of booleans (truth-values) whoseelements are written true and false.� The type int. This ontains some �nite subset of the positive and negativeintegers. Typially the permitted range is from �230 (�1073741824) up to230� 1 (1073741823).1 The numerals are written in the usual way, optionallywith a negation sign, e.g. 0, 32, -25.� The type string ontains strings (i.e. �nite sequenes) of haraters. Theyare written and printed between double quotes, e.g. "hello". In order toenode inlude speial haraters in strings, C-like esape sequenes are used.For example, \" is the double quote itself, and \n is the newline harater.The above values like (), false, 7 and "aml" are all to be regarded as �xedonstants. There are other onstants orresponding to operations on the basi types.Some of these may be written as in�x operators, for the sake of familiarity. Thesehave a notion of preedene so that expressions are grouped together as one wouldexpet. For example, we write x + y rather than + x y and x < 2 * y + z ratherthan < x (+ (* 2 y) z). The logial operator not also has a speial parsingstatus, in that the usual left-assoiativity rule is reversed for it: not not p meansnot (not p). User-de�ned funtions may be granted in�x status via the #infixdiretive. For example, here is a de�nition of a funtion performing omposition offuntions:1We will see later how to use an alternative type of integers with unlimited preision.



3.1. BASIC DATATYPES AND OPERATIONS 21#let suessor x = x + 1;;suessor : int -> int = <fun>#let o f g = fun x -> f(g x);;o : ('a -> 'b) -> (' -> 'a) -> ' -> 'b = <fun>#let add3 = o suessor (o suessor suessor);;add3 : int -> int = <fun>#add3 0;;it : int = 3##infix "o";;#let add3' = suessor o suessor o suessor;;add3' : int -> int = <fun>#add3' 0;;it : int = 3It is not possible to speify the preedene of user-de�ned in�xes, nor to makeuser-de�ned non-in�x funtions right-assoiative. Note that the impliit opera-tion of `funtion appliation' has a higher preedene than any binary operator,so suessor 1 * 2 parses as (suessor 1) * 2. If it is desired to use a fun-tion with speial status as an ordinary onstant, simply preede it by prefix. Forexample:#o suessor suessor;;Toplevel input:>o suessor suessor;;>^Syntax error.#prefix o suessor suessor;;it : int -> int = <fun>#(prefix o) suessor suessor;;it : int -> int = <fun>With these questions of onrete syntax out of the way, let us present a system-ati list of the operators on the basi types above. The unary operators are:Operator Type Meaning- int -> int Numeri negationnot bool -> bool Logial negationand the binary operators, in approximately dereasing order of preedene, are:Operator Type Meaningmod int -> int -> int Modulus (remainder)* int -> int -> int Multipliation/ int -> int -> int Trunating division+ int -> int -> int Addition- int -> int -> int Subtration^ string -> string -> string String onatenation= 'a -> 'a -> bool Equality<> 'a -> 'a -> bool Inequality< 'a -> 'a -> bool Less than<= 'a -> 'a -> bool Less than or equal> 'a -> 'a -> bool Greater than>= 'a -> 'a -> bool Greater than or equal& bool -> bool -> bool Boolean `and'or bool -> bool -> bool Boolean `or'



22 CHAPTER 3. FURTHER CAMLFor example, x > 0 & x < 1 is parsed as & (> x 0) (< x 1). Note that all theomparisons, not just the equality relation, are polymorphi. They not only orderintegers in the expeted way, and strings alphabetially, but all other primitivetypes and omposite types in a fairly natural way. One again, however, they arenot in general allowed to be used on funtions.The two boolean operations & and or have their own speial evaluation strategy,like the onditional expression. In fat, they an be regarded as synonyms foronditional expressions: p & q 4= if p then q else falsep or q 4= if p then true else qThus, the `and' operation evaluates its �rst argument, and only if it is true,evaluates its seond. Conversely, the `or' operation evaluates its �rst argument,and only if it is false evaluates its seond.3.2 Syntax of CAML phrasesExpressions in CAML an be built up from onstants and variables; any identi�erthat is not urrently bound is treated as a variable. Delarations bind names tovalues of expressions, and delarations an our loally inside expressions. Thus,the syntax lasses of expressions and delarations are mutually reursive. We anrepresent this by the following BNF grammar.2expression ::= variablej onstantj expression expressionj expression infix expressionj not expressionj if expression then expression else expressionj fun pattern -> expressionj (expression)j delaration in expressiondelaration ::= let let bindingsj let re let bindingslet bindings ::= let bindingj let binding and let bindingslet binding ::= pattern = expressionpattern ::= variablesvariables ::= variablej variable variablesThe syntax lass pattern will be expanded and explained more thoroughly lateron. For the moment, all the ases we are onerned with are either just variableor variable variable � � � variable. In the �rst ase we simply bind an expression to2We neglet many onstruts that we won't be onerned with. A few will be introdued later.See the CAML manual for full details.



3.3. FURTHER EXAMPLES 23a name, while the seond uses the speial syntati sugar for funtion delarations,where the arguments are written after the funtion name to the left of the equalssign. For example, the following is a valid delaration of a funtion add4, whih anbe used to add 4 to its argument:#let add4 x =let y = suessor x inlet z = let w = suessor y insuessor w insuessor z;;add4 : int -> int = <fun>#add4 1;;it : int = 5It is instrutive to unravel this delaration aording to the above grammar. Atoplevel phrase, terminated by two suessive semiolons, may be either an expres-sion or a delaration.3.3 Further examplesIt is easy to de�ne by reursion a funtion that takes a positive integer n and afuntion f and returns fn, i.e. f Æ � � � Æ f (n times):#let re funpow n f x =if n = 0 then xelse funpow (n - 1) f (f x);;funpow : int -> ('a -> 'a) -> 'a -> 'a = <fun>We an apply funpow just to the �rst argument, and this enodes a naturalnumber as a funtion that takes a funtion as an argument then iterates it theappropriate number of times, a so-alled Churh numeral.3 Sine funtions aren'tprinted, we an't atually look at the expression representing a Churh numeral:#funpow 6;;it : ('_a -> '_a) -> '_a -> '_a = <fun>However it is straightforward to de�ne an inverse funtion to funpow that takesa Churh numeral bak to a mahine integer:#let defrok n = n (fun x -> x + 1) 0;;defrok : ((int -> int) -> int -> 'a) -> 'a = <fun>#defrok(funpow 32);;it : int = 32We an de�ne some of the arithmeti operations on Churh numerals. Under-standing these de�nitions thoroughly is a good exerise.3The basi idea was used earlier by Wittgenstein (1922), 6.021.



24 CHAPTER 3. FURTHER CAML#let add m n f x = m f (n f x);;add : ('a -> 'b -> ') -> ('a -> 'd -> 'b) -> 'a -> 'd -> ' = <fun>#let mul m n f x = m (n f) x;;mul : ('a -> 'b -> ') -> ('d -> 'a) -> 'd -> 'b -> ' = <fun>#let exp m n f x = n m f x;;exp : 'a -> ('a -> 'b -> ' -> 'd) -> 'b -> ' -> 'd = <fun>#let test bop x y = defrok (bop (funpow x) (funpow y));;test :((('a -> 'a) -> 'a -> 'a) ->(('b -> 'b) -> 'b -> 'b) -> (int -> int) -> int -> ') ->int -> int -> ' = <fun>#test add 2 10;;it : int = 12#test mul 2 10;;it : int = 20#test exp 2 10;;it : int = 1024The above is not a very eÆient way of performing arithmeti operations. CAMLdoes not have a built-in funtion for exponentiation, but it is easy to de�ne one byreursion:#let re exp x n =if n = 0 then 1else x * exp x (n - 1);;exp : int -> int -> int = <fun>However this performs n multipliations to alulate xn. A more eÆient wayis to exploit the fats that x2n = (xn)2 and x2n+1 = (xn)2x as follows:#let square x = x * x;;square : int -> int = <fun>#let re exp x n =if n = 0 then 1else if n mod 2 = 0 then square(exp x (n / 2))else x * square(exp x (n / 2));;exp : int -> int -> int = <fun>#infix "exp";;#2 exp 10;;it : int = 1024#2 exp 20;;it : int = 1048576Another lassi operation on natural numbers is to �nd their greatest ommondivisor (highest ommon fator) using Eulid's algorithm:#let re gd x y =if y = 0 then x else gd y (x mod y);;gd : int -> int -> int = <fun>#gd 100 52;;it : int = 4#gd 7 159;;it : int = 1#gd 24 60;;it : int = 12



3.4. TYPE DEFINITIONS 25Rather than using the re keyword every time we delare a reursive funtion,eentris might prefer to de�ne a reursion operator Re, and thereafter use that,e.g.#let re Re f = f(fun x -> Re f x);;Re : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>#let fat = Re (fun f n -> if n = 0 then 1 else n * f(n - 1));;fat : int -> int = <fun>#fat 3;;it : int = 6Note, however, that the funtion abstration `fun x -> ...' in the de�nitionwas essential, otherwise the expression Re f goes into an in�nite reursion whenevaluated, before it is even applied to its argument:#let re Re f = f(Re f);;Re : ('a -> 'a) -> 'a = <fun>#let fat = Re (fun f n -> if n = 0 then 1 else n * f(n - 1));;Unaught exeption: Out_of_memory3.4 Type de�nitionsCAML has failities for delaring new type onstrutors, so that omposite types anbe built up out of existing ones. In fat, CAML goes further and allows a ompositetype to be built up not only out of preexisting types but also from the ompositetype itself. Suh types, naturally enough, are said to be reursive, even if they don'tavail themselves of the hane to use the type being de�ned in the de�nition. Theyare delared using the type keyword followed by an equation indiating how thenew type is built up from existing ones and itself. We will illustrate this by a fewexamples. The �rst one is the de�nition of a sum type, intended to orrespond tothe disjoint union of two existing types.#type ('a,'b)sum = inl of 'a | inr of 'b;;Type sum defined.Roughly, an objet of type ('a,'b)sum is either something of type 'a or some-thing of type 'b. More formally, however, all these things have di�erent types.The type delaration also delares the so-alled onstrutors inl and inr. Theseare funtions that take objets of the omponent types and injet them into thenew type. Indeed, we an see their types in the CAML system and apply them toobjets:#inl;;it : 'a -> ('a, 'b) sum = <fun>#inr;;it : 'a -> ('b, 'a) sum = <fun>#inl 5;;it : (int, 'a) sum = inl 5#inr false;;it : ('a, bool) sum = inr falseWe an visualize the situation via the following diagram. Given two existingtypes � and �, the type (�; �)sum is omposed preisely of separate opies of �and �, and the two onstrutors map onto the respetive opies:



26 CHAPTER 3. FURTHER CAML�
�

(�; �)sum
�������������:

inl
inr

XXXXXXXXXXXXXz
This is similar to a union in C, but in CAML the opies of the omponent typesare kept apart and one always knows whih of these an element of the union belongsto. By ontrast, in C the omponent types are overlapped, and the programmer isresponsible for this book-keeping.3.4.1 Pattern mathingThe onstrutors in suh a de�nition have three very important properties:� They are exhaustive, i.e. every element of the new type is obtainable eitherby inl x for some x or inr y for some y. That is, the new type ontainsnothing besides opies of the omponent types.� They are injetive, i.e. an equality test inl x = inl y is true if and only ifx = y, and similarly for inr. That is, the new type ontains a faithful opyof eah omponent type without identifying any elements.� They are distint, i.e. their ranges are disjoint. More onretely this means inthe above example that inl x = inr y is false whatever x and y might be.That is, the opy of eah omponent type is kept apart in the new type.The seond and third properties of onstrutors justify our using pattern math-ing. This is done by using more general varstruts as the arguments in a funtionexpression, e.g.#fun (inl n) -> n > 6| (inr b) -> b;;it : (int, bool) sum -> bool = <fun>This funtion has the property, naturally enough, that when applied to inl n itreturns n > 6 and when applied to inr b it returns b. It is preisely beause ofthe seond and third properties of the onstrutors that we know this does givea wellde�ned funtion. Beause the onstrutors are injetive, we an uniquelyreover n from inl n and b from inr b. Beause the onstrutors are distint,we know that the two lauses annot be mutually inonsistent, sine no value anorrespond to both patterns.In addition, beause the onstrutors are exhaustive, we know that eah valuewill fall under one pattern or the other, so the funtion is de�ned everywhere.Atually, it is permissible to relax this last property by omitting ertain patterns,though the CAML system then issues a warning:



3.4. TYPE DEFINITIONS 27#fun (inr b) -> b;;Toplevel input:>fun (inr b) -> b;;>^^^^^^^^^^^^^^^^Warning: this mathing is not exhaustive.it : ('a, 'b) sum -> 'b = <fun>If this funtion is applied to something of the form inl x, then it will not work:#let f = fun (inr b) -> b;;Toplevel input:>let f = fun (inr b) -> b;;> ^^^^^^^^^^^^^^^^Warning: this mathing is not exhaustive.f : ('a, 'b) sum -> 'b = <fun>#f (inl 3);;Unaught exeption: Math_failure ("", 452, 468)Though booleans are built into CAML, they are e�etively de�ned by a rathertrivial instane of a reursive type, often alled an enumerated type, where theonstrutors take no arguments:#type bool = false | true;;Indeed, it is perfetly permissible to de�ne things by mathing over the truthvalues. The following two phrases are ompletely equivalent:#if 4 < 3 then 1 else 0;;it : int = 0#(fun true -> 1 | false -> 0) (4 < 3);;it : int = 0Pattern mathing is, however, not limited to asewise de�nitions over elementsof reursive types, though it is partiularly onvenient there. For example, we ande�ne a funtion that tells us whether an integer is zero as follows:#fun 0 -> true | n -> false;;it : int -> bool = <fun>#(fun 0 -> true | n -> false) 0;;it : bool = true#(fun 0 -> true | n -> false) 1;;it : bool = falseIn this ase we no longer have mutual exlusivity of patterns, sine 0 matheseither pattern. The patterns are examined in order, one by one, and the �rstmathing one is used. Note arefully that unless the mathes are mutually exlusive,there is no guarantee that eah lause holds as a mathematial equation. Forexample in the above, the funtion does not return false for any n, so the seondlause is not universally valid.Note that only onstrutorsmay be used in the above speial way as omponentsof patterns. Ordinary onstants will be treated as new variables bound inside thepattern. For example, onsider the following:



28 CHAPTER 3. FURTHER CAML#let true_1 = true;;true_1 : bool = true#let false_1 = false;;false_1 : bool = false#(fun true_1 -> 1 | false_1 -> 0) (4 < 3);;Toplevel input:>(fun true_1 -> 1 | false_1 -> 0) (4 < 3);;> ^^^^^^^Warning: this mathing ase is unused.it : int = 1In general, the unit element (), the truth values, the integer numerals, the stringonstants and the pairing operation (in�x omma) have onstrutor status, as wellas other onstrutors from prede�ned reursive types. When they our in a patternthe target value must orrespond. All other identi�ers math any expression and inthe proess beome bound.As well as the varstruts in funtion expressions, there are other ways of per-forming pattern mathing. Instead of reating a funtion via pattern mathing andapplying it to an expression, one an perform pattern-mathing over the expressiondiretly using the following onstrution:math expression with pattern1->E1 j � � � j patternn->EnThe simplest alternative of all is to uselet pattern = expressionbut in this ase only a single pattern is allowed.3.4.2 Reursive typesThe previous examples have all been reursive only vauously, in that we have notde�ned a type in terms of itself. For a more interesting example, we will delare atype of lists (�nite ordered sequenes) of elements of type 'a.#type ('a)list = Nil | Cons of 'a * ('a)list;;Type list defined.Let us examine the types of the onstrutors:#Nil;;it : 'a list = Nil#Cons;;it : 'a * 'a list -> 'a list = <fun>The onstrutor Nil, whih takes no arguments, simply reates some objet oftype ('a)list whih is to be thought of as the empty list. The other onstrutorCons takes an element of type 'a and an element of the new type ('a)list andgives another, whih we think of as arising from the old list by adding one elementto the front of it. For example, we an onsider the following:



3.4. TYPE DEFINITIONS 29#Nil;;it : 'a list = Nil#Cons(1,Nil);;it : int list = Cons (1, Nil)#Cons(1,Cons(2,Nil));;it : int list = Cons (1, Cons (2, Nil))#Cons(1,Cons(2,Cons(3,Nil)));;it : int list = Cons (1, Cons (2, Cons (3, Nil)))Beause the onstrutors are distint and injetive, it is easy to see that allthese values, whih we think of as lists [℄, [1℄, [1; 2℄ and [1; 2; 3℄, are distint. Indeed,purely from these properties of the onstrutors, it follows that arbitrarily long listsof elements may be enoded in the new type. Atually, CAML already has a typelist just like this one de�ned. The only di�erene is syntati: the empty list iswritten [℄ and the reursive onstrutor ::, has in�x status. Thus, the above listsare atually written:#[℄;;it : 'a list = [℄#1::[℄;;it : int list = [1℄#1::2::[℄;;it : int list = [1; 2℄#1::2::3::[℄;;it : int list = [1; 2; 3℄The lists are printed in an even more natural notation, and this is also allowed forinput. Nevertheless, when the exat expression in terms of onstrutors is needed,it must be remembered that this is only a surfae syntax. For example, we ande�ne funtions to take the head and tail of a list, using pattern mathing.#let hd (h::t) = h;;Toplevel input:>let hd (h::t) = h;;> ^^^^^^^^^^^^^Warning: this mathing is not exhaustive.hd : 'a list -> 'a = <fun>#let tl (h::t) = t;;Toplevel input:>let tl (h::t) = t;;> ^^^^^^^^^^^^^Warning: this mathing is not exhaustive.tl : 'a list -> 'a list = <fun>The ompiler warns us that these both fail when applied to the empty list, sinethere is no pattern to over it (remember that the onstrutors are distint). Letus see them in ation:#hd [1;2;3℄;;it : int = 1#tl [1;2;3℄;;it : int list = [2; 3℄#hd [℄;;Unaught exeption: Math_failure



30 CHAPTER 3. FURTHER CAMLNote that the following is not a orret de�nition of hd. In fat, it onstrainsthe input list to have exatly two elements for mathing to sueed, as an be seenby thinking of the version in terms of the onstrutors:#let hd [x;y℄ = x;;Toplevel input:>let hd [x;y℄ = x;;> ^^^^^^^^^^^^Warning: this mathing is not exhaustive.hd : 'a list -> 'a = <fun>#hd [5;6℄;;it : int = 5#hd [5;6;7℄;;Unaught exeption: Math_failurePattern mathing an be ombined with reursion. For example, here is a fun-tion to return the length of a list:#let re length =fun [℄ -> 0| (h::t) -> 1 + length t;;length : 'a list -> int = <fun>#length [℄;;it : int = 0#length [5;3;1℄;;it : int = 3Alternatively, this an be written in terms of our earlier `destrutor' funtionshd and tl:#let re length l =if l = [℄ then 0else 1 + length(tl l);;This latter style of funtion de�nition is more usual in many languages, notablyLISP, but the diret use of pattern mathing is often more elegant.Some other lassi list funtions are appending (joining together) two lists, map-ping a funtion over a list (i.e. applying it to eah element) and reversing a list.We an de�ne all these by reursion:



3.4. TYPE DEFINITIONS 31#let re append l1 l2 =math l1 with[℄ -> l2| (h::t) -> h::(append t l2);;append : 'a list -> 'a list -> 'a list = <fun>#append [1;2;3℄ [4;5℄;;it : int list = [1; 2; 3; 4; 5℄#let re map f =fun [℄ -> [℄| (h::t) -> (f h)::(map f t);;map : ('a -> 'b) -> 'a list -> 'b list = <fun>#map (fun x -> 2 * x) [1;2;3℄;;it : int list = [2; 4; 6℄#let re rev =fun [℄ -> [℄| (h::t) -> append (rev t) [h℄;;#rev [1;2;3;4℄;;it : int list = [4; 3; 2; 1℄3.4.3 Tree struturesIt is often helpful to visualize the elements of reursive types as tree strutures,with the reursive onstrutors at the branh nodes and the other datatypes at theleaves. The reursiveness merely says that plugging subtrees together gives anothertree. In the ase of lists the `trees' are all rather spindly and one-sided, with thelist [1;2;3;4℄ being represented as:��� ��������� ������ ������
1 2 3 4 [℄It is not diÆult to de�ne reursive types whih allow more balaned trees, e.g.#type ('a)btree = Leaf of 'a| Branh of ('a)btree * ('a)btree;;In general, there an be several di�erent reursive onstrutors, eah with adi�erent number of desendants. This gives a very natural way of representing thesyntax trees of programming (and other formal) languages. For example, here is atype to represent arithmetial expressions built up from integers by addition andmultipliation:#type expression = Integer of int| Sum of expression * expression| Produt of expression * expression;;



32 CHAPTER 3. FURTHER CAMLand here is a reursive funtion to evaluate suh expressions:#let re eval =fun (Integer i) -> i| (Sum(e1,e2)) -> eval e1 + eval e2| (Produt(e1,e2)) -> eval e1 * eval e2;;eval : expression -> int = <fun>#eval (Produt(Sum(Integer 1,Integer 2),Integer 5));;it : int = 15Suh abstrat syntax trees are a useful representation whih allows all sorts ofmanipulations. Often the �rst step programming language ompilers and relatedtools take is to translate the input text into an `abstrat syntax tree' aording tothe parsing rules. Note that onventions suh as preedenes and braketings arenot needed one we have reahed the level of abstrat syntax; the tree struturemakes these expliit. Reursive types similar to these are used in HOL Light tode�ne logial entities like terms.3.4.4 The subtlety of reursive typesA reursive type may ontain nested instanes of other type onstrutors, inludingthe funtion spae onstrutor. For example, onsider the following:#type ('a)embedding = K of ('a)embedding->'a;;Type embedding defined.If we stop to think about the underlying semantis, this looks disquieting. Con-sider for example the speial ase when 'a is bool. We then have an injetivefuntion K:((bool)embedding->bool)->(bool)embedding. This diretly ontra-dits Cantor's theorem that the set of all subsets of X annot be injeted into X .4Hene we need to be more areful with the semantis of types. In fat � ! �annot be interpreted as the full funtion spae, or reursive type onstrutionslike the above are inonsistent. However, sine all funtions we an atually reateare omputable, it is reasonable to restrit ourselves to omputable funtions only.With that restrition, a onsistent semantis is possible, although the details areompliated.The above de�nition also has interesting onsequenes for the type system. Forexample, we an now de�ne a reursion operator without any expliit use of reur-sion, by using K as a kind of type ast.5 The use of let is only used for the sake ofeÆieny, but we do need the extra argument z in order to prevent looping underCAML's evaluation strategy.#let Y h =let g (K x) z = h (x (K x)) z ing (K g);;Y : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun>#let fat = Y (fun f n -> if n = 0 then 1 else n * f(n - 1));;fat : int -> int = <fun>#fat 6;;it : int = 7204Proof: onsider C = fi(s) j s 2 }(X) and i(s) 62 sg. If i : }(X) ! X is injetive, we havei(C) 2 C � i(C) 62 C, a ontradition. This is similar to the Russell paradox, and in fat probablyinspired it. The analogy is even loser if we onsider the equivalent form that there is no surjetionj : X ! }(X), and prove it by onsidering fs j s 62 j(s)g.5Readers familiar with untyped �-alulus may note that if theKs are deleted, this is essentiallythe usual de�nition of the Y ombinator.



3.4. TYPE DEFINITIONS 33Thus, reursive types are a powerful addition to the language.
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Chapter 4E�etive CAMLIn this hapter, we disuss some of the tehniques and triks that CAML program-mers an use to make programs more elegant and more eÆient. We then go onto disuss some additional imperative features that an be used when the purelyfuntional style seems inappropriate.4.1 Useful ombinatorsThe exibility of higher order funtions often means that one an write some veryuseful little funtions that an be re-used for a variety of related tasks. These areoften alled ombinators. It often turns out that these funtions are so exible thatpratially anything an be implemented by plugging them together, rather than,say, expliitly making a reursive de�nition. For example, a very useful ombinatorfor list operations, often alled `itlist' or `fold', performs the following operation:itlist f [x1; x2; : : : ;xn℄ b = f x1 (f x2 (f x3 (� � � (f xn b))))A straightforward de�nition in CAML is:#let re itlist f =fun [℄ b -> b| (h::t) b -> f h (itlist f t b);;itlist : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>Quite ommonly, when de�ning a reursive funtion over lists, all one is doingis repeatedly applying some operator in this manner. By using itlist with theappropriate argument, one an implement suh funtions very easily without expliituse of reursion. A typial use is a funtion to add all the elements of a list ofnumbers:#let sum l = itlist (fun x sum -> x + sum) l 0;;sum : int list -> int = <fun>#sum [1;2;3;4;5℄;;it : int = 15#sum [℄;;it : int = 0#sum [1;1;1;1℄;;it : int = 4Those espeially keen on brevity might prefer to ode sum as:35



36 CHAPTER 4. EFFECTIVE CAML#let sum l = itlist (prefix +) l 0;;It is easy to modify this funtion to form a produt rather than a sum:#let prod l = itlist (prefix *) l 1;;Many useful list operations an be implemented in this way. For example hereis a funtion to �lter out only those elements of a list satisfying a prediate:#let filter p l = itlist (fun x s -> if p x then x::s else s) l [℄;;filter : ('a -> bool) -> 'a list -> 'a list = <fun>#filter (fun x -> x mod 2 = 0) [1;6;4;9;5;7;3;2℄;;it : int list = [6; 4; 2℄Here are funtions to �nd whether either all or some of the elements of a list satisfya prediate:#let forall p l = itlist (fun h a -> p(h) & a) l true;;forall : ('a -> bool) -> 'a list -> bool = <fun>#let exists p l = itlist (fun h a -> p(h) or a) l false;;exists : ('a -> bool) -> 'a list -> bool = <fun>#forall (fun x -> x < 3) [1;2℄;;it : bool = true#forall (fun x -> x < 3) [1;2;3℄;;it : bool = falseand here are alternative versions of old favourites length, append and map:#let length l = itlist (fun x s -> s + 1) l 0;;length : 'a list -> int = <fun>#let append l m = itlist (fun h t -> h::t) l m;;append : 'a list -> 'a list -> 'a list = <fun>#let map f l = itlist (fun x s -> (f x)::s) l [℄;;map : ('a -> 'b) -> 'a list -> 'b list = <fun>Some of these funtions an themselves beome useful ombinators, and so onupwards. For example, if we are interested in treating lists as sets, i.e. avoidingdupliate elements, then many of the standard set operations an be expressed verysimply in terms of the ombinators above:#let mem x l = exists (fun y -> y = x) l;;mem : 'a -> 'a list -> bool = <fun>#let insert x l =if mem x l then l else x::l;;insert : 'a -> 'a list -> 'a list = <fun>#let union l1 l2 = itlist insert l1 l2;;union : 'a list -> 'a list -> 'a list = <fun>#let setify l = union l [℄;;setify : 'a list -> 'a list = <fun>#let Union l = itlist union l [℄;;Union : 'a list list -> 'a list = <fun>#let interset l1 l2 = filter (fun x -> mem x l2) l1;;interset : 'a list -> 'a list -> 'a list = <fun>#let subtrat l1 l2 = filter (fun x -> not mem x l2) l1;;subtrat : 'a list -> 'a list -> 'a list = <fun>#let subset l1 l2 = forall (fun t -> mem t l2) l1;;subset : 'a list -> 'a list -> bool = <fun>



4.2. WRITING EFFICIENT CODE 37The setify funtion is supposed to turn a list into a set by eliminating any dupliateelements.4.2 Writing eÆient odeHere we aumulate some ommon triks of the trade, whih an often make CAMLprograms substantially more eÆient. In order to justify some of them, we need tosketh in general terms how ertain onstruts are exeuted in hardware.4.2.1 Tail reursion and aumulatorsThe prinipal ontrol mehanism in funtional programs is reursion. If we areinterested in eÆient programs, it behoves us to think a little about how reursionis implemented on onventional hardware. In fat, there is not, in this respetat least, muh di�erene between the implementation of CAML and many otherlanguages with dynami variables, suh as C.If funtions annot be alled reursively, then we are safe in storing their loalvariables (whih inludes the values of arguments) at a �xed plae in memory | thisis what FORTRAN does. However, this is not possible in general if the funtionan be alled reursively. A all to a funtion f with one set of arguments mayinlude within it a all to f with a di�erent set of arguments. The old ones wouldbe overwritten, even if the outer version of f needs to refer to them again after theinner all has �nished. For example, onsider the fatorial funtion yet again:#let re fat n = if n = 0 then 1else n * fat(n - 1);;A all to fat 6 auses another all to fat 5 (and beyond), but when thisall is �nished and the value of fat 5 is obtained, we still need the original valueof n, namely 6, in order to do the multipliation yielding the �nal result. Whatnormally happens in implementations is that eah funtion all is alloated a newframe on a stak. Every new funtion all moves the stak pointer further down1 thestak, reating spae for new variables. When the funtion all is �nished the stakpointer moves up and so the unwanted inner variables are disarded automatially.A diagram may make this learer:

SP - n = 0n = 1n = 2n = 3n = 4n = 5n = 6

This is an imagined snapshot of the stak during exeution of the innermostreursive all, i.e. fat 0. All the loal variables for the upper stages are staked1Despite the name, staks onventionally grow downwards.



38 CHAPTER 4. EFFECTIVE CAMLup above, with eah instane of the funtion having its own stak frame, and whenthe alls are �nished the stak pointer SP moves bak up.Therefore, our implementation of fat requires n stak frames when applied toargument n. By ontrast, onsider the following implementation of the fatorialfuntion:#let re tfat x n =if n = 0 then xelse tfat (x * n) (n - 1);;tfat : int -> int -> int = <fun>#let fat n = tfat 1 n;;fat : int -> int = <fun>#fat 6;;it : int = 720Although tfat is also reursive, the reursive all is the whole expression; itdoes not our as a proper subexpression of some other expression involving valuesof variables. Suh a all is said to be a tail all (beause it is the very last thing thealling funtion does), and a funtion where all reursive alls are tail alls is saidto be tail reursive.What is signi�ant about tail alls? When making a reursive all to tfat,there is no need to preserve the old values of the loal variables. Exatly thesame, �xed, area of storage an be used. This of ourse depends on the ompiler'sbeing intelligent enough to reognize the fat, but most ompilers, inluding CAMLLight, are. Consequently, re-oding a funtion so that the reursive ore of it istail reursive an dramatially ut down the use of storage. For funtions like thefatorial, it is hardly likely that they will be alled with large enough values of n tomake the stak overow. However the naive implementations of many list funtionsan ause suh an e�et when the argument lists are long.The additional argument x of the tfat funtion is alled an aumulator, be-ause it aumulates the result as the reursive alls rak up, and is then returnedat the end. Working in this way, rather than modifying the return value on the waybak up, is a ommon way of making funtions tail reursive.We have remarked that a �xed area of storage an be used for the arguments toa tail reursive funtion. On this view, one an look at a tail reursive funtion asa thinly-veiled imperative implementation. There is an obvious parallel with our Cimplementation of the fatorial as an iterative funtion:int fat(int n){ int x = 1;while (n > 0){ x = x * n;n = n - 1;}return x;} The initialization x = 1 orresponds to our setting of x to 1 by an outer wrapperfuntion fat. The entral while loop orresponds to the reursive alls, the onlydi�erene being that the arguments to the tail reursive funtion make expliitthat part of the state we are interested in assigning to. Rather than assigning andlooping, we make a reursive all with the variables updated. Using similar triksand making the state expliit, one an easily write essentially imperative ode inan ostensibly funtional style, with the knowledge that under standard ompileroptimizations, the e�et inside the mahine will, in fat, be muh the same.



4.2. WRITING EFFICIENT CODE 394.2.2 Minimizing onsingWe have already onsidered the use of stak spae. But various onstruts in fun-tional programs use another kind of store, usually alloated from an area alled theheap. Whereas the stak grows and shrinks in a sequential manner based on theow of ontrol between funtions, other storage used by the CAML system annotbe relaimed in suh a simple way. Instead, the runtime system oasionally needsto hek whih bits of alloated memory aren't being used any more, and relaimthem for future use, a proess known as garbage olletion. A partiularly importantexample is the spae used by onstrutors for reursive types, e.g. ::. For example,when the following fragment is exeuted:let l = 1::[℄ in tl l;;a new blok of memory, alled a `ons ell', is alloated to store the instane ofthe :: onstrutor. Typially this might be three words of storage, one being anidenti�er for the onstrutor, and the other two being pointers to the head andtail of the list. Now in general, it is diÆult to deide when this memory an berelaimed. In the above example, we immediately selet the tail of the list, so itis lear that the ons ell an be reyled immediately. But in general this an'tbe deided by looking at the program, sine l might be passed to various funtionsthat may or may not just look at the omponents of the list. Instead, one needsto analyze the memory usage dynamially and perform garbage olletion of whatis no longer needed. Otherwise one would eventually run out of storage even whenonly a small amount is ever needed simultaneously.Implementors of funtional languages work hard on making garbage olletioneÆient. Some laim that automati memory alloation and garbage olletionoften works out faster than typial uses of expliit memory alloation in languageslike C (mallo et.) While we wouldn't go that far, it is ertainly very onvenientthat memory alloation is always done automatially. It avoids a lot of tedious andnotoriously error-prone parts of programming.Many onstruts beloved of funtional programmers use storage that needs tobe relaimed by garbage olletion. While worrying too muh about this wouldripple the style of funtional programs, there are some simple measures that anbe taken to avoid gratuitous onsing (reation of ons ells). One very simple ruleof thumb is to avoid using append if possible. As an be seen by onsidering theway the reursive alls unroll aording to the de�nition#let re append l1 l2 =math l1 with[℄ -> l2| (h::t) -> h::(append t l2);;this typially generates n ons ells where n is the length of the �rst argumentlist. There are often ways of avoiding appending, suh as adding extra aumulatorarguments to funtions that an be augmented by diret use of onsing. A strikingexample is the list reversal funtion, whih we oded earlier as:#let re rev =fun [℄ -> [℄| (h::t) -> append (rev t) [h℄;;This typially generates about n2=2 ons ells, where n is the length of the list.The following alternative, using an aumulator, only generates n of them:



40 CHAPTER 4. EFFECTIVE CAML#let rev =let re reverse a =fun [℄ -> a| (h::t) -> reverse (h::a) t inreverse [℄;;Moreover, the reursive ore reverse is tail reursive, so we also save stakspae, and win twie over.For another typial situation where we an avoid appending by judiious use ofaumulators, onsider the problem of returning the fringe of a binary tree, i.e. alist of the leaves in left-to-right order. If we de�ne the type of binary trees as:#type btree = Leaf of string| Branh of btree * btree;;then a simple oding is the following#let re fringe =fun (Leaf s) -> [s℄| (Branh(l,r)) -> append (fringe l) (fringe r);;However the following more re�ned version performs fewer onses:#let fringe =let re fr t a =math t with(Leaf s) -> s::a| (Branh(l,r)) -> fr l (fr r a) infun t -> fr t [℄;;Note that we have written the aumulator as the seond argument, so that thereursive all has a more natural left-to-right reading. Here is a simple example ofhow either version of fringe may be used:#fringe (Branh(Branh(Leaf "a",Leaf "b"),Branh(Leaf "",Leaf "d")));;it : string list = ["a"; "b"; ""; "d"℄The �rst version reates 6 ons ells, the seond only 4. On larger trees thee�et an be more dramati. Another situation where gratuitous onsing an ropup is in pattern mathing. For example, onsider the ode fragment:fun [℄ -> [℄| (h::t) -> if h < 0 then t else h::t;;The `else' arm reates a ons ell even though what it onstruts was in fatthe argument to the funtion. That is, it is taking the argument apart and thenrebuilding it. One simple way of avoiding this is to reode the funtion as:fun l ->math l with[℄ -> [℄| (h::t) -> if h < 0 then t else l;;However CAML o�ers a more exible alternative: using the as keyword, a namemay be identi�ed with ertain omponents of the pattern, so that it never needs tobe rebuilt. For example:fun [℄ -> [℄| (h::t as l) -> if h < 0 then t else l;;



4.3. IMPERATIVE FEATURES 414.2.3 Foring evaluationWe have emphasized that, sine CAML does not evaluate underneath funtionabstrations, one an use suh onstruts to delay evaluation. We will see someinteresting examples later. Conversely, however, it an happen that one wants tofore evaluation of expressions that are hidden underneath funtion abstrations.For example, reall the tail reursive fatorial above:#let re tfat x n =if n = 0 then xelse tfat (x * n) (n - 1);;#let fat n = tfat 1 n;;Sine we never really want to use tfat diretly, it seems a pity to bind it to aname. Instead, we an make it loal to the fatorial funtion:#let fat1 n =let re tfat x n =if n = 0 then xelse tfat (x * n) (n - 1) intfat 1 n;;This, however, has the defet that the loal reursive de�nition is only evaluatedafter fat1 reeives its argument, sine before that it is hidden under a funtionabstration. Moreover, it is then reevaluated eah time fat is alled. We anhange this as follows#let fat2 =let re tfat x n =if n = 0 then xelse tfat (x * n) (n - 1) intfat 1;;Now the loal binding is only evaluated one, at the point of delaration of fat2.Aording to our tests, the seond version of fat is about 20% faster when alledon the argument 6. The additional evaluation doesn't amount to muh in this ase,more or less just unravelling a reursive de�nition, yet the speedup is signi�ant.In instanes where there is a lot of omputation involved in evaluating the loalbinding, the di�erene an be spetaular. In fat, there is a sophistiated researh�eld of `partial evaluation' devoted to performing optimizations like this, and muhmore sophistiated ones besides, automatially. In a sense, it is a generalization ofstandard ompiler optimizations for ordinary languages suh as `onstant folding'.In prodution ML systems, however, it is normally the responsibility of the user tofore it, as it is here in CAML Light.We might note, in passing, that if funtions are implemented by plugging to-gether ombinators, with fewer expliit funtion abstrations, there is more hanethat as muh of the expression as possible will be evaluated at delaration time. Totake a trivial example, f Æ g will perform any evaluation of f and g that may bepossible, whereas �x: f(g x) will perform none at all until it reeives its argument.On the other side of the oin, when we atually want to delay evaluation, we reallyneed lambdas, so a purely ombinatory version is impossible.4.3 Imperative featuresCAML has a fairly full omplement of imperative features. We will not spendmuh time on the imperative style of programming, and we assume readers already



42 CHAPTER 4. EFFECTIVE CAMLhave suÆient experiene. Therefore, we treat these topis fairly quikly with fewillustrative examples. However some imperative features are used in HOL Light,and some knowledge of what is available will stand the reader in good stead forwriting pratial CAML ode.4.3.1 ExeptionsWe have seen on oasion that ertain evaluations fail, e.g. through a failure inpattern mathing. There are other reasons for failure, e.g. attempts to divide byzero.#1 / 0;;Unaught exeption: Division_by_zeroIn all these ases the ompiler omplains about an `unaught exeption'. Anexeption is a kind of error indiation, but it need not always be propagated to thetop level. There is a type exn of exeptions, whih is e�etively a reursive type,though it is usually reursive only vauously. Unlike with ordinary types, one anadd new onstrutors for the type exn at any point in the program via an exeptiondelaration, e.g.#exeption Died;;Exeption Died defined.#exeption Failed of string;;Exeption Failed defined.While ertain built-in operations generate (one usually says raise) exeptions,this an also be done expliitly using the raise onstrut, e.g.#raise (Failed "I don't know why");;Unaught exeption: Failed "I don't know why"For example, we might invent our own exeption to over the ase of taking thehead of an empty list:#exeption Head_of_empty;;Exeption Head_of_empty defined.#let hd = fun [℄ -> raise Head_of_empty| (h::t) -> h;;hd : 'a list -> 'a = <fun>#hd [℄;;Unaught exeption: Head_of_emptyNormally exeptions propagate out to the top, but they an be `aught' insidean outer expression by using try ...with followed by a series of patterns to mathexeptions, e.g.#let headstring sl =try hd slwith Head_of_empty -> ""| Failed s -> "Failure beause "^s;;headstring : string list -> string = <fun>#headstring ["hi"; "there"℄;;it : string = "hi"#headstring [℄;;it : string = ""



4.3. IMPERATIVE FEATURES 43It is a matter of opinion whether exeptions are really an imperative feature.On one view, funtions just return elements of a disjoint sum onsisting of theirvisible return type and the type of exeptions, and all operations impliitly passbak exeptions. Another view is that exeptions are a highly non-loal ontrol owperversion, analogous to goto.2 Whatever the semanti view one takes, exeptionsan often be quite useful.4.3.2 Referenes and arraysCAML does have real assignable variables, and expressions an, as a side-e�et,modify the values of these variables. They are expliitly aessed via referenes(pointers in C parlane) and the referenes themselves behave more like ordinaryCAML values. Atually this approah is quite ommon in C too. For example, if onewants so-alled `variable parameters' in C, where hanges to the formal parametersof a funtion propagate outside, the only way to do it is to pass a pointer, so that thefuntion an dereferene it. Similar tehniques are often used where the funtion isto pass bak omposite data.In CAML, one sets up a new assignable memory ell with the initial ontents xby writing ref x. (Initialization is ompulsory.) This expression yields a referene(pointer) to the ell. Subsequent aess to the ontents of the ell requires an expliitdereferene using the ! operator, similar to unary * in C. The ell is assigned tousing a onventional-looking assignment statement. For example:#let x = ref 1;;x : int ref = ref 1#!x;;it : int = 1#x := 2;;it : unit = ()#!x;;it : int = 2#x := !x + !x;;it : unit = ()#x;;it : int ref = ref 4#!x;;it : int = 4Note that in most respets ref behaves like a type onstrutor, so one anpattern-math against it. Thus one ould atually de�ne an indiretion operatorlike !:#let ontents_of (ref x) = x;;ontents_of : 'a ref -> 'a = <fun>#ontents_of x;;it : int = 4As well as being mutable, referenes are sometimes useful for reating expliitlyshared data strutures. One an easily reate graph strutures where numerousnodes ontain a pointer to some single subgraph.Apart from single ells, one an also use arrays in CAML. In CAML these arealled vetors. An array of elements of type � has type � vet. A fresh vetor of sizen, with eah element initialized to x | one again the initialization is ompulsory| is reated using the following all:2Perhaps more preisely, to C's setjmp and longjmp.



44 CHAPTER 4. EFFECTIVE CAML#make_vet n x;;One an then read element m of a vetor v using:#vet_item v m;;and write value y to element m of v using:#vet_assign v m y;;These operations orrespond to the expressions v[m℄ and v[m℄ = y in C. Theelements of an array are numbered from zero. For example:#let v = make_vet 5 0;;v : int vet = [|0; 0; 0; 0; 0|℄#vet_item v 1;;it : int = 0#vet_assign v 1 10;;it : unit = ()#v;;it : int vet = [|0; 10; 0; 0; 0|℄#vet_item v 1;;it : int = 10All reading and writing is onstrained by bounds heking, e.g.#vet_item v 5;;Unaught exeption: Invalid_argument "vet_item"4.3.3 SequeningThere is no need for an expliit sequening operation in CAML, sine the normalrules of evaluation allow one to impose an order. For example one an do:#let _ = x := !x + 1 inlet _ = x := !x + 1 inlet _ = x := !x + 1 inlet _ = x := !x + 1 in();;and the expressions are evaluated in the expeted order. Here we use a speialpattern whih throws away the value, but we ould use a dummy variable nameinstead. Nevertheless, it is more attrative to use the onventional notation forsequening, and this is possible in CAML by using a single semiolon:#x := !x + 1;x := !x + 1;x := !x + 1;x := !x + 1;;



4.3. IMPERATIVE FEATURES 454.3.4 Interation with the type systemWhile polymorphism works very well for the pure funtional ore of CAML, it hasunfortunate interations with some imperative features. For example, onsider thefollowing:#let l = ref [℄;;Then l would seem to have polymorphi type � list ref . In aordane withthe usual rules of let-polymorphism we should be able to use it with two di�erenttypes, e.g. �rst#l := [1℄;;and then#hd(!l) = true;;But this isn't reasonable, beause we would atually be writing something as anobjet of type int then reading it as an objet of type bool. Consequently, somerestrition on the usual rule of let polymorphism is alled for where referenes areonerned. There have been many attempts to arrive at a sound but onvenientrestrition of the ML type system, some of them very ompliated. Reently, dif-ferent versions of ML seem to be onverging on a relatively simple method, alledthe value restrition, due to Wright (1996), and CAML implements this restrition,with a twist regarding toplevel bindings. Indeed, the above sequene fails. But theintermediate behaviour is interesting. If we look at the �rst line we see:#let l = ref [℄;;l : '_a list ref = ref [℄The undersore on the type variable indiates that l is not polymorphi inthe usual sense; rather, it has a single �xed type, although that type is as yetundetermined. The seond line works �ne:#l := [1℄;;it : unit = ()but if we now look at the type of l, we see that:#l;;it : int list ref = ref [1℄The pseudo-polymorphi type has now been �xed. Granted this, it is lear thatthe last line must fail:#hd(!l) = true;;Toplevel input:>hd(!l) = true;;> ^^^^This expression has type bool,but is used with type int.So far, this seems quite reasonable, but we haven't yet explained why the sameundersored type variables our in apparently quite innoent purely funtionalexpressions, and why, moreover, they often disappear on eta-expansion, e.g.



46 CHAPTER 4. EFFECTIVE CAML#let I x = x;;I : 'a -> 'a = <fun>#I o I;;it : '_a -> '_a = <fun>#let I2 = I o I in fun x -> I2 x;;it : '_a -> '_a = <fun>#fun x -> (I o I) x;;it : 'a -> 'a = <fun>Other tehniques for polymorphi referenes often rely on enoding in the typesthe fat that an expression may involve referenes. This seems natural, but it anlead to the types of funtions beoming luttered with this speial information. Itis unattrative that the partiular implementation of the funtion, e.g. imperativeor funtional, should be reeted in its type.Wright's solution, on the other hand, uses just the basi syntax of the expressionbeing let-bound, insisting that it is a so-alled value before generalizing the type.What is really wanted is knowledge of whether the expression may ause side-e�etswhen evaluated. However sine this is undeidable in general, the simple syntatiriterion of its being or not being a value is used. Roughly speaking, an expressionis a value if it admits no further evaluation aording to the CAML rules | thisis why an expression an often be made into a value by performing a reverse etaonversion. Unfortunately this works against the tehniques for foring evaluation.Further readingHints and tips for pratial programming an be found in many funtional program-ming books, e.g. Paulson (1991). Methods used by language implementations toperform garbage olletion are disussed in depth by Jones and Lins (1996).
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Chapter 5Primitive basis of HOL LightThe introdutory hapter gave a brief introdution to the key ideas behind HOL andsimple interation with the system. Here we explain more systematially how math-ematial and logial assertions are represented in HOL, and list all the primitiveways of produing theorems.We should distinguish arefully between abstrat and onrete syntax. The ab-strat syntax of a term, whih HOL deals with internally, is a tree-like CAML datastruture indiating how the term is built up from its omponents. While this isonvenient to manipulate, humans are more used to representing terms by a linearsequene of haraters, the onrete syntax. HOL's quotation parser automatiallytranslates the onrete syntax into the abstrat syntax, and its prettyprinter per-forms an inverse mapping bak to onrete syntax. For simple use of HOL, it is notneessary to think muh about the distintion, still less to understand details of theabstrat syntax. However, we think it is best to over this early, sine it shows howsimple the underlying strutures really are. The present hapter an be read as anabstrat desription of the HOL logi, without onsidering the atual implementa-tion in CAML. However when we disuss onrete syntax, we are impliitly talkingabout that aepted by HOL's parser.5.1 TermsHOL's logi is based on �-alulus, a formalism invented by Alonzo Churh. In HOL,as in �-alulus, terms are built up starting just from onstants and variables usingappliation and abstration. All mathematial and logial assertions are representedin this uniform way.Constants and variables are probably familiar to the reader from an informalunderstanding of mathematis. They are used as the building-bloks of terms.Variables an have any name, e.g. n, x, p. Constants, e.g. [℄ (the empty list), >(true) and ? (false), are intended to be abbreviations for other terms, and exeptfor a ouple of primitive ones suh as equality itself, need to have been de�nedbefore they an be used in terms. We will see below how the user an de�ne newonstants.Appliation is appliation of a funtion to an argument, an operation used on-stantly in mathematis. The ustomary onrete syntax for the appliation of afuntion f to an argument t is f(t). HOL, following lambda-alulus onvention,allows the parentheses to be omitted, unless they are needed beause t is itself aompound term. For example, f(g(x)) needs at least the outer pair of parentheses,as HOL's parser interprets f g x to mean (f(g))(x), for reasons explained shortly.Abstration is in a preise sense a onverse operation to appliation. Given49



50 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHTa variable x and a term t, whih may or may not ontain x, one an onstrutthe so-alled lambda-abstration �x: t, whih means `the funtion of x that yieldst'. (In HOL's ASCII onrete syntax the bakslash is used, e.g. \x. t.) Forexample, �x: x+ 1 is the funtion that adds one to its argument. Abstrations arenot often seen in informal mathematis, but they have at least two merits. First,they allow one to write anonymous funtion-valued expressions without namingthem (oasionally one sees x 7! t[x℄ used for this purpose), and sine our logi isavowedly higher order, it's desirable to plae funtions on an equal footing with �rst-order objets in this way. Seondly, they make variable dependenies and bindingexpliit; by ontrast in informal mathematis one often writes f(x) in situationswhere one really means �x: f(x).We should give some idea of how ordinary mathematial and logial voabulary(like x + 1 above) is represented in this simple term struture. The basi idea isquite simple. Fixed operations that one wants to use have onstants orrespondingto them. For example, the negation of a real number is represented by a onstant--, and so �x is represented by the appliation of the onstant -- to the variablex. Exatly the same idea is used for logial operations like negation (`not'), so :p(`not p') is represented by the appliation of the logial negation onstant ~ to theterm p, whatever it may be.Appliation makes no speial provision for funtions of more than one argument,suh as addition. The trik used is known as urrying, after the logiian Curry(1930). (Atually the devie had previously been used by both Frege (1893) andSh�on�nkel (1924), but it's easy to understand why the orresponding appellationshaven't aught the publi imagination.) The trik is to make the operation takeits arguments `one at a time'. For example, rather than onsidering addition as afuntion R � R ! R, onsider it as a funtion R ! (R ! R). It aepts a singleargument a, and yields a new funtion of one argument that adds a to its argument.This intermediate funtion is applied to the seond argument, say b, and yields the�nal result a + b. In other words, what we write as a + b is represented by HOLas (+ a)(b). (Certain operations like + are written in�x in the onrete syntax, forthe sake of familiarity. But the use of urrying is independent of this.)This approah is used for many multiple-argument funtions in HOL. However,there is also a pairing operation `,', one again written in�x in the onrete syntax,that an also be used to form pairs of terms into new terms. Of ourse, this itselfhas to be urried, but all other funtions an be written in `unurried' form to takea tuple as its argument. Thus, what is written in the onrete syntax as f(x; y) isatually represented in HOL as f((; x)(y)).Operations that bind variables are ommon in mathematis. For example, inlimx!1 1x , the variable x is bound by a variable-binding operation lim, and servesmerely to onnet di�erent parts of the term. It an be renamed onsistently, e.g.limy!1 1y . By ontrast, the inner term 1x on its own depends on the value of x, andhere x is said to be free. Some other examples of bound variables in mathematisand logi are the variable x in the set abstration fx j Pg (`the set of all x suh thatP '), the variable n in �Nn=1n (`the sum of all n from 1 up to N ') and the variable z in8z: P (`for all z, P holds'). All these variable-binding operations are represented inHOL using speial onstants but with the atual variable-binding implemented bylambda-abstration. For example, there is a onstant liminf (`limit at in�nity') andone then represents limx!1 1x by liminf(�x: 1x ), or expanding the body ompletely,liminf(�x: (= 1)(x)). This means one should think of liminf as a funtion fromreal funtions to reals, i.e. (R ! R) ! R. Similarly, the logial assertion 8x: P isrepresented using the onstant ! as !(�x: P ).It is well-known that there is a 1-1 orrespondene between sets of elements(drawn from some global `universe' set U), and prediates or `harateristi fun-tions' U ! 2, where 2 is some 2-element set of truth values. In HOL, there is no



5.2. TYPES 51separate notion of `set': they are identi�ed with prediates, i.e. Boolean-valuedfuntions. Thus, one an simply write s x instead of x 2 s, though the latter isalso possible using the in�x onstant IN, e.g. x IN s. It is thus normal and oftenonvenient to slip between thinking of truth-funtions as prediates or as sets, evenwithin the same term.5.2 TypesAppliation and abstration are onverse in the preise sense that (�x: t)(x) isequal to t, and there is a primitive HOL rule to make this inferene and produethe theorem ` (�x: t)(x) = t. More generally, HOL is apable of proving that` (�x: t)(s) = t[s=x℄ where the right-hand side denotes the appropriate (see later)replaement of eah instane of x in t by s. For example, (�x: 1 + x)(y) = 1 + y.Unfortunately, even these banalities would allow one to get inonsistenies withoutfurther restritions. For example, using the logial negation operation, we an derivethe Russell paradox about the set of all sets that do not ontain themselves (thinkof P x as x 2 P if preferred):` (�x: :(x x))(�x: :(x x)) = :((�x: :(x x))(�x: :(x x)))In other words, something is equal to its own logial negation! The problemseems to arise beause no proper distintion of levels is made: x is treated both asa prediate and the argument to a prediate. Even if it didn't lead to inonsisteny,one might argue that it looks a bit strange. Normally one likes to have a lear idea ofwhat sort of mathematial objet a term denotes | our explanation of urrying, forexample, leaned on the idea that addition is thought of as a funtion R ! (R ! R).Aordingly, Churh (1940) augmented �-alulus with a theory of types, simpli-fying Russell's system from Prinipia Mathematia (Whitehead and Russell 1910)and giving what is often alled `simple type theory'. HOL follows this system quitelosely. Every term has a unique type whih is either one of the basi types or theresult of applying a type onstrutor to other types. The only basi type in HOLis initially the type of booleans bool and the only type operator is the funtionspae onstrutor !. (Many others are added later, as we shall see.) HOL extendsChurh's system by allowing also `type variables' whih give a form of polymor-phism. Constants with polymorphi type are generi, and an have various typesresulting from �xing the names of the type variables. For example, the equalityrelation has type � ! � ! bool where � is a type variable. This means it an beused with any types, even if they themselves involve type variables, replaing �.Just as in typed programming languages, funtions may only be applied toarguments of the right type; only a funtion of type f :  ! : : : may be applied toan argument of type .For familiarity, types are written in a onrete syntax with some type onstru-tors like ! written in�x. Just as with onstant and variable terms, type variablesand type onstants are not distinguished syntatially: HOL's parser assumes thateverything whose name orresponds to a onstant is a onstant, and every otheridenti�er is a variable. However, it's ustomary to use names beginning with anupperase letter for type variables, e.g. A and State. Examples of HOL types then,inlude bool and A ! bool (where A is a type variable). We write t :  to indiatethat a term t has type . Readers familiar with set theory may like to think of typesas sets within whih the objets denoted by the terms live, so t :  an be read ast 2 . Note that the use of the olon is already standard in set theory when usedfor funtion spaes, i.e. one typially writes f : A! B rather than f 2 A! B.



52 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT5.3 Primitive inferene rulesThe HOL formal system allows the dedution of arbitrary sequents of the form�1; : : : ; �n `  (read as `if �1 and . . . and �n then  ') where the terms involvedhave type bool. (Where there are no assumptions it is ustomary to write just `  .)There are no additional logial onstants involved in the basi dedutive system.The derivable sequents are those that an be generated by the following inferenerules. Eah rule is written with the onlusion below a line and the hypothesesabove, and with the standard name for the inferene rule, orresponding in fat toa CAML identi�er in HOL, at the right.` t = t REFLThis rule says that equality is reexive.� ` s = t � ` t = u� [� ` s = u TRANSThis rule says that equality is transitive. It is of ourse neessary to inlude inthe onlusion theorem any assumption that may have played a role in deduingthe top two theorems. � ` s = t � ` u = v� [� ` s(u) = t(v) MK COMBThis says that equal funtions applied to equal arguments give equal results.We have assumed without omment that the types agree, e.g. s : � ! � , t : � ! � ,u : � and v : �. � ` s = t� ` (�x: s) = (�x: t) ABSThis rule requires that x is not a free variable in any of the assumptions �. It saysthat if, without using any speial properties of x, we dedued that two expressionsinvolving x are equal, then the funtions that take x to those values are equal.` (�x: t)x = t BETAThis expresses the fat that ombination and abstration are onverse opera-tions, i.e. `the funtion that takes an argument x to t', applied to an argument x,gives t. fpg ` p ASSUMEThis says simply that from any p we an dedue p. Of ourse, p must have typebool. � ` p = q � ` p� [� ` q EQ MPThis onnets equality with dedution, saying that if p and q are equal, and wean dedue p, then we an dedue q (from the appropriately ombined assumptions).� ` p � ` q(�� fqg) [ (�� fpg) ` p = q DEDUCT ANTISYM RULEThis rule also onnets equality and dedution, e�etively saying that equalityon the boolean type represents logial equivalene. Ignoring extra hypotheses fora moment, it says that if we an dedue p from q and q from p, then p and q areequal, under the aumulated assumptions.



5.4. DEFINITIONS 53�[x1; : : : ; xn℄ ` p[x1; : : : ; xn℄�[t1; : : : ; tn℄ ` p[t1; : : : ; tn℄ INSTThis rule expresses the fat that variables are to be interpreted as shemati,i.e. if p is true for variables x1; : : : ; xn, then we an replae those variables by anyterms of the same type and still get something true. Note that the substitution isalso applied to all hypotheses.�[�1; : : : ; �n℄ ` p[�1; : : : ; �n℄�[1; : : : ; n℄ ` p[1; : : : ; n℄ INST TYPEThis is the same, but for substitution of type variables rather than term vari-ables.5.4 De�nitionsAll theorems in HOL are dedued using just the above rules, starting from a smallset of axioms, whih we will disuss shortly. Mathematis in HOL is derived justfrom these very basi axioms. However there is a speial rule of de�nition, whihallows the addition of new onstants and orresponding new axioms provided theyare purely de�nitional in harater.1 If t : � is any term without free (term or type)variables, and  : � an unused onstant, then  : � may be added to the stok ofonstants, and the axiom `  = t inluded as a theorem.One an also de�ne new types and type onstrutors in HOL. Given any subsetof a type , marked out by its harateristi prediate P :  ! bool, then given atheorem asserting that P is nonempty, one an de�ne a new type Æ (or type operatorif  ontains type variables) in bijetion with this set.'
&

$
%

'&$% '&$%newtypeÆ existingtype� bijetions - P
Both these de�nitional priniples give a way of produing new mathematialtheories without ompromising soundness: one an easily prove that these priniplesare onsisteny-preserving. E�etively, onstant de�nitions ould be avoided simplyby writing the de�nitional expansion out in full, while type de�nitions ould beavoided by inorporating appropriate set onstraints into theorems: rather thansaying 8x : Æ: : : : one ould say 8y : : P (y)) : : :, with the appropriate isomorphimappings.21From a logial point of view, we may say that HOL is atually an evolving sequene of logialsystems, eah a onservative extension of previous ones.2In general, the logial ore of HOL is reasonably intuitionisti, with lassial priniples intro-dued later as axioms. However the above de�nitional priniple jars slightly with this sine one ofthe type bijetions is a total funtion  ! Æ. This is at least weakly nononstrutive, allowing usfor example to pass from p) 9x: q[x℄ to 9x: p) q[x℄.



54 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT5.5 Derived rulesHOL's logi is then built up by inluding onstants for the usual logial operations.An attrative feature is that these do not need to be postulated: it has been knownsine Henkin (1963) how to de�ne all logial onstants in terms of equality, at leastfrom a lassial point of view. We do things in an `intuitionisti' manner, givinguseful dedutive rules before we later assert the Law of the Exluded Middle, i.e.that every Boolean term is either true or false. While it is more typial (Prawitz1965) to take a few additional logial onstants suh as 8 and ) as primitive, ourapproah is very similar to the usual de�nitions of the internal logi of a topos; seee.g. Lambek and Sott (1986).We will now show how all the logial onstants are de�ned. These are > (true),^ (and), ) (implies), 8 (for all), 9 (there exists), _ (or), ? (false) : (not) and 9!(there exists a unique). Reall that what we write as 8x:P [x℄ is a syntati sugaringof 8(�x: P [x℄). Using this tehnique, quanti�ers and the Hilbert " operator an beused as if they bound variables, but with all binding implemented in terms of �-alulus. There are several examples in this book.> = (�x: x) = (�x: x)^ = �p: �q: (�f: f p q) = (�f: f > >)) = �p: �q: p ^ q = p8 = �P: P = �x:>9 = �P: 8Q: (8x: P (x)) Q)) Q_ = �p: �q: 8r: (p) r)) (q ) r)) r? = 8P: P: = �t: t) ?9! = �P: 9P ^ 8x: 8y: P x ^ P y ) (x = y)While these might look puzzling at �rst sight, a little thought will onvinethe reader that they express what is intended. For example 8x: P [x℄, or withoutsugaring 8(�x: P [x℄), says that for any a, P [a℄, or equivalently (�x: P [x℄) a, is true.This is exatly the same as saying that �x: P [x℄ is a onstant funtion that alwaysreturns > (true), whih is how 8 is de�ned.From the above de�nitions and the primitive rules, it is then possible to de�nederived inferene rules that give onvenient ways of manipulating logial formulaswithout expliitly taking everything bak to the de�nitions. Beause HOL is aprogrammable system in the LCF style, these an all be enapsulated as CAMLfuntions that look to the user the same as primitive rules.5.6 Classial axiomsThat onludes the logi proper, and in fat quite a bit of interesting mathematis,e.g. in�nitary indutive de�nitions, an be developed just from that basis (Harrison1995). But for general use we adopt three more axioms.� First, there is an axiom of extensionality, whih we enode as an �-onversiontheorem: ` (�x: t x) = t.� Seondly, we introdue one new primitive logial onstant ", of polymorphitype (�! bool)! �, the so-alled Hilbert hoie operator. It is aompaniedby a new axiom giving the basi property of ", namely that it piks outsomething satisfying P whenever there is something to pik:



5.6. CLASSICAL AXIOMS 55` 8x: P (x)) P ("x: P (x))The intuitive reading of "x: P (x) is `some x suh that P (x)', whih is aninvaluable idiom when expressing some mathematial assertions. (Note thatif there isn't anything satisfying P (x), then "x: P (x) is still well-de�ned, butone an't prove any interesting properties of it.) However the above axiomisn't just an innoent onveniene: it is a form of the Axiom of (global)Choie; sine P an ontain other variables, one an pass from 8x: 9y: P [x; y℄to 8x: P [x; "y: P [x; y℄℄. Rather surprisingly, it also makes the logi lassial,i.e. allows us to prove the theorem ` 8p: p _ :p; see Beeson (1984) for theproof we use.� Finally we introdue a new type ind of `individuals', and add an axiom ofin�nity, asserting that the type ind is in�nite. The Dedekind/Peire de�nitionof `in�nite' is used:` 9f : ind! ind: (8x1; x2: (f(x1) = f(x2))) (x1 = x2))^:(8y: 9x: y = f(x))That is, we assert the existene of a funtion from the type of individuals toitself that is injetive but not surjetive. Suh a mapping is impossible if thetype is �nite, sine it would entail that it an be put into 1-1 orrespondenewith a proper subset of itself.From that simple foundation, all the HOL mathematis and appliations, in-luding those desribed here, is developed by de�nitional extension.



56 CHAPTER 5. PRIMITIVE BASIS OF HOL LIGHT



Chapter 6Implementation in CAMLThe above desription of HOL's logial basis abstrated away somewhat from itsatual realization in CAML. However it has a fairly diret realization as three CAMLtypes to represent HOL types, terms and theorems. (Note the objet-meta distin-tion here: one has a CAML type of data strutures representing HOL types.) TheseCAML types are all treated as abstrat, with members only being reated via spe-ial interfae funtions.1 This guards against onstrution of meaningless types(e.g. using unde�ned type onstrutors), ill-typed terms, and theorems that havenot been proved using the primitive rules.6.1 TypesEah HOL type is either a type variables, or a type onstrutor applied to othertypes. Primitive types like bool are treated as nullary onstrutors, i.e. onstrutorswith no arguments. We will now show some of the most useful CAML funtions formanipulating types.get_type_arity :string -> int �nds the arity of the appropriately-namedtype onstrutor. If there is no type onstrutor with that name, it fails. Forexample:#get_type_arity "bool";;it : int = 0#get_type_arity "fun";;it : int = 2#get_type_arity "on";;Unaught exeption: Failure "find"The rest of the funtions divide niely into three groups: those for reating HOLtypes, those for breaking them apart, and those for testing their struture.mk_vartype :string -> hol_type reates a type variable with the requestedname. This is permissible even if there is also a type onstant of that name, butan look onfusing. For example:#mk_vartype "A";;it : hol_type = `:A`#mk_vartype "bool";;it : hol_type = `:bool`1This ould atually be enfored by the CAML system by separately ompiling the modules.57



58 CHAPTER 6. IMPLEMENTATION IN CAMLmk_type :string * hol_type list -> hol_type reates a omposite type giventhe name of a type onstrutor and a list of omponent types of the right length.It fails if the name is not that of a onstrutor, or if the onstrutor's arity doesn'tmath the length of the list.#mk_type("bool",[mk_vartype "A"℄);;Unaught exeption: Failure "mk_type: wrong number of arguments to bool"#mk_type("bool",[℄);;it : hol_type = `:bool`#mk_type("fun",[it; it℄);;it : hol_type = `:bool->bool`dest_vartype :hol_type -> string reverses the e�et of mk_vartype, i.e.takes a type variable and returns its name. It fails if the type isn't a type vari-able.#dest_vartype `:A`;;it : string = "A"#dest_vartype `:bool`;;Unaught exeption: Failure "dest_vartype: type onstrutor not a variable"#dest_vartype (mk_vartype "bool");;it : string = "bool"Analogously, dest_type :hol_type -> string * hol_type list reverses thee�et of mk_type, and fails if given a type variable.#dest_type `:bool`;;it : string * hol_type list = "bool", [℄#dest_type `:A`;;Unaught exeption: Failure "dest_type: type variable not a onstrutor"#dest_type `:bool->bool`;;it : string * hol_type list = "fun", [`:bool`; `:bool`℄The funtions is_type :hol_type -> bool and is_vartype :hol_type -> booltest whether a HOL type is a omposite type or a type variable respetively.6.2 TermsThe CAML funtion get_onst_type :string -> hol_type �nds the type of theappropriately-named onstant, or fails if there is no onstant of that name. Someonstants have polymorphi type, meaning a type inluding type variables. Suh aonstant an have any type that arises from replaing the omponent type variablesonsistently by other types. For example the equality onstant is a urried operatorof two arguments, but the types of the arguments are arbitrary, provided they arethe same:#get_onst_type "=";;it : hol_type = `:A->(A->bool)`In suh ases, the type returned by get_onst_type is a most general type, andan be speialized by setting type variables appropriately. In general, terms featureinstanes of polymorphi onstants. The type of an arbitrary term an by foundusing type_of :term -> hol_type, e.g.



6.2. TERMS 59#type_of `x:A`;;it : hol_type = `:A`#type_of `x = x`;;Warning: inventing type variablesit : hol_type = `:bool`By analogy with HOL types, the rest of the funtions divide niely into thosefor reating HOL terms, those for breaking them apart, and those for testing theirstruture.mk_var :string * hol_type -> term reates a HOL variable with the hosenname and type.#mk_var("x",mk_vartype "A");;it : term = `x`#type_of it;;it : hol_type = `:A`#mk_var("p",`:bool`);;it : term = `p`mk_onst :string * (hol_type * hol_type) list -> term is the analogousonstrutor for HOL onstants, but it's a bit more ompliated to use. The seondargument indiates not the desired type, but rather a list of settings for the typevariables in order to attain that type. For example:#mk_onst("=",[℄);;it : term = `(=)`#type_of it;;it : hol_type = `:A->(A->bool)`#mk_onst("=",[`:bool`,`:A`℄);;it : term = `(=)`#type_of it;;it : hol_type = `:bool->(bool->bool)`There is an alternative funtion mk_monst :string * hol_type -> termwhihworks out the instantiations itself. However it is not part of the logial ore, relyingas it does on higher-level funtions to math up types. It will fail if the desired typeannot be realized:#mk_monst("=",`:bool->bool->bool`);;it : term = `(=)`#type_of it;;it : hol_type = `:bool->(bool->bool)`#mk_monst("=",`:A->B->C`);;Unaught exeption: Failure "mk_onst: generi type annot be instantiated"mk_omb : term * term -> term reates an appliation; it is given two terms,one a funtion and one an argument, and tries to reate the orresponding applia-tion term, failing if the types don't math up.#mk_omb(`P:A->bool`,`x:A`);;it : term = `P x`#mk_omb(`P:A->bool`,`x:B`);;Unaught exeption: Failure "mk_omb: types do not agree"mk_abs :term * term -> term reates an abstration term, given a variableto abstrat over and the term to at as body. It fails if the �rst term argument isn'ta variable.



60 CHAPTER 6. IMPLEMENTATION IN CAML#mk_abs(`x:A`,`x:A`);;it : term = `\x. x`#mk_abs(it,it);;Unaught exeption: Failure "mk_abs: not a variable"There are now analogous destrutor funtions dest_var, dest_onst, dest_omband dest_abs that at as inverses to the above. Stritly speaking dest_onst is aninverse to mk_monst, sine it returns the onstant name and type, not the instan-tiation list. Similarly, there are disriminator funtions is_var, is_onst, is_absand is_omb to test whether a term is in eah lass.#dest_omb `~p`;;it : term * term = `(~)`, `p`#dest_omb `\p. ~p`;;Unaught exeption: Failure "dest_omb: not a ombination"#dest_abs `\p. ~p`;;it : term * term = `p`, `~p`#is_var `x:A`;;it : bool = true#is_var `~p`;;it : bool = falseAs well as the primitive syntax operations on terms, there are various derivedones, whih avoid the need to redue everything right down to the basi opera-tions above. For example, rator and rand (the names established lambda-alulusjargon) take respetively the operator and operand of an appliation, i.e. returnrespetively f and x when applied to a term f x. They an be implemented justby applying dest omb to get a pair of terms, then applying the CAML funtionsfst or snd:#let rator tm = fst(dest_omb tm);;rator : term -> term = <fun>#let rand tm = snd(dest_omb tm);;rand : term -> term = <fun>#rand `SUC 2`;;it : term = `2`#rator `1 + 2`;;it : term = `(+) 1`#rand `1 + 2`;;it : term = `2`There are also derived funtions to reate, break apart and test for equations:#dest_eq `x = 1`;;it : term * term = `x`, `1`#is_eq `x = y + 3`;;it : bool = true#is_eq `x <= y + 3`;;it : bool = false#is_eq `p = q`;;it : bool = true#mk_eq(`T`,`F`);;it : term = `T = F`Similarly, when the other onstants are de�ned, they often have a orrespondingset of funtions to reate, test, and destroy them. For example, mk imp reates an



6.3. THEOREMS 61impliation p ==> q, dest onj breaks apart a onjuntion p /\ q, and is_disjtests if a term is a disjuntion p \/ q.6.3 TheoremsHOL theorems an be taken apart into a list of assumptions and a onlusionusing the funtion dest_thm :thm -> term list * term. The hypotheses andonlusion an be grabbed separately using hyp and onl. However they an onlybe reated by using one of the primitive rules, making a term or type de�nition,or �nally asserting an axiom. The last of these is only done three times for thebasi mathematial axioms, and thereafter HOL users are disouraged from addingnew axioms, as this does not maintain the guarantee of onsisteny. The primitiveinferene rules were listed earlier, and their CAML realizations are simply CAMLfuntions returning something of type thm. For example:#BETA `(\p. ~p) p`;;it : thm = |- (\p. ~p) p = ~p#INST [`q:bool`,`p:bool`℄ it;;it : thm = |- (\p. ~p) q = ~q#TRANS (ASSUME `p:bool = q`) (ASSUME `q:bool = r`);;it : thm = p = q, q = r |- p = r#dest_thm it;;it : term list * term = [`p = q`; `q = r`℄, `p = r`New de�nitions are made using the funtion new definition, whih takes anequational term ` = t', where  is a variable. The system introdues a new on-stant alled  and returns the theorem |-  = t for the new onstant. For example:#new_definition `true = T`;;it : thm = |- true = TLater on, more onvenient derived de�nitional priniples are built on top of this| even new definition is bound to a more powerful derived funtion that an, forexample, aept funtion de�nitions in the form `f x1 ... xn = ...'.The primitive funtion for performing type de�nitions is new_basi_type_definition.The user gives the desired name for the new type and for the bijetions that mapbetween the old and new types, and �nally a theorem asserting that the hosensubset of the existing type ontains some objet. For example, we an de�ne a newtype single in bijetion with the 1-element subset of bool ontaining just T. Theappropriate prediate is the funtion that asks of its argument x whether it is equalto t, i.e. \x. x = T:#let th1 = BETA_CONV `(\x. x = T) T`;;th1 : thm = |- (\x. x = T) T = T = T#let th2 = EQ_MP (SYM th1) (REFL `T`);;th2 : thm = |- (\x. x = T) T#new_basi_type_definition "single" ("mk_single","abs_single") th2;;it : thm * thm =|- mk_single (abs_single a) = a,|- (\x. x = T) r = abs_single (mk_single r) = rTwo theorems are returned as an ML pair, whih together imply that the hosenbijetions map 1-1 between the new type and the hosen subset of the old one.



62 CHAPTER 6. IMPLEMENTATION IN CAML6.4 Some prede�ned onstantsHOL has a large number of onstants prede�ned. The most basi of these are thelogial operators whose de�nitions were given in passing above. Here is a tableshowing the onventional logial symbols, HOL's ASCII approximation, and theEnglish reading. In the onrete syntax, they bind aording to their order in theabove table, negation being strongest and the variable-binding operations weakest.? F Falsity> T Truth: ~ Not^ /\ And_ \/ Or) ==> Implies� = If and only if8 ! For all9 ? There exists9! ?! There exists a unique" � Some . . . suh that� \ The funtion taking . . . toReaders are no doubt used to writing symbols like + rather than the word `plus',but may well �nd these analogous logial operations less familiar. However, it'sworth spending some time getting austomed to them, sine they are needed tounderstand most HOL terms. Here are a few examples:� T says `truth holds'.� F ==> p says `if falsity holds, so does any p'.� !x. x > 0 = (?y. x = y + 1) says `for all x, x is greater than zero if andonly if there exists a y suh that x = y + 1'.� x >= y /\ u > v ==> x + u > y + v says `if x is greater than or equal toy and u is greater than v, then x+ u is greater than y + v'.� p /\ q ==> q \/ r says `if p and q are true, then either q or r is true'.� ~(p = ~p) says `it is always false that p holds if and only if p does not hold'.� (m * n = 0) = (m = 0) \/ (n = 0) says `mn is zero if and only if either mis zero or n is zero'.� (\x. x + 1) 3 = 4 says that the funtion mapping any x to x + 1, whenapplied to the argument 3, is equal to 4.� (?!x. P x) ==> !a. P(a) = (a = �x. P x) says `if there is a unique x sat-isfying P , then for all a, P holds of a if and only if a is equal to some anonialx satisfying P '.� !P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n expresses the prin-iple of omplete mathematial indution, i.e. `for every prediate P overnumbers, if for eah n, whenever P holds for eah smaller m, then P holdsfor n, then for every n, P holds'.



6.4. SOME PREDEFINED CONSTANTS 63There are also a lot of onstants de�ned in mathematial theories. Most of theseshould look familiar, and in any ase are summarized in a later hapter. However,the following is a list of some of the less obvious ones, whih may help the readerfollow some of the examples below.HOL notation Standard symbol MeaningSUC n n+ 1 Suessor of n# (none) Natural map N ! R or N ! Z--x �x Unary negation of xinv(x) x�1 Multipliative inverse of xabs(x) jxj Absolute value of xm EXP n mn Natural m raised to natural power nx pow n xn Real x raised to natural number power nroot n x npx Positive nth root of xSum(n,d) f �n+d�1i=n f(i) Sum of d terms f(i) starting with f(n)x IN s x 2 s x is a member of set sEMPTY ; The empty setUNIV none Universe set for a typex INSERT s fxg [ s Set s with element xs DELETE x s� fxg Set s without element xs UNION t s [ t Union of sets s and ts INTER t s \ t Intersetion of sets s and ts DIFF t s� t Di�erene of sets s and tUNIONS s S s Union of all members of sINTERS s T s Intersetion of all members of sFormally, naturals, integers and reals are all di�erent types, hene the use of amapping # between then. The usual arithmeti operations like + are overloaded,meaning that they are used for addition of reals, integers, and natural numbers.(The main exeption is that EXP is used for natural numbers.) The next hapterexplains the translation from the usual symbols to di�erent onstants under thesurfae.



64 CHAPTER 6. IMPLEMENTATION IN CAML



Chapter 7Parsing and printingWe have already used the automati quotation parsers quite extensively, and it'stime we looked at the relationship between the underlying representations and thesurfae syntax in more detail. Many onvenient onstruts are representing usingsome speial onstants inside HOL, and the parser and printer transform suh inter-nal representations into more palatable surfae syntax. For example the onditionalexpressionif b then e1 else e2is represented inside the logi using a onstant COND:CONS b e1 e2Various other handy syntati onstruts are also dealt with in this way, e.g.abstrations over non-variables, and let-terms. For example\(x,y,z). x + y + zis represented by:GABS (\f. !x y z. GEQ (f (x,y,z)) (x + y + z))andlet x = 1 and y = 2 in x + yis represented by:LET (\x y. LET_END (x + y)) 1 2Apart from speial ase like these, the parser-printer transformations are prettystraightforward. Identi�ers may be delared in�x, and given a preedene andassoiativity (right or left) using parse as infix. Here are a few genuine examplesfrom the soure ode:parse_as_infix("<",(12,"right"));;parse_as_infix("+",(16,"right"));;parse_as_infix("-",(18,"left"));;parse_as_infix("IN",(11,"right"));;parse_as_infix("UNION",(16,"right"));;65



66 CHAPTER 7. PARSING AND PRINTING7.1 OverloadingThe parser and printer allow front-end symbols to be overloaded, and tries to resolveambiguities by exploiting type information. Before a symbol an be overloaded, itmust be given a most general type, and any term it maps to must have a typethat is an instane of this type. During typeheking, the overloaded symbol isgiven its most general type. If the typeheking proess �xes the type suÆientlyto disambiguate, then the appropriate target is piked. Otherwise some instaneis defaulted, and typeheking repeated until all symbols have been resolved. Forexample, the addition symbol is made overloadable:make_overloadable "+" `:A->A->A`;;Now in order to make "+" overloaded to natural number, integer and real ad-dition, we do:overload_interfae ("+",`(+):num->num->num`);overload_interfae ("+",`int_add:int->int->int`);overload_interfae ("+",`real_add:real->real->real`);Now the symbol + will map to one of three terms in the underlying represen-tation, deided aording to type. The default hosen is always the most reentlydelared version, real addition after the above sequene. If the user wants to avoidany defaults, then type information sometimes needs to be supplied. All the follow-ing are unambiguous:#`x + 1`;;it : term = `x + 1`#`x:int + y`;;it : term = `x`#`(x + y):real`;;it : term = `x + y`Instead of mapping a symbol to multiple targets, one an always hoose just one.The funtion override interfae is similar to overload interfae, exept thatit removes any existing mappings for the symbol �rst. For example, the user whodislikes the use of equality to mean logial equivalene ould remap HOL Light'sinterfae as follows:#parse_as_infix("<=>",(2,"right"));;it : unit = ()#override_interfae ("<=>",`(=):bool->bool->bool`);;it : unit = ()#`x = F`;;it : term = `x <=> F`#`x <=> F`;;it : term = `x <=> F`



Chapter 8ConversionsA onversion in HOL is a derived rule of type term -> thm that when given aterm t, always returns (assuming it doesn't fail) a theorem of the form |- t = t'.Conversions were introdued into Cambridge LCF by Paulson (1983), who showedthat they gave a onvenient and regular way of implementing many handy derivedrules. Conversions an be onsidered as transforming a term into an equal one,and also giving a theorem to justify this equality. They are therefore useful asbuilding-bloks for larger transformations, similarly justi�ed.HOL has a variety of built-in onversions, and they often have names endingin CONV as a reminder that they are onversions. Rather trivially, for example, theprimitive inferene rule REFL is a onversion, whih takes a term t and returns atheorem |- t = t. If we think of onversions as transforming one term to another,REFL is a sort of `identity' onversion. In fat, for this reason, it is given a newname ALL CONV, sine it is a onversion that always, trivially, works on any term.Its onverse, in a sense, is a onversion NO CONV whih always fails:#let (ALL_CONV:onv) = REFL;;ALL_CONV : onv = <fun>#let (NO_CONV:onv) = fun tm -> failwith "NO_CONV";;NO_CONV : onv = <fun>A slightly more interesting onversion is BETA CONV, whih performs a beta re-dution step on terms of the form (\x. ...) t:#BETA_CONV `(\x. x + 1) 2`;;it : thm = |- (\x. x + 1) 2 = 2 + 1There are also some onversions speial to partiular theories. For example thereis a onversion NUM RED CONV to evaluate the result of an arithmeti operation ontwo numerals:#NUM_RED_CONV `2 * 2`;;it : thm = |- 2 * 2 = 4#NUM_RED_CONV `2 EXP 10`;;it : thm = |- 2 EXP 10 = 1024#NUM_RED_CONV `100 DIV 7`;;it : thm = |- 100 DIV 7 = 148.1 ConversionalsThese onversions are building bloks. The mehanism for building them up isa suite of higher order funtions alled `onversionals' or `onversion ombining67



68 CHAPTER 8. CONVERSIONSoperators'. These allow one to onstrut omposite onversions in a user-de�nedway. For example, the onversional THENC, used in�x, uses one onversion and thenafterwards, another, e.g.#(BETA_CONV THENC NUM_RED_CONV) `(\x. x + 1) 2`;;it : thm = |- (\x. x + 1) 2 = 3The onversional REPEATC allows one to use a onversion repeatedly until it fails(maybe zero times), e.g.#REPEATC BETA_CONV `23`;;it : thm = |- 23 = 23#REPEATC BETA_CONV `(\x. x + 1)`;;it : thm = |- (\x. x + 1) = (\x. x + 1)#REPEATC BETA_CONV `(\x. x + 1) 2`;;it : thm = |- (\x. x + 1) 2 = 2 + 1#REPEATC BETA_CONV `(\x. (\y. x + y) 2) 1`;;it : thm = |- (\x. (\y. x + y) 2) 1 = 1 + 28.2 Depth onversionsThe onversions above are still only applied at the top level of a term. For example,the following fails beause the beta-redex is deeper inside the term than expeted:#BETA_CONV `1 + (\x. x + 1) 2`;;Unaught exeption: Failure "BETA_CONV: Not a beta-redex"However there is an additional set of onversionals that apply the given onver-sion at depth inside the term. For example ONCE DEPTH CONV applies a onversionto the �rst appliable term(s) enountered in a top-down traversal of the term. Nodeeper terms are examined, but several terms an be onverted provided they aredisjoint:#ONCE_DEPTH_CONV NUM_RED_CONV `1 + (2 + 3)`;;it : thm = |- 1 + 2 + 3 = 1 + 5#ONCE_DEPTH_CONV NUM_RED_CONV `(1 + 1) * (1 + 1)`;;it : thm = |- (1 + 1) * (1 + 1) = 2 * 2Conversions like NUM RED CONV an be used to redue a term ompletely by ap-plying it in a single bottom-up sweep. This is done by the onversional DEPTH CONV,e.g.#DEPTH_CONV NUM_RED_CONV `7 * (3 EXP 10) + 11`;;it : thm = |- 7 * 3 EXP 10 + 11 = 413354However, this isn't always what's needed; sometimes the at of applying aonversion at one level an reate new appliable terms lower down; in this aseDEPTH CONV will not reexamine them. Two other onversionals, TOP DEPTH CONVand REDEPTH CONV, will keep applying onversions as long as possible all over theterm.



8.2. DEPTH CONVERSIONS 69#DEPTH_CONV BETA_CONV `(\f x. f x) (\y. y + 1)`;;it : thm = |- (\f x. f x) (\y. y + 1) = (\x. (\y. y + 1) x)#REDEPTH_CONV BETA_CONV `(\f x. f x) (\y. y + 1)`;;it : thm = |- (\f x. f x) (\y. y + 1) = (\x. x + 1)#TOP_DEPTH_CONV BETA_CONV `(\f x. f x) (\y. y + 1)`;;it : thm = |- (\f x. f x) (\y. y + 1) = (\x. x + 1)#TOP_DEPTH_CONV NUM_RED_CONV `7 * (3 EXP 10) + 11`;;it : thm = |- 7 * 3 EXP 10 + 11 = 413354The di�erene is that the main sweeps are respetively top-down and bottom-up,whih an lead to one or the other being preferable, mainly for eÆieny reasons,in some situations. TOP DEPTH CONV is the default for HOL's rewriting, desribedin a later hapter.The onversionals all have fairly straightforward de�nitions using HOL's primi-tive and derived equality rules. For example, THENC just needs to apply the onver-sion to a term, getting a theorem, then take the right-hand side of this theorem'sonlusion, apply the seond onversion to that and then link the equations togetherusing the primitive inferene rule TRANS. One ould write an equivalent funtion as:#let THENC' onv1 onv2 t =let th1 = onv1 t inlet th2 = onv2 (rand(onl th1)) inTRANS th1 th2;;THENC' : ('a -> thm) -> (term -> thm) -> 'a -> thm = <fun>The depth onversionals an be implemented by a reursive traversal of the term,using primitive rules like MK COMB to lift the equational theorems up to the wholeterm. In fat, the implementations are a bit more sophistiated beause they areareful to avoid reating trivial equations unless needed.
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Chapter 9Derived rulesHOL has a variety of other derived rules that are not onversions, or at least aren'tused muh as in the previous hapter. Here we over some of the most basi ones.9.1 Logial rulesAll the logial onstants are de�ned; we have seen the de�nitions above. From thede�nitions, rules for manipulating them diretly are derived, so for most purposesusers an forget that they aren't primitives. Most of the rules are so-alled intro-dution and elimination rules of natural dedution (Prawitz 1965).1 For example,the introdution rule for onjuntions, CONJ, takes two theorems and gives a newtheorem that results from onjoining (`anding') them, e.g.#CONJ (REFL `1`) (ASSUME `x = 2`);;it : thm = x = 2 |- (1 = 1) /\ (x = 2)Conversely, the elimination rules CONJUNCT1 and CONJUNCT2 take a theoremwith a onjuntion as onlusion, and give new theorems for the left and rightarms. CONJ PAIR gives a pair of both, while CONJUNCTS repeatedly breaks down aonjuntive theorem into a list of theorems.#let th1 = CONJ (REFL `T`) (ASSUME `p /\ q`);;th1 : thm = p /\ q |- (T = T) /\ p /\ q#let th2 = CONJ (REFL `1`) th1;;th2 : thm = p /\ q |- (1 = 1) /\ (T = T) /\ p /\ q#CONJ_PAIR th2;;it : thm * thm = p /\ q |- 1 = 1, p /\ q |- (T = T) /\ p /\ q#CONJUNCTS th2;;it : thm list = [p /\ q |- 1 = 1; p /\ q |- T = T; p /\ q |- p; p /\ q |- q℄#CONJUNCT2 th1;;it : thm = p /\ q |- p /\ qAbstrating away a bit from the implementation in CAML, we an representthe rules in the usual form as: � ` p � ` q� [� ` p ^ q CONJ1Although HOL uses a sequent presentation, the onventional derived rules are natural dedu-tion rules, i.e. introdution and elimination on the right, rather than left and right introdution.71



72 CHAPTER 9. DERIVED RULES� ` p ^ q� ` p CONJUNCT1� ` p ^ q� ` q CONJUNCT2All the other de�ned onstants ome equipped with a similar suite of rules. Inmost ases the reader will be able to guess how the orresponding CAML funtionis used, and an experiment a little on the lines of the above examples.� ` p� ` p = > EQT INTRO� ` p = >� ` p EQT ELIM� ` p) q � ` p� [�) q MP� ` q�� fpg ` p) q DISCH� ` p) q� [ fpg ` q UNDISCH� ` 8x: p� ` p[t=x℄ SPECHere p[t=x℄ denotes the result of substituting t for all free instanes of x inp. HOL automatially renames variables to avoid apture if neessary, by addingprime haraters. (This happens in the primitive funtion INST that is used in theimplementation.)#let th1 = ASSUME `!x. x >= 0`;;th1 : thm = !x. x >= 0 |- !x. x >= 0#let th2 = SPEC `y + 1` th1;;th2 : thm = !x. x >= 0 |- y + 1 >= 0#let th3 = ASSUME `!x. ?y. y > x`;;th3 : thm = !x. ?y. y > x |- !x. ?y. y > x#let th4 = SPEC `y:num` th3;;th4 : thm = !x. ?y. y > x |- ?y'. y' > yNote that the naive result of substituting would be the inorret ?y. y > y.� ` p� ` 8x: p GENThis rule will fail if the variable x is free in the assumptions �. Again, thisrestrition arises naturally out of one in the underlying primitives, in this ase inABS.



9.1. LOGICAL RULES 73#let th1 = REFL `x:num`;;th1 : thm = |- x = x#let th2 = GEN `x:num` th1;;th2 : thm = |- !x. x = x#let th3 = GEN `y:num` th2;;th3 : thm = |- !y x. x = x#let th4 = ASSUME `x = 2`;;th4 : thm = x = 2 |- x = 2#let th5 = GEN `x:num` th4;;Unaught exeption: Failure "GEN"#let th5 = GEN `y:num` th4;;th5 : thm = x = 2 |- !y. x = 2� ` p[t=x℄� ` 9x: p EXISTSThe ML invoations for this rule are relatively ompliated; the funtion requiresthe user to speify the desired form of the result and the term t to hoose. It ouldwork out the latter for itself, but in general one an derive many existential theoremsfrom the same starting point, e.g.#let th1 = REFL `1`;;th1 : thm = |- 1 = 1#let th2 = EXISTS(`?x. x = 1`,`1`) th1;;th2 : thm = |- ?x. x = 1#let th3 = EXISTS(`?x:num. x = x`,`1`) th1;;th3 : thm = |- ?x. x = x#let th4 = EXISTS(`?x:num. 1 = 1`,`23`) th1;;th4 : thm = |- ?x. 1 = 1 � ` q�� fpg ` (9x: p)) q CHOOSEThis rule requires that x is not free in q nor in any of the � besides p.� ` p� ` p _ q DISJ1� ` q� ` p _ q DISJ2� ` r �0 ` r � ` p _ q(�� fpg) [ (�0 � fqg) [� ` r DISJ CASES� ` :p� ` p) ? NOT ELIM� ` p) ?� ` :p NOT INTRO� ` p � ?� ` :p EQF ELIM� ` :p� ` p � ? EQF INTRO



74 CHAPTER 9. DERIVED RULES9.2 Rewriting and simpli�ationHOL has various rules and onversions at a somewhat higher level. Some of themost useful of these automatially work out how to instantiate variables to apply tothe ase in hand. For example, the above `Modus Ponens' rule requires the theoremsto math up exatly:2#MP (ASSUME `x < 1 ==> x <= 1`) (ASSUME `x < 1`);;it : thm = x > 1 ==> x >= 1, x >= 1 |- x > 1#MP (ASSUME `y < 1 ==> y <= 1`) (ASSUME `x < 1`);;Unaught exeption: Failure "MP: theorems do not agree"A more powerful rule, MATCH MP, tries to work out settings for free or universallyquanti�ed variables in the �rst theorem in order to make things math up. we anillustrate this using a built-in theorem LT IMP LE:#let th1 = LT_IMP_LE;;th1 : thm = |- !m n. m < n ==> m <= n#MATCH_MP th1 (ASSUME `x < 1`);;it : thm = x < 1 |- x <= 1A similar rule, atually a onversion, is REWR CONV. It takes an equation, perhapsuniversally quanti�ed, and sets the variables if possible so that the left-hand sidemathes the pro�ered term, `rewriting' it. Again, we will illustrate it using a built-intheorem:#let th1 = NOT_LE;;th1 : thm = |- !m n. ~(m <= n) = n < m#REWR_CONV th1 `~(x + 1 <= x)`;;it : thm = |- ~(x + 1 <= x) = x < x + 1Sine it is a onversion, REWR CONV an be ombined with various depth on-versions to rewrite repeatedly at various levels of a term. Built-in funtions likeREWRITE CONV take a whole list of theorems, extrat rewrites from them and re-peatedly apply them to a term.3 Moreover, they throw in a set of handy rewrites toget rid of trivial propositional lutter, e.g. reduing p /\ p to p. They are one ofthe workhorses in typial HOL proofs. If the additional propositional simpli�ationsare not required, pre�x the name with PURE:#PURE_REWRITE_CONV[NOT_LE; LT_REFL℄ `~(x < x) \/ q`;;it : thm = |- ~(x < x) \/ q = ~F \/ q#REWRITE_CONV[NOT_LE; LT_REFL℄ `~(x < x) \/ q`;;it : thm = |- ~(x < x) \/ q = TAs in this example, one often rewrites Boolean terms. In ases where onversionsare applied to Boolean terms, it's often handy to onvert onversions to forwardinferene rules. This is done using CONV RULE, whose de�nition is simply:#let CONV_RULE onv th =EQ_MP (onv(onl th)) th;;CONV_RULE : (term -> thm) -> thm -> thm = <fun>#CONV_RULE(REWRITE_CONV[NOT_LE; LT_REFL℄) (ASSUME `~(x < x) \/ q`);;it : thm = ~(x < x) \/ q |- T2Atually, only up to alpha-equivalene, i.e. renaming of bound variables.3They do work by applying REWR CONV at depth, but are optimized using term nets to avoid toomany wasteful attempts to math theorems against subterms.



9.3. ORDERED REWRITING 75Some onversions are made into rules and given names, beause they are usedso often. For example:#let BETA_RULE = CONV_RULE(REDEPTH_CONV BETA_CONV);;BETA_RULE : thm -> thm = <fun>#let REWRITE_RULE thl = CONV_RULE(REWRITE_CONV thl);;REWRITE_RULE : thm list -> thm -> thm = <fun>Still more powerful than rewriting is simpli�ation. This allows the use of equa-tions that are onditional, i.e. of the form ` p ) l = r. After mathing up lwith the term if possible, setting the theorem to ` p0 ) l0 = r0 the onversion isreursively applied to the hypothesis p0, trying to redue it to > and so eliminateit. This an often avoid tedious hains of straightforward logial reasoning. Forexample, in#DIV_LT;;it : thm = |- !m n. m < n ==> (m DIV n = 0)#SIMP_CONV[DIV_LT; ARITH℄ `3 DIV 7 = 0`;;it : thm = |- (3 DIV 7 = 0) = Tthe built-in theorem DIV LT is used as a rewrite, giving a hypothesis 3 < 7 whihis then attaked by more simpli�ation, this time using a set of rewrites to dobasi arithmeti (desribed later). Simpli�ation also aumulates ontext, so whentraversing a term p ) q and desending to q, additional rewrites are derived fromp, e.g.#SIMP_CONV [℄ `p /\ q ==> p`;;it : thm = |- p /\ q ==> p = TThe rewrite p = T is extrated from the ontext p and this is used to rewritethe onsequent to T. The �nal result follows from an additional rewrite with thebuilt-in simpli�ation p ==> T = T.9.3 Ordered rewritingIt is possible for rewriting and simpli�ation to go into an in�nite loop, e.g. applyingtwo suessive rewrites ` s = t and ` t = s alternately. However, HOL tries to avoidlooping in some ases, ignoring rewrites that would loop:#REWRITE_CONV[ASSUME `x = x + 1`℄ `x:num`;;Warning: disarding looping rewriteit : thm = |- x = xSome rewrites are said to be permutative, meaning that the left hand side anbe mathed to the right hand side and vie versa. For example, there is a built-intheorem ADD SYM asserting that addition of natural numbers is ommutative, andseveral others:#ADD_SYM;;it : thm = |- !m n. m + n = n + m#CONJ_SYM;;it : thm = |- !t1 t2. t1 /\ t2 = t2 /\ t1#INSERT_COMM;;it : thm = |- !x y s. x INSERT y INSERT s = y INSERT x INSERT s



76 CHAPTER 9. DERIVED RULESThe HOL Light approah to permutative rewrite rules has long been used inthe Boyer-Moore theorem prover, and more reently in Isabelle thanks to TobiasNipkow. They are only applied if, after instantiation, the left-hand side is \larger"than the right aording to some well-founded ordering. The basi building blok isORDERED_REWR_CONV. This alls REWR_CONV, but will then fore failure unless in theresulting theorem � ` s0 = t0 one has t0 > s0 aording to the given ordering > onterms. In this way, one an rewrite freely with a theorem suh as ` x + y = y + xwithout fear of in�nite looping.However in onjuntion with other rewrites, in�nite looping an reappear. Forexample, rewriting with the above ommutative law and the assoiative law ` (x+y) + z = x+ (y + z) one ould still have an in�nite rewrite:x+ (y + z) �! (y + z) + x�! y + (z + x)�! (z + x) + y�! z + (x+ y)�! (x+ y) + z�! x+ (y + z)This, however, an be prevented by a suitable hoie of ordering. In fat, giventhe right ordering, the assoiative and ommutative laws together not only alwaysterminate, but atually redue AC ombinations to their anonial form. Martinand Nipkow (1990) give a slightly triky ordering that makes the assoiative andommutative laws alone give a normalizer. However a more obvious approah is toadd a third theorem, easily derived from the other two: ` x+(y+ z) = y+(x+ z).Now, suppose that the ordering has the following properties for any terms x, y andz: (x+ y) + z > x+ (y + z)x+ y > y + x i� x > yx+ (y + z) > y + (x + z) i� x > ySuh an ordering, if it is also monotoni (if s > t then u[s℄ > u[t℄) and total andis wellfounded on ground terms, is said to be AC-ompatible. Intuitively it is learthat ordered rewriting with these theorems will anonialize AC ombinations by`bubbling' terms in iterated additions to their proper plae. Theorems in this lassfor some assoiative and ommutative operators are built into HOL, e.g.#ADD_AC;;it : thm =|- (m + n = n + m) /\ ((m + n) + p = m + n + p) /\ (m + n + p = n + m + p)#MULT_AC;;it : thm =|- (m * n = n * m) /\ ((m * n) * p = m * n * p) /\ (m * n * p = n * m * p)#REWRITE_CONV[ADD_AC; MULT_AC℄ `x * y + z * x + w * x + x * w =x * w + x * z + y * x + x * w`;;it : thm =|- (x * y + z * x + w * x + x * w = x * w + x * z + y * x + x * w) = TMartin and Nipkow (1990) show that one an also add laws of left and rightdistributivity for + and �, as well as idempotene laws ` x+x = x and ` x+(x+y) =x+y and get anonializers under these laws too. (For example, if + is onjuntionor disjuntion.)



9.4. HIGHER ORDER MATCHING 77#CONJ_ACI;;it : thm =|- (p /\ q = q /\ p) /\((p /\ q) /\ r = p /\ q /\ r) /\(p /\ q /\ r = q /\ p /\ r) /\(p /\ p = p) /\(p /\ p /\ q = p /\ q)#REWRITE_CONV[CONJ_ACI℄ `p /\ q /\ p /\ r /\ q = r /\ q /\ p`;;it : thm = |- (p /\ q /\ p /\ r /\ q = r /\ q /\ p) = T9.4 Higher order mathingHOL Light supports a limited form of higher order mathing. This is immenselyuseful in order to express more general term transformations as rewrite rules. Ifonly simple `�rst order' mathing is used, the sope of rewriting, mathing modusponens et. is rather restrited. Even quite simple shemati theorems need to beinstantiated manually | a very tedious task. For example, if we want to use thetheorem:#SKOLEM_THM;;it : thm = |- !P. (!x. ?y. P x y) = (?y. !x. P x (y x))to rewrite the term !n. ?m. m EXP 2 <= n /\ n < (SUC m) EXP 2, then simplerewriting won't work; one �rst needs to instantiate the theorem withP = (\n m. m EXP 2 <= n /\ n < (SUC m) EXP 2)then beta-redue it, and only then rewrite with it. HOL Light will do this automat-ially in some situations. For example, it will perform the following rewrite, eventhough the term isn't literally an instane of the theorem's left hand side:#NOT_FORALL_THM;;it : thm = |- !P. ~(!x. P x) = (?x. ~P x)#REWR_CONV NOT_FORALL_THM `~(!n. n < n - 1)`;;it : thm = |- ~(!n. n < n - 1) = (?n. ~(n < n - 1))The implementation of higher order mathing aims to make mathing as gen-eral as possible while keeping it deterministi. It allows higher order mathes ofP x1 � � �xn where P is an instantiable variable, but only if it an deide with er-tainty how to instantiate the xi. Generally speaking, there are lots of possiblehigher order mathes; for example the pattern P (x + y) an be mathed against(a+ b) + (+ d) in several di�erent ways, e.g. x = a+ b; y = + d or x = a; y = b.In order to make the mathes determinate, information is taken from orrespondingvariable bindings. For example there is no doubt about the mathing of 8x: Pxto 8n: n < n + 1, whereas with the bound variables removed one ould have var-ious alternatives, e.g. P = �x: n < x + 1 and x = n. Our allowable patternsorrespond quite losely to higher order patterns, for whih Miller (1991) provedeven the uni�ation (two-way mathing) problem to be deidable and deterministi(`unitary'). We generalize higher order patterns in two ways. First, one need notsimply have variables in the patterns, but an have arbitrary terms involving onlythese `resolvable' variables. Thus one an math:|- (!x. P(SUC x)) = !x. 0 < x ==> P xwith a term:



78 CHAPTER 9. DERIVED RULES!n. (m / SUC n) * SUC n = mWe allow variables to be repeated in patterns (in the jargon, `nonlinear' pat-terns); this does in theory introdue an element of nondeterminay but this isresolved by always traversing the term to be mathed top-down and piking the�rst math. For example:|- (!x. P (SUC x) x) = !x. 0 < x ==> P x (PRE x)mathed against:!n. (m / SUC n) * (n + 1) = mwill yield|- (!n. (m / SUC n) * (n + 1) = m) =(!n. 0 < n ==> (m / n) * (PRE n + 1) = m)rather than|- (!n. (m / SUC n) * (n + 1) = m) =(!n. 0 < n ==> (m / SUC(PRE n)) * (PRE n + 1) = m)Seond, as well as binding instanes, �rst-order mathable parts of the term areused to resolve more variables. The implementation reets this: in a �rst pass, all�rst order parts are dealt with (in �rst order mathes, all the term is dealt with).Then the new variable assignments are used to keep the overall math deterministi.For example:|- C x y ==> P x y(where C is a onstant and so not eligible itself as a higher order pattern) willdeterministially math:C a b ==> (a + b = 27)whereas the respetive onsequents ould not be mathed deterministially.Note, by the way, that even beta-onversion an be implemented as a higherorder rewrite rule, and hene onveniently thrown into a bunh of rewrites insteadof being alled separately.#BETA_THM;;it : thm = |- !f y. (\x. f x) y = f yBut note that rewrites with the following theorem go into an in�nite loop at anybeta-redex beause of higher order mathing!#ETA_AX;;it : thm = |- !t. (\x. t x) = t



9.5. OTHER RULES 799.5 Other rulesAs well as these handy general-purpose rules, there are some speial ones for par-tiular theories, desribed later. For example, ARITH RULE is useful for disposing oftrivial fats of linear arithmeti over the natural numbers:#ARITH_RULE `x < y ==> 4 * x + 3 < 4 * y`;;it : thm = |- x < y ==> 4 * x + 3 < 4 * yAnother easy rule, TAUT, proves propositional tautologies automatially, e.g.#TAUT `p /\ q ==> p`;;it : thm = |- p /\ q ==> p#TAUT `(p ==> q) \/ (q ==> p)`;;it : thm = |- (p ==> q) \/ (q ==> p)
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Chapter 10TatisRules give a way of performing proofs in a step-by-step, forward manner. Howeverit's often more onvenient to prove theorems in a bakwards fashion, starting withthe goal and reduing it to various subgoals until these an be solved. The tatimehanism of HOL Light allows one to takle proofs in a mixture of forward andbakward steps. The user starts with a goal, whih is roughly speaking, the theorem(sequent) that is desired: a list of assumptions and a onlusion.A tati takes a goal and redues it to a list of subgoals. But it also keeps trak ofhow to onstrut a proof of the main goal if the user sueeds in proving the subgoal;this is simply an ML funtion. So the user an keep applying tatis, and the forwardproof is reonstruted by HOL. It's rather as if the mahine automatially reversesthe user's proof and onverts it to the standard primitive inferenes. The user anperform the proof via a mixture of forward and bakward steps, as desired.10.1 The goalstakProofs an be disovered interatively using the goal stak. This allows tati stepsto be performed, and if neessary retrated and orreted. The user sets up aninitial goal using g, e.g.#g `p /\ q ==> p`;;it : goalstak = 1 subgoal (1 total)`p /\ q ==> p`It is then possible to apply a tati to the urrent goal, e.g.#e DISCH_TAC;;it : goalstak = 1 subgoal (1 total)`p`0 [`p /\ q`℄If the user makes a mistake, b() baks up to the previous level. The goal anbe �nished here by rewriting:#e(ASM_REWRITE_TAC[℄);;it : goalstak = No subgoalsThere are no subgoals; the proof is �nished. To make HOL generate the desiredtheorem, use top thm(): 81



82 CHAPTER 10. TACTICS#top_thm();;it : thm = |- p /\ q ==> pIf a tati splits a goal into more than one subgoal, they are presented one at atime. When one subgoal is solved the next unsolved one is presented. For example:#g `p /\ q /\ r ==> q /\ p /\ r`;;it : goalstak = 1 subgoal (1 total)`p /\ q /\ r ==> q /\ p /\ r`#e DISCH_TAC;;it : goalstak = 1 subgoal (1 total)`q /\ p /\ r`0 [`p /\ q /\ r`℄#e CONJ_TAC;;it : goalstak = 2 subgoals (2 total)`p /\ r`0 [`p /\ q /\ r`℄`q`0 [`p /\ q /\ r`℄#e(ASM_REWRITE_TAC[℄);;it : goalstak = 1 subgoal (1 total)`p /\ r`0 [`p /\ q /\ r`℄#e CONJ_TAC;;it : goalstak = 2 subgoals (2 total)`r`0 [`p /\ q /\ r`℄`p`0 [`p /\ q /\ r`℄#e(ASM_REWRITE_TAC[℄);;it : goalstak = 1 subgoal (1 total)`r`0 [`p /\ q /\ r`℄#e(ASM_REWRITE_TAC[℄);;it : goalstak = No subgoalsE�etively, the user is always at a point in the fringe of the partial proof tree.The position an be rotated by n goals by doing r n.



10.2. BASIC TACTICS 8310.2 Basi tatisThe most basi tatis orrespond to the basi logial derived rules, but workingthe other way round. We have seen some of them above. For example, where CONJtakes two theorems and gives their onjuntion, the tati CONJ TAC breaks down aonjuntive goal and returns the two subgoals. Similarly DISJ1 TAC redues a goalwith onlusion p _ q to one with onlusion p, i.e. allows the user to deide toprove the �rst disjunt. Again, DISCH TAC reverses the e�et of the rule DISCH, i.e.it redues a goal � `? p) q to � [ fpg `? q.Tatis are espeially useful for using rules like CHOOSE. If one has a theorem` 9x: p, then one an just put p into the assumptions of the goal using CHOOSE TAC.Thereafter, it is as if one had piked some x suh that p holds and an use it tosolve the goal; HOL handles the appropriate appliation of CHOOSE.The tatis MP TAC and MATCH MP are a bit triker to understand, in that it'snot quite so lear how they amount to reversals of MP and MATCH MP. In fat theirbehaviour is quite di�erent, going well beyond one performing mathing and onenot. Given a goal with onlusion q and a theorem that after mathing is of theform p) q, then MATCH MP TAC redues the goal to p. For example:#g `0 <= SUC n`;;it : goalstak = 1 subgoal (1 total)`0 <= SUC n`#e(MATCH_MP_TAC LT_IMP_LE);;it : goalstak = 1 subgoal (1 total)`0 < SUC n`MP TAC, on the other hand, simply plaes the theorem as an anteedent of thegoal:#g `0 <= SUC n`;;it : goalstak = 1 subgoal (1 total)`0 <= SUC n`#e(MP_TAC LT_IMP_LE);;it : goalstak = 1 subgoal (1 total)`(!m n. m < n ==> m <= n) ==> 0 <= SUC n`However this e�et an be quite useful, sine it's often more onvenient to dothings like rewrite on the onlusion of a goal, rather than the assumptions.None of the tatis we have onsidered so far solves goals ompletely. The mostprimitive tati that does is ACCEPT TAC, whih is used with a theorem with thesame onlusion as the goal. A slightly more general version, MATCH ACCEPT TAC,will do some mathing, e.g.#g `x + 1 = 1 + x`;;it : goalstak = 1 subgoal (1 total)`x + 1 = 1 + x`#e(MATCH_ACCEPT_TAC ADD_SYM);;it : goalstak = No subgoalsAnother group of tatis an be reated from onversions, using CONV TAC. Thisreates a tati that applies the given onversion to the goal, e.g.



84 CHAPTER 10. TACTICS#g `(\x. x + 1) 2 = 3`;;it : goalstak = 1 subgoal (1 total)`(\x. x + 1) 2 = 3`#e(CONV_TAC(ONCE_DEPTH_CONV BETA_CONV));;it : goalstak = 1 subgoal (1 total)`2 + 1 = 3`If the onversion transforms the goal to T, the tati mehanism aepts that assolving the goal, rather than presenting T as the subgoal, e.g.#g `2 + 1 = 3`;;it : goalstak = 1 subgoal (1 total)`2 + 1 = 3`#e(CONV_TAC NUM_REDUCE_CONV);;it : goalstak = No subgoalsThe rewriting onversions are also all used as tatis, e.g. REWRITE TAC. Thesame names pre�xed with ASM also use the assumptions of the urrent goal asrewrites.10.3 TatialsJust as basi onversions are built up into omposite ones by onversionals, sotatis are built up via tatials. For example the in�x THEN exeutes two tatis insequene. One a proof has been found using the subgoal mehanism, it's ommonto plug all the steps into one tati using THEN, e.g.#g `!m n p. m * (n + p) = (m * n) + (m * p)`;;it : goalstak = 1 subgoal (1 total)`!m n p. m * (n + p) = m * n + m * p`#e(GEN_TAC THENINDUCT_TAC THENASM_REWRITE_TAC[ADD; MULT_CLAUSES; ADD_ASSOC℄);;it : goalstak = No subgoalsIf the �rst tati sequened by THEN generates more than one subgoal, then theseond tati is applied to all of them. If di�erent tatis are used for eah subgoal,they an be put into a list and sequened using THENL, e.g.#g `p ==> p /\ (1 = 1)`;;it : goalstak = 1 subgoal (1 total)`p ==> p /\ (1 = 1)`#e(DISCH_TAC THENCONJ_TAC THENL[ASM_REWRITE_TAC[℄;ACCEPT_TAC (REFL `1`)℄);;it : goalstak = No subgoalsTatis an be exeuted repeatedly by REPEAT, and there are various other usefultatials.



10.4. DEALING WITH ASSUMPTIONS 85If one uses THEN to ompress a proof into a single large tati, then one mightas well dispense with the goal stak ompletely. One an simple get the theorem byapplying prove to the goal and the tati, e.g.let LTE_ADD2 = prove(`!m n p q. m < p /\ n <= q ==> m + n < p + q`,ONCE_REWRITE_TAC[ADD_SYM; CONJ_SYM℄ THENMATCH_ACCEPT_TAC LET_ADD2);;10.4 Dealing with assumptionsVarious tatis like DISCH TAC push parts of the goal onto the assumption list. Youan put any theorem there yourself using ASSUME TAC. The problem then arises ofidentifying a partiular assumption when it is needed. Often it is not neessary, butwhen required there are several alternatives. One an design a tati that will su-eed only on the desired assumption, and use FIRST ASSUM. For example the tatiSUBST1 TAC expets and equational theorem as an argument and substitutes in thegoal, so if there is only one equational assumption, FIRST ASSUM SUBST1 TAC willuse it. Alternatively, one an expliitly rereate the assumption as a theorem usingASSUME. Finally, it is possible to label things when putting them on the assumptionsusing LABEL TAC instead of ASSUME TAC. The appropriate assumption an then beused with USE ASSUM.10.5 Model eliminationAlthough proofs often need theory-spei� reasoning tools, e.g. linear arithmeti,quite a lot of small parts of proofs an be �nished o� by a prover for pure logi.HOL Light provides a tati MESON TAC that an dispose of a lot of simple �rst orderreasoning. It also has a limited ability to do higher order and equality reasoning.This prover is based on the Prolog Tehnology Theorem Prover (Stikel 1988),an implementation of model elimination (Loveland 1968). Suh systems work byreduing to lausal form and then further to a set of pseudo-Horn lauses that anbe used for Prolog-style bakward searh. The default searh mode is one of ourown invention | see (Harrison 1996) for more details and a omparison with othertehniques. Here are a few examples of the HOL tati in ation:#let LOS = prove(`(!x y z. P x y /\ P y z ==> P x z) /\(!x y z. Q x y /\ Q y z ==> Q x z) /\(!x y. P x y ==> P y x) /\(!(x:A) y. P x y \/ Q x y)==> (!x y. P x y) \/ (!x y. Q x y)`,MESON_TAC[℄);;LOS : thm =|- (!x y z. P x y /\ P y z ==> P x z) /\(!x y z. Q x y /\ Q y z ==> Q x z) /\(!x y. P x y ==> P y x) /\(!x y. P x y \/ Q x y)==> (!x y. P x y) \/ (!x y. Q x y)and11See message from Wishnu Prasetya to the info-hol mailing list on 18 Otober 1993, availableon the Web as http://lal.s.byu.edu/lal/holdo/info-hol/15xx/1515.html.



86 CHAPTER 10. TACTICS#let WISHNU = prove(`(?!x. x=f(g x)) = (?!y. y=g(f y))`,MESON_TAC[℄);;WISHNU : thm = |- (?!x. x = f (g x)) = (?!y. y = g (f y))The tati aepts a list of theorems to use in the proof. ASM MESON TAC alsouses the assumptions of the goal.



Chapter 11Priniples of de�nitionHOL's basi priniples of de�nition are often quite inonvenient to use. The funtionnew definition is extended quite soon to permit de�nitions of funtions with thearguments on the left, inluding pairs and tuples of arguments:#let fun = new_definition`fun f x = f(x + 1) - 1`;;fun : thm = |- !f x. fun f x = f (x + 1) - 1#let add3 = new_definition`add3(x,y,z) = x + y + z`;;add3 : thm = |- !x y z. add3 (x,y,z) = x + y + zIt's often onvenient to make de�nitions reursively. HOL has some limited sup-port for so-alled primitive reursive de�nitions, whih we examine below. Generalreursive funtions an be de�ned using some of the theorems in the theory of well-foundedness desribed below, but HOL Light doesn't provide any handy funtionsfor doing it elegantly. So one an't write down reursive funtions with the abandonthat one an in ML. This is inevitable to some extent, sine all HOL funtions aretotal and in general reursive de�nition shemes do not give well-de�ned or uniquetotal funtions. For example f(n) = f(n) + 1 has no solution, and neither (at leastfor funtions N ! N ) does f(n) = f(n+ 1) + 1, whereas f(n) = f(n � 1) + 1 hasmany possible solutions.11.1 Indutive de�nitionsWhat HOL does support in a more onvenient way is the de�nition of indutive pred-iates (or sets). Indutive de�nitions are very ommon in mathematis, espeiallyin the de�nition of formal languages used in mathematial logi and programminglanguage semantis. Camilleri and Melham (1992) give some illustrative examples.Examples rop up in other parts of mathematis too, e.g. the de�nition of the Borelhierarhy of subsets of R. A detailed disussion, from an advaned point of view, isgiven by Azel (1991).Indutive de�nitions de�ne a set S by means of a set of rules of the form `if. . . then t 2 S', where the hypothesis of the rule may make assertions about mem-bership in S. These rules are ustomarily written with a horizontal line separatingthe hypotheses (if any) from the onlusion. For example, the set of even numbersE might be de�ned as a subset of the reals by:0 2 E87



88 CHAPTER 11. PRINCIPLES OF DEFINITIONn 2 E(n+ 2) 2 ERead literally, suh a de�nition merely plaes some onstraints on the set E,asserting its `losure' under the rules, and does not, in general, determine it uniquely.For example, the set of even numbers satis�es the above, but so does the set ofnatural numbers, the set of integers, the set of rational numbers and even the thewhole set of real numbers! But impliit in writing a de�nition like this is that Eis the least set whih is losed under the rules. It is when understood in this sensethat the above de�nes the even numbers.This onvention, however, needs to be justi�ed by showing that there is a leastset losed under the rules. A good try is to onsider the set of all sets whihare losed under the rules, and take their intersetion. If only we knew that thisintersetion was losed under the rules, then it would ertainly be the least suhset. But in general we don't know that, as the following example illustrates:n 62 En 2 EThere are no sets at all losed under this rule! However it turns out that a simplesyntati restrition on the rules is enough to guarantee that the intersetion islosed under the rules. Crudely speaking, the hypotheses must make only `positive'assertions about membership in S. To state this preisely, observe that we anollet together all the rules in a single assertion of the form:8x: P [S; x℄) x 2 SThe following example for the even numbers should be a suitable paradigm toindiate how: 8n: (n = 0 _ 9m: n = m+ 2 ^m 2 E)) n 2 EIf we make the abbreviation f(S) = fx j P [S; x℄g the assertion an be writtenf(S) � S. Our earlier plan was to take the intersetion of all subsets S whihhave this property, and hope that the intersetion too is losed under the rules.A suÆient ondition for this is given in the following �xpoint theorem due toKnaster (1927) and Tarski (1955) (whih holds for an arbitrary omplete lattie):if f : }(X)! }(X) is monotone, i.e. for any S � X and T � XS � T ) f(S) � f(T )then if we de�ne F =\fS � X j f(S) � Sgnot only is f(F ) � F but F is atually a �xpoint of f , i.e. f(F ) = F . HOL Lightan take an indutive de�nition and generally manage to prove monotoniity foritself, providing the user with three useful theorems. The �rst says that the de�nedset is losed under the rules, the seond that it is the least set losed under therules, and the third gives a ase analysis theorem saying that everything in the setis generated by applying the rules to something else in the set. For example, wean de�ne �niteness of sets (or, viewed as a set, the set of all �nite sets) as follows:



11.2. FREE RECURSIVE TYPES 89#let finite_RULES,finite_INDUCT,finite_CASES =new_indutive_definition`finite {} /\!x s. finite s ==> finite (x INSERT s)`;;Warning: inventing type variablesfinite_RULES : thm =|- finite EMPTY /\ (!x s. finite s ==> finite (x INSERT s))finite_INDUCT : thm =|- !finite'. finite' EMPTY /\ (!x s. finite' s ==> finite' (x INSERT s))==> (!a. finite a ==> finite' a)finite_CASES : thm =|- !a. finite a = (a = EMPTY) \/ (?x s. (a = x INSERT s) /\ finite s)HOL Light allows the user to de�ne mutually indutive relations. For examplehere are prediates for evenness and oddity:#let even_odd_RULES,even_odd_INDUCT,even_odd_CASES =new_indutive_definition`even 0 /\(!n. even(n) ==> odd(n + 1)) /\(!n. odd(n) ==> even(n + 1))`;;even_odd_RULES : thm =|- even 0 /\ (!n. even n ==> odd (n + 1)) /\ (!n. odd n ==> even (n + 1))even_odd_INDUCT : thm =|- !odd' even'.even' 0 /\(!n. even' n ==> odd' (n + 1)) /\(!n. odd' n ==> even' (n + 1))==> (!a0. odd a0 ==> odd' a0) /\ (!a1. even a1 ==> even' a1)even_odd_CASES : thm =|- (!a0. odd a0 = (?n. (a0 = n + 1) /\ even n)) /\(!a1. even a1 = (a1 = 0) \/ (?n. (a1 = n + 1) /\ odd n))The indution theorem an be applied onveniently during bakward proof usingthe tatial RULE INDUCT THEN, or in simple ases just with MATCH MP TAC.11.2 Free reursive typesHOL Light's primitive type de�nition faility is rather awkward to work with. Oneof the most useful, and ompliated, derived rules in HOL Light allows one to de�nereursive types muh as in CAML, even using a similar syntax. There are somerestritions; for example a funtion spae involving the type being de�ned annot beused. However types an be de�ned mutually reursively and an involve instanesof previously de�ned type onstrutors. The primitive funtion is define type, andit always returns two theorems, the �rst a kind of indution theorem for the newtype, the seond a justi�ation of de�nition by primitive reursion. For example wean de�ne binary trees:



90 CHAPTER 11. PRINCIPLES OF DEFINITION#let btree_INDUCT,btree_RECURSION = define_type"btree = Leaf A| Branh btree btree";;btree_INDUCT : thm =|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Branh a0 a1))==> (!x. P x)btree_RECURSION : thm =|- !f0 f1.?fn. (!a. fn (Leaf a) = f0 a) /\(!a0 a1. fn (Branh a0 a1) = f1 a0 a1 (fn a0) (fn a1))This de�nes a new type onstrutor (A)btree, sine the de�nition ontained afree type variable A. The reursion theorem an be used later to de�ne funtionsby `primitive reursion', i.e. de�ning a funtion on a type onstrutor in terms ofthe funtion on its arguments. For example here are funtions to reet a tree, i.e.swap left and right subtrees, and add up all the integers in an (int)btree:#let reflet = new_reursive_definition btree_RECURSION`(reflet(Leaf x) = Leaf x) /\(reflet(Branh t1 t2) = Branh (reflet t2) (reflet t1))`;;Warning: inventing type variablesreflet : thm =|- (reflet (Leaf x) = Leaf x) /\(reflet (Branh t1 t2) = Branh (reflet t2) (reflet t1))#let addup = new_reursive_definition btree_RECURSION`(addup (Leaf n) = n) /\(addup (Branh t1 t2) = addup t1 + addup t2)`;;addup : thm =|- (addup (Leaf n) = n) /\ (addup (Branh t1 t2) = addup t1 + addup t2)The indution theorem an be used to prove theorems about objets of the newtype. In simple ases one an just use MATCH MP TAC; for example:#let ADDUP_REFLECT = prove(`!t. addup(reflet t) = addup t`,MATCH_MP_TAC btree_INDUCT THENSIMP_TAC[addup; reflet; ADD_AC℄);;ADDUP_REFLECT : thm = |- !t. addup (reflet t) = addup tHaving de�ned a type onstrutor like btree, it an itself be used in the de�ni-tion of new types. For example HOL Light already has a type of lists de�ned usingthe de�nition list = NIL | CONS A list, and we an reate a type of �nitely-branhing trees like this:



11.2. FREE RECURSIVE TYPES 91#let xtree_INDUCTION,xtree_RECURSION = define_type"xtree = Lf A| Br (xtree list)";;xtree_INDUCTION : thm =|- !P0 P1.(!a. P0 (Lf a)) /\(!a. P1 a ==> P0 (Br a)) /\P1 [℄ /\(!a0 a1. P0 a0 /\ P1 a1 ==> P1 (CONS a0 a1))==> (!x0. P0 x0) /\ (!x1. P1 x1)xtree_RECURSION : thm =|- !f0 f1 f2 f3.?fn0 fn1.(!a. fn1 (Lf a) = f0 a) /\(!a. fn1 (Br a) = f1 a (fn0 a)) /\(fn0 [℄ = f2) /\(!a0 a1. fn0 (CONS a0 a1) = f3 a0 a1 (fn1 a0) (fn0 a1))The indution and reursion theorems are as if the list onstrutor had beende�ned mutually reursively, but it uses the standard type of lists.



92 CHAPTER 11. PRINCIPLES OF DEFINITION



Chapter 12Mathematial theoriesTo prove theorems in HOL Light, one needs a reasonable grasp of the theoremproving infrastruture. But equally important is knowing what has already beenproved, and what the theorem one is after has been alled. The following is not anexhaustive list, but gives some of the main theorems, grouped aording to subjetarea. The following gives only a general overview; the reader should browse thesoure �les to beome more familiar with what is available.12.1 PairsThere is a type onstrutor prod that onstruts Cartesian produt types. In theonrete syntax of the type parser it is written as #. For example num # num isthe type of pairs of natural numbers. Larger tuples an be built by iterating thepairing operation; the type onstrutor and the term funtion that onstruts pairs(the in�x omma) are both right assoiative. Destrutors FST and SND are de�ned.Some of the main theorems about pairs are:PAIR_EQ = |- !x y a b. (x,y = a,b) = (x = a) /\ (y = b)PAIR_SURJECTIVE = |- !p. ?x y. p = x,yFST = |- !x y. FST (x,y) = xSND = |- !x y. SND (x,y) = yPAIR = |- !x. FST x,SND x = xpair_INDUCT = |- (!x y. P (x,y)) ==> (!p. P p)pair_RECURSION = |- !PAIR'. ?fn. !a0 a1. fn (a0,a1) = PAIR' a0 a1The last two are hosen as if pairs had been de�ned as a reursive type, thoughin fat they logially preede other reursive types.12.2 Natural numbersThe type of natural numbers is arved out, using an indutive de�nition, from thein�nite type ind. The Peano axioms are derived from the de�nition and the axiomsof in�nity. As with pairs, two theorems mimi those resulting from reursive typede�nitions, allowing proofs by indution and de�nitions by primitive reursion:93



94 CHAPTER 12. MATHEMATICAL THEORIESnum_INDUCTION = |- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)num_RECURSION = |- !e f. ?fn. (fn 0 = e) /\ (!n. fn (SUC n) = f (fn n) n)The latter is used to de�ne most of the arithmeti operations, inluding theomparisons:ADD = |- (!n. 0 + n = n) /\ (!m n. SUC m + n = SUC (m + n))MULT = |- (!n. 0 * n = 0) /\ (!m n. SUC m * n = m * n + n)EXP = |- (!m. m EXP 0 = 1) /\ (!m n. m EXP SUC n = m * m EXP n)LE = |- (!m. m <= 0 = m = 0) /\(!m n. m <= SUC n = (m = SUC n) \/ m <= n)LT = |- (!m. m < 0 = F) /\ (!m n. m < SUC n = (m = n) \/ m < n)EVEN = |- (EVEN 0 = T) /\ (!n. EVEN (SUC n) = ~EVEN n)ODD = |- (ODD 0 = F) /\ (!n. ODD (SUC n) = ~ODD n)Numerals are prettyprinted forms of an internal binary representation using twoonstants:BIT0 = |- BIT0 n = n + nBIT1 = |- BIT1 n = SUC(n + n)The rather arti�ial de�nition of the seond is beause multipliation (whihuses numeral 1 in its de�nition) has not yet been de�ned. Now these onstants aresuÆient to express any number in binary. For example, we implement 37 as:NUMERAL (BIT1 (BIT0 (BIT1 (BIT0 (BIT0 (BIT1 _0))))))The reader may wonder why we use the onstant NUMERAL at all, instead of justusing BIT0, BIT1 and 0. The reason is that in that ase one number beomes asubterm of another (e.g. 1 is a subterm of 2), whih an lead to some surprising ai-dental rewrites. Besides, the NUMERAL onstant is a useful tag for the prettyprinter.The parser and printer transformations established, the theory of natural num-bers an now be developed as usual. Most of the arithmeti operations are de�nedby primitive reursion, indiating a simple evaluation strategy for unary notation.For example one an evaluate 3 + 5 as follows:3 + 5SUC 2 + 5SUC (2 + 5)SUC (SUC 1 + 5)SUC (SUC (1 + 5))SUC (SUC (SUC 0 + 5)))SUC (SUC (SUC (0 + 5)))SUC (SUC (SUC 5))SUC (SUC 6)SUC 78



12.3. LISTS 95But many of them have an almost equally diret strategy in terms of our binarynotation.1 For example the following theorems, easily proved, an be used diretlyas rewrite rules to perform arithmeti evaluation.|- (!n. SUC (NUMERAL n) = NUMERAL (SUC n)) /\(SUC _0 = BIT1 _0) /\(!n. SUC (BIT0 n) = BIT1 n) /\(!n. SUC (BIT1 n) = BIT0 (SUC n))or|- (!m n. (NUMERAL m = NUMERAL n) = (m = n)) /\((_0 = _0) = T) /\(!n. (BIT0 n = _0) = (n = _0)) /\(!n. (BIT1 n = _0) = F) /\(!n. (_0 = BIT0 n) = (_0 = n)) /\(!n. (_0 = BIT1 n) = F) /\(!m n. (BIT0 m = BIT0 n) = (m = n)) /\(!m n. (BIT0 m = BIT1 n) = F) /\(!m n. (BIT1 m = BIT0 n) = F) /\(!m n. (BIT1 m = BIT1 n) = (m = n))Most arithmeti operations an be implemented as a set of rewrite rules likethe above, and applied using the standard rewriting mehanism. A suite of suhrewrites is olleted together into a single rewrite rule ARITH that will evaluate mostground expressions using just the standard rewriting mehanism. For example:#let onv = PURE_REWRITE_CONV[ARITH℄;;onv : onv = <fun>#onv `12345 * 12345`;;it : thm = |- 12345 * 12345 = 152399025However, a few operations are hard to evaluate eÆiently with the standardrewriting mehanism; even ARITH_SUB is a bit ineÆient, sine the same onditionis tested repeatedly. Therefore we also provide a full suite of onversions, and olletthem together as NUM RED CONV and NUM REDUCE CONV.12.3 ListsA HOL reursive type of lists is de�ned, and various standard list ombinatorsde�ned by reursion. These often have the same names as their CAML ounterparts,but in upper ase.HD = |- HD (CONS h t) = hTL = |- TL (CONS h t) = tAPPEND =|- (!l. APPEND [℄ l = l) /\(!h t l. APPEND (CONS h t) l = CONS h (APPEND t l))1Another nie example, though we don't atually implement it, is the GCD funtion. Knuth(1969) gives a simple algorithm based on gd(2m; 2n) = 2gd(m; n), gd(2m + 1; 2n) = gd(2m +1; n) and gd(2m+1; 2n+1) = gd(m�n; 2n+1). This outperforms Eulid's method on mahineswhere bitwise operations are relatively eÆient; our in-logi implementation would surely exhibitthe same harateristis even if our `bits' are rather large!



96 CHAPTER 12. MATHEMATICAL THEORIESREVERSE =|- (REVERSE [℄ = [℄) /\ (REVERSE (CONS x l) = APPEND (REVERSE l) [x℄)LENGTH =|- (LENGTH [℄ = 0) /\ (!h t. LENGTH (CONS h t) = SUC (LENGTH t))MAP = |- (!f. MAP f [℄ = [℄) /\(!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t))LAST = |- LAST (CONS h t) = (if t = [℄ then h else LAST t)REPLICATE = |- (REPLICATE 0 x = [℄) /\(REPLICATE (SUC n) x = CONS x (REPLICATE n x))NULL = |- (NULL [℄ = T) /\ (NULL (CONS h t) = F)FORALL = |- (FORALL P [℄ = T) /\(FORALL P (CONS h t) = P h /\ FORALL P t)EX = |- (EX P [℄ = F) /\ (EX P (CONS h t) = P h \/ EX P t)ITLIST =|- (ITLIST f [℄ b = b) /\ (ITLIST f (CONS h t) b = f h (ITLIST f t b))MEM = |- (MEM x [℄ = F) /\ (MEM x (CONS h t) = (x = h) \/ MEM x t)A somewhat ad ho olletion of fats about these funtions is olleted, forexample:APPEND_ASSOC = |- !l m n. APPEND l (APPEND m n) = APPEND (APPEND l m) nLENGTH_APPEND = |- !l m. LENGTH (APPEND l m) = LENGTH l + LENGTH mLENGTH_MAP = |- !l f. LENGTH (MAP f l) = LENGTH lREVERSE_REVERSE = |- !l. REVERSE (REVERSE l) = lMAP_o = |- !f g l. MAP (g o f) l = MAP g (MAP f l)NOT_EX = |- !P l. ~EX P l = FORALL (\x. ~P x) l12.4 Well-founded relationsWellfoundedness of a binary relation an be expressed in many equivalent ways.HOL Light inludes a de�nition of wellfoundedness and a proof that it equivalentto several other important properties, like the admissibility of omplete indutionand wellfounded reursion. For example, the last theorem below, whih also has aonverse, says that one an de�ne reursive funtions provided the value of f(x) isde�ned in terms of f(y) for y below x in the wellfounded ordering.WF =|- WF (<<) = (!P. (?x. P x) ==> (?x. P x /\ (!y. y << x ==> ~P y)))



12.5. REAL NUMBERS 97WF_IND =|- WF (<<) = (!P. (!x. (!y. y << x ==> P y) ==> P x) ==> (!x. P x))WF_DCHAIN = |- WF (<<) = ~(?s. !n. s (SUC n) << s n)WF_REC =|- WF (<<)==> (!H. (!f g x. (!z. z << x ==> (f z = g z)) ==> (H f x = H g x))==> (?f. !x. f x = H f x))12.5 Real numbersHOL Light onstruts the real numbers and then proves various properties of them.Algebrai trivialities inlude:REAL_OF_NUM_SUB : thm = |- !m n. m <= n ==> (&n - &m = &(n - m))REAL_ADD_RID : thm = |- !x. x + &0 = xREAL_LT_IMP_LE : thm = |- !x y. x < y ==> x <= yREAL_LT_LADD_IMP : thm = |- !x y z. y < z ==> x + y < x + zREAL_LT_LNEG : thm = |- !x y. -- x < y = &0 < x + yREAL_ABS_TRIANGLE : thm = |- !x y. abs (x + y) <= abs x + abs yREAL_ABS_MUL : thm = |- !x y. abs (x * y) = abs x * abs yREAL_INV_MUL : thm = |- !x y. inv (x * y) = inv x * inv yNote that the inverse is de�ned with 0�1 = 0. Most theorems not involvingmultipliation an be proved automatially using REAL ARITH or the tati formREAL ARITH TAC:#REAL_ARITH `abs(x) < y ==> x < y`;;it : thm = |- abs x < y ==> x < yThe key higher-order property of the reals asserts that any nonempty boundedset of reals has a least upper bound:#REAL_COMPLETE;;it : thm =|- !P. (?x. P x) /\ (?M. !x. P x ==> x <= M)==> (?M. (!x. P x ==> x <= M) /\(!M'. (!x. P x ==> x <= M') ==> M <= M'))There is not muh real analysis in the basi system, but there is a reasonabledevelopment inluded with the examples.12.6 IntegersA theory of integers is also available, with theorems named by analogy with thereals, e.g. INT LT IMP LE rather than REAL LT IMP LE. Similarly, there is a deisionproedure for linear integer arithmeti alled INT ARITH.



98 CHAPTER 12. MATHEMATICAL THEORIES12.7 SetsSets in HOL Light are just prediates, but the usual set operations are de�ned:EMPTY = |- EMPTY = (\x. F)UNIV = |- UNIV = (\x. T)UNION = |- !s t. s UNION t = {x | x IN s \/ x IN t}UNIONS = |- !s. UNIONS s = {x | ?u. u IN s /\ x IN u}INTER = |- !s t. s INTER t = {x | x IN s /\ x IN t}INTERS = |- !s. INTERS s = {x | !u. u IN s ==> x IN u}DIFF = |- !s t. s DIFF t = {x | x IN s /\ ~(x IN t)}INSERT = |- x INSERT s = {y | y IN s \/ (y = x)}DELETE = |- !s x. s DELETE x = {y | y IN s /\ ~(y = x)}SUBSET = |- !s t. s SUBSET t = (!x. x IN s ==> x IN t)PSUBSET = |- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t)DISJOINT = |- !s t. DISJOINT s t = s INTER t = EMPTYThe parser and printer support set enumerations and set abstrations. Triv-ial fats of set theory, whih are just liftings of �rst order fats, an be provedautomatially in a tati framework using SET TAC, e.g.#prove(`x INSERT (s UNION t) = (x INSERT s) UNION (x INSERT t)`,SET_TAC[℄);;it : thm = |- x INSERT (s UNION t) = x INSERT s UNION x INSERT tThere are quite a lot of suh theorems pre-proved. Some more interesting pre-proved theorems onern the �niteness and ardinality of sets, and in general thede�nition of funtion over �nite sets by reursion:CARD_CLAUSES =|- (CARD EMPTY = 0) /\(!x s.FINITE s==> (CARD (x INSERT s) =if x IN s then CARD s else SUC (CARD s)))HAS_SIZE = |- !s n. s HAS_SIZE n = FINITE s /\ (CARD s = n)CARD_SUBSET_LE =|- !a b. FINITE b /\ a SUBSET b /\ CARD b <= CARD a ==> (a = b)FINITE_RECURSION =|- !f b.(!x y s. ~(x = y) ==> (f x (f y s) = f y (f x s)))



12.7. SETS 99==> (ITSET f EMPTY b = b) /\(!x s.FINITE s==> (ITSET f (x INSERT s) b =if x IN s then ITSET f s b else f x (ITSET f s b)))
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Chapter 13ExamplesA few examples are inluded in Examples diretory. These just give some indiationof how the system an be used. They aren't held up as partiularly good examplesexploiting HOL Light's failities; indeed many of them are rudely ported fromolder versions of HOL. A few of them might be useful to some readers, but they aregenerally not polished or doumented.� analysis.ml is a development of elementary real analysis, e.g. sequenes,series, limits, ontinuity, di�erentiation and integration.� lagrange.ml shows how to prove some numerial identities using orderedrewriting and/or deision proedures.� mizar.ml is a system for writing HOL proofs in a more readable delarativestyle based on Trybule's Mizar system (Rudniki 1992).� prog.ml is a simple embedding of the semantis of a toy imperative program-ming language, derivation of weakest preonditions and Floyd-Hoare rules,and a tati that performs veri�ation ondition generation on an annotatedprogram.� retypes.ml de�nes a wide variety of (mutual, nested) reursive types.� redut.ml de�nes some basi notions for redutions, e.g. onuene, nor-malization, and proves a few theorems like Newman's Lemma. It requiresrst.ml to have been loaded �rst.� rst.ml de�nes various ombinations of reexive, symmetri and transitivelosures of binary relations, and proves a omprehensive set of theorems aboutthem.� trans.ml de�nes and proves properties of the elementary transendentalfuntions like exp, sin and ln. It requires analysis.ml to have been loaded�rst.� wo.ml proves some important version of the Axiom of Choie, e.g. the wellorder-ing priniple and Zorn's Lemma.
101
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Appendix ACompatibility with otherHOLsHere is a brief list of some of the major inompatibilities with other versions ofHOL:� CAML, the underlying ML is di�erent from previous HOL versions, some-where between `Classi ML' and Standard ML.� There is no theory mehanism; every theorem is just bound to an ML name.It is possible to save and load theorems via CAML primitives, but this isnot reommended sine it subverts the usual mehanisms for onstrutingelements of the thm type.� Parsing status is orthogonal to whether an identi�er is a onstant or a variable.Parsing status is not indiated at the time onstants are de�ned. To suppressspeial parse status, HOL Light requires the identi�er to be put in parentheseslike (+), whereas other HOL versions use $+.� Higher order mathing is applied pervasively throughout the system, and insome ases this an lead to a di�erent result from a �rst order math evenwhen both sueed.� All permutative rewrite rules are automatially ordered by the rewriting fun-tions.� Operator overloading is permitted in the surfae syntax. There are howeverstill some limitations on overloading of polymorphi operators. The interfaemap feature in previous HOLs has been abolished and operator overloadingis used instead.� Deision proedures for linear arithmeti are available for integers and realsas well as naturals.� A omprehensive theory of wellfounded relations is provided, but no tools forautomating general reursive de�nitions.� The resolution tatis have been removed, or more aurately replaed bytrivial ones that do not attempt multiple haining.� Goals have theorems as assumptions, rather than terms to be assumed. Thetati mehanism allows the use of instantiable metavariables, and assump-tions may be labelled with names. The internal type of tatis has hangedto reet these hanges. 103



104 APPENDIX A. COMPATIBILITY WITH OTHER HOLS� The names of many theorems, espeially about natural numbers, are di�erent.Some of the operations on natural numbers are de�ned di�erently.� Various failities are in the ore system rather than loadable libraries, e.g. tau-tology heking, higher order mathing, �rst order reasoning, quotient types,integers, reals and nested reursive types.� The axiomatization of the logi is simpler and all `derived rules' are genuinelyderived. There is no separate boolean ases axiom, sine it follows from theaxiom of hoie.� The preferred onrete syntax for onditional expressions is `if . . . then . . . else. . . ', although the old HOL syntax is still aepted.� The internal enodings of paired abstrations and let-terms are di�erent. Theformer is an instane of a more general method of allowing abstrations overarbitrary expressions.� The term syntax uses a name-arrying representation like HOL88, rather thana de Bruijn representation as in hol90. It was felt that this would be moreeÆient on average, even if it makes a ouple of primitive term operations likesubstitution triky to get right.Despite the above, readers familiar with older HOLs should �nd the systemreasonably familiar. Many of the di�erenes do not greatly a�et day-to-day use ofthe system.
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