
Optimizing Proof Search in Model EliminationJohn Harrison�Abo Akademi UniversityDepartment of Computer ScienceLemmink�aisenkatu 14a20520 TurkuFINLANDjharriso@abo.fihttp://www.abo.fi/~jharriso/11th January 1996AbstractMany implementations of model elimination perform proof search by it-eratively increasing a bound on the total size of the proof. We propose anoptimized version of this search mode using a simple divide-and-conquer re-�nement. Optimized and unoptimized modes are compared, together withdepth-bounded and best-�rst search, over the entire TPTP problem library.The optimized size-bounded mode seems to be the overall winner, but for eachstrategy there are problems on which it performs best. Some attempt is madeto analyze why. We emphasize that our optimization, and other implemen-tation techniques like caching, are rather general: they are not dependent onthe details of model elimination, or even that the search is concerned withtheorem proving. As such, we believe that this study is a useful complementto research on extending the model elimination calculus.1 Model elimination and PTTPFor some time after its proposal by Loveland (1968), model elimination was pushedto the background by the intense 
urry of activity in resolution theorem proving.It was given a new lease of life by the work of Stickel. A natural procedural imple-mentation of model elimination calculi, Loveland's MESON procedure in particular,is a modest change to Prolog's standard search strategy, viz. backward chainingon Horn clauses with uni�cation and backtracking. We assume that the �rst orderformula to be proved is negated and reduced to clausal form, so the task is to refute,i.e. prove falsity (?) from, an implicitly conjoined set of clauses, each one of theform: P1 _ : : : _ PnHere each Pi is a literal, meaning either an atomic formula or the negation ofone. Variables occurring in each clause are implicitly universally quanti�ed. Nowfrom each input clause of the above form, a set of n + 1 pseudo-Horn clause rulescalled `contrapositives' is created.1 We will write `�' for a (syntactic) negating1Recall that a Horn clause is a clause which contains at most one unnegated literal. Here wejust single out each literal in turn to act as the head clause in a Prolog-style search, even if thisliteral and some or all of its antecedants in the clause are negative.1



operation on literals; that is �(:P ) is P , whereas �P is :P for atomic P . Firstthere are n rules of the form:�P1 ^ : : : ^ �Pi�1 ^ �Pi+1 ^ : : : ^�Pn ) Piand then there is one more of the form:�P1 ^ : : : ^ �Pn ) ?We could emphasize the Prolog connection by writing P :- P1, ..., Pn in-stead of P1 ^ : : :^Pn ) P (and putting any variables in speci�c instances in uppercase). Anyway, the idea is to use these rules in a Prolog-style backward proof ofthe goal ?. Stickel (1988) developed a Prolog Technology Theorem Prover (PTTP)based on just a few basic changes to a standard Prolog implementation:� Perform sound uni�cation. Most Prolog implementations omit an occurscheck, allowing for example f(X) and X to be uni�ed. This is, accordingto the logic programming folklore, necessary for e�ciency reasons, or desir-able in order to permit cyclic structures.� At each stage, retain a list of the ancestor goals (i.e. those which have alreadybeen expanded on the path between ? and the current goal), and as well asthe input rules, allow uni�cation of the current goal with the negation of oneof its ancestors. This gives an alternative way of solving a goal, instead ofexpanding it using one of the rules. The ancestor goal �P can be seen asa rule with P as conclusion and no hypotheses, except that its variables are�xed relative to those in the goal and the other ancestors.� Replace Prolog's unbounded depth-�rst search with some complete alterna-tive. The choice of alternative is the main topic of this paper, but we mightnote now that even in the propositional case, Prolog's standard search strat-egy could lead to an in�nite loop. We can simply check the ancestor list forrepetition | to do so is a worthwhile optimization anyway. However in gen-eral this is not su�cient. For example, a rule of the form P (f(x)) ) P (x)leads to larger and larger goals of the form P (fn(x)), without limit.A set of clauses is contradictory i� there is a proof of ? by the usual Prologbackward chaining (with the above modi�cations), the appropriate variable instanti-ations being discovered by uni�cation and backtracking. Soundness of the procedureis easy to prove. Plaisted (1990) proposes the following interpretation in terms ofsequents. A goal P in the context of an ancestor list P1; : : : ; Pn can be seen as asequent goal �P1; : : : ;�Pn ` P . Now the rule for uni�cation with the negation ofan ancestor is evidently sound; it just amounts to �; P ` P . And if we are tryingto prove � ` P given a rule P1 ^ : : : ^ Pn ) P , we can perform case analysis on P ;if it is true we are �nished, otherwise it is false, so we may add �P to the list ofassumptions, giving subgoals �;�P ` Pi for each 1 � i � n. Hence the process ofadding ancestor goals to the list is also justi�ed. Plaisted (1990) goes on to provecompleteness, even given two re�nements:1. It is only necessary to use the second kind of rule (with ? as conclusion) forcertain `support' clauses C. Informally, these are the ones which contributeto the inconsistency of the original clause set S. More formally, it is onlynecessary to try C if there is an S1 � S such that S1 is inconsistent yetS1�fCg is consistent.2 Of course this can't be decided in general, but what wedo know is that any set of clauses where each clause contains a positive literal2This was probably known to earlier workers, but was not made explicit.2



is satis�able (choose an interpretation which maps each predicate to true). Soit is enough to try each all-negative clause as a support. Quite often thereis only one such clause; for example when trying to derive an equation fromthe axioms of group theory, the only all-negative clause will be the negationof the desired equation. Hence the �rst subgoal will be the `conclusion' of thedesired theorem, making the search appealingly goal-directed.2. The process of unifying with ancestors need only be tried for negative goalswith positive ancestors. (Or vice versa, or based on various other semantically-based ways of splitting the literals in two, but this seems the most useful.) Theproofs given this `positive re�nement' may occasionally be longer, but this isoften more than repaid by the cutting back of the search space. Therefore itis not even necessary to add negative ancestors to the list; although it's stilluseful to store them to check for repetitions, they can otherwise be ignored.2 An exampleThe following theorem was proposed by  Lo�s, as an example of a relatively simplepurely logical assertion which is nevertheless not obvious.3 It was introduced tothe automated theorem proving community and used by Rudnicki (1987) as anexample of an assertion which is indeed not obvious, in a certain technical sense of`obvious'. It is now often referred to by some name such as nonobv in the theoremproving literature; it is problem MSC006-1 in the TPTP Problem library (Suttnerand Sutcli�e 1995). (8x y z: P (x; y) ^ P (y; z) ) P (x; z))^(8x y z: Q(x; y) ^Q(y; z) ) Q(x; z))^(8x y: Q(x; y) ) Q(y; x))^(8x y: P (x; y) _Q(x; y))) (8x y: P (x; y)) _ (8x y: Q(x; y))Translating the negation of this formula into clausal form, introducing Skolemconstants a, b, c and d, we get the following clauses::P (x; y) _ :P (y; z) _ P (x; z):Q(x; y) _ :Q(y; z) _Q(x; z):Q(x; y) _Q(y; x)P (x; y) _Q(x; y):P (a; b):Q(c; d)Now all the contrapositives are generated, yielding the following rules:P (y; z) ^ :P (x; z) ) :P (x; y) (1)P (x; y) ^ :P (x; z) ) :P (y; z) (2)P (x; y) ^ P (y; z) ) P (x; z) (3)Q(y; z) ^ :Q(x; z) ) :Q(x; y) (4)Q(x; y) ^ :Q(x; z) ) :Q(y; z) (5)Q(x; y) ^Q(y; z) ) Q(x; z) (6)3\You may say it is trivial yet you will not say it is nothing".3



Q(x; y) ) Q(y; x) (7):Q(y; x) ) :Q(x; y) (8):P (x; y) ) Q(x; y) (9):Q(x; y) ) P (x; y) (10):P (a; b) (11):Q(c; d) (12)P (a; b) ) ? (13)Q(c; d) ) ? (14)Here is a MESON proof of ?. Each step is marked either with its rule numberor with `A' indicating uni�cation with the negation of an ancestor.:Q(c; d) 12P (c; d) 10 :P (a; d) A:P (a; c) 1Q(a; c) 9Q(c; a) 7 :Q(c; d) 12:Q(a; d) 5P (a; d) 10
:Q(c; d) 12:Q(d; c) 8P (d; c) 10 :P (d; b) A:P (c; b) 2Q(c; b) 9 :Q(c; d) 12:Q(b; d) 5:Q(d; b) 8P (d; b) 10P (a; b) 3? 133 Search strategiesAs we have already noted, the usual Prolog depth-�rst left-to-right search will gointo an in�nite loop on most nontrivial problems. In the  Lo�s example, the �rstsubgoal P (a; b) would result in application of the transitivity rule for P to giveP (a;X) and P (X; b). Then P (a;X) would get similarly expanded in its turn, andso ad in�nitum. In order to achieve completeness, i.e. guarantee eventually �ndinga proof such as the one given above, it is necessary to force enumeration of allpossible expansions so that each one is explored eventually. How is this to be done?The most obvious way is to use breadth-�rst search. Each level in the space ofproof trees gets fully explored before further expansion is attempted. Hence a proofof depth n will always get found at the nth level of expansion.A re�nement of this idea is to use best-�rst search, as implemented by Paulsonin the Isabelle theorem prover (Paulson 1994).4 That is, based on some heuristicsuch as size and number of subgoals, a particular goal state is tried �rst, and all thepossible subgoal states are inserted into a priority queue. This is then repeated untila solution is found. Since the strict enumeration of levels is no longer guaranteed, thedanger of in�nite looping is reintroduced. However this can easily be circumventedby appropriately including the number of ancestor goals in the heuristic.We will give some results for best-�rst search later. However, breadth-�rst andbest-�rst search have the substantial disadvantage that they require storage of allthe goal states explored. In nontrivial examples this requires large amounts of4Isabelle di�ers somewhat from most other theorem provers in the LCF family (Gordon, Milner,and Wadsworth 1979) in that its subgoaling mechanism, used for backward proof, allows multiplepossible goal states with backtracking, and can perform Prolog-style uni�cation (in fact higherorder uni�cation) of variables. Hence Prolog-like search methods are very easy to implement.4



memory. Moreover, it moves the system further away from a conventional Prologimplementation. Instead, Stickel (1988) originally used depth-�rst iterative deepen-ing. This means that depth-�rst search is performed in the usual Prolog style, butfailing immediately if it ever gets beyond a certain depth; complete failure at a givendepth bound results in the bound's being increased and the entire search attemptedagain. As Stickel remarks, this is very much like breadth-�rst search, except thatintermediate levels of expansion are recalculated on demand rather than stored. At�rst sight this looks wasteful, but since the number of possible proofs tends to growexponentially with the depth bound, the �nal level usually dominates and recalcu-lation increases total computation by only a modest constant factor. Memory usageis practically nil and the implementation need only tweak a standard Prolog systemto carry the depth bound as it expands goals.Despite the talk of depth, Stickel's original implementation did not use a boundon the depth (height) of the proof tree, but rather on the number of nodes in thetree (= inferences in the proof). The blowup in the number of possibilities is oftenmore graceful than it is with depth, and it avoids a bias towards highly symmetricalproof trees. Nevertheless, Letz, Schumann, Bayerl, and Bibel (1992) have discoveredthat actually using a depth bound seems to be better on average.5 Let us see howthese di�erent methods perform on the  Lo�s example. We have implemented all thedi�erent search strategies, but tried to use the same code where possible. Moreimplementation details are given below.1. Best �rst search performs best of all; it takes just 1.0 seconds of user CPUtime,6 performs 1,378 successful uni�cations (we will follow the tradition incalling these `inferences') and accumulates just 519 goal states in its priorityqueue. Against that, the proof it �nds is rather larger than the above. Theheuristic used was:SIZE = �subgoalsg=1 10sizeg + jancestorsg jthat is, each goal is allocated a size which is the number of its ancestors plus 10times the `size' (roughly, the total number of function symbols and variablesin the formula) of the main goal. These sizes are then added together.2. Depth-bounded iterative deepening takes only slightly longer: 1.2 seconds ofCPU. The proof (almost the one given above) is found at level 7, after 7,627exploratory inferences.73. Inference-bounded iterative deepening performs very badly. It takes over halfan hour (1,829.3 seconds) of CPU time to �nd the proof given above, andperforms 5,360,067 inferences.Why does inference-bounded search perform so badly? Well, most obviouslybecause the proof is su�ciently long that by the time it is found, the search spacehas blown up too much. Depth-bounded search succeeded quickly because thereis a relatively symmetrical proof which is therefore not too deep. The success of5Of course, inference-bounded search will always �nd the `shortest' proof, in a reasonable sense.The size of the proof is usually minuscule in comparison with the number of possibilities explored,so this has little relevance to the runtime. However our original interest in MESON was as asubsystem whose proofs would be translated into LCF inferences. From this point of view, shortproofs are nice to have, though even then there is little di�erence in speed.6All times given in this paper are user CPU times on a Sparc 4 with 48M of physical memory.7The overhead of maintaining the priority queue and conducting more careful checks for an-cestor repetition slow down the inference rate of best-�rst search; so many more `inferences persecond' are performed here. 5



best-�rst search is rather harder to understand; in some cases it performs well, inothers badly.So why is the proof so long? The model elimination calculus is rather weakin that it does not permit the multiple instantiation of lemmas. If two instancesof �[x] are used in the proof, then the proofs of �[a1] and �[a2] (say) must begiven separately. This is often expressed by saying that the model eliminationcalculus is `cut-free', since a characteristic of cut-free sequent proofs (or normalnatural deduction proofs) is that a universal formula cannot be nontrivially deducedand then specialized. By contrast, resolution does allow multiple instantiations oflemmas.8A careful look at the MESON proof above reveals that there are essentially twoproofs of the fact :Q(x; d); they are not precisely identical because the symmetryrules are applied in di�erent places, but they could be made exactly identical exceptthat one uses a for x, the other b. Indeed, a proof which a human would naturally�nd is the following. If 8x y: P (x; y), then we are �nished. Otherwise there area, b with :P (a; b), and hence Q(a; b). Now if 8x: Q(a; x), then by transitivity andsymmetry of Q, we have 8x y: Q(x; y) as required. Otherwise there is a c with:Q(a; c) and therefore P (a; c). Now either (i) P (c; b), so by transitivity P (a; b);or (ii) Q(c; b), so by symmetry and transitivity Q(a; c); in either case we have acontradiction. The MESON analog requires a duplication to pass from 8z: Q(a; z)to 8x y: Q(x; y).There are essentially two ways in which the model elimination procedure can bebeefed up to allow multiple instantiation of lemmas.1. The underlying calculus can itself be changed. For example, SETHEO re-searchers (Letz, Mayr, and Goller 1994) have recently been experimentingwith incorporating so-called `folding up' and `folding down'. The present au-thor is not really au fait with the technical details, but the results seem verypromising.2. The implementation technique can be altered to remember lemmas and avoidre-proving them. Such ideas have been explored by Astrachan and Stickel(1992), with promising results. The  Lo�s theorem is one of the best examples,where the use of lemmas cuts back runtimes by a factor of several hundred.However, we will stick to the basic model elimination calculus, and try to un-derstand how inference-bounded search can be improved. Such optimization might,of course, turn out to be all the better in conjunction with one or both of the aboveextensions.4 A divide-and-conquer optimizationSuppose that when solving a goal g, we have used a rule which gives rise to twosubgoals, g1 and g2, and that we have n inferences left. Now if we are to solveboth g1 and g2 without overstepping the inference limit of n, we know that one orthe other of g1 and g2 must have a proof of size � n=2 (where division truncatesdownwards if n is odd.) Now in typical proofs:� the number of possible proofs increases exponentially with the inference bound;and8Although its close relative, Maslov's inverse method (Lifschitz 1986), is motivated by andpresented as forward search for a cut-free sequent proof, it nevertheless permits variables in anyfacts deduced to be treated as universal. In a sense, it performs meta-level proof search.6



� most expansions do not result in a successful proof, even locally, let aloneglobally.This suggests the following algorithm. First, attempt to solve g1 with inferencebound n=2. If that succeeds, then solve g2 with whatever is now left over from n.If this fails (or the solution of the remaining subgoals fails under all the resultinginstantiations), reverse the roles of g1 and g2 and try it that way round. Now explo-ration of g1 and g2 to the full depth is often avoided where it is clearly unnecessary.Against that, pairs of solutions to both g1 and g2 with size � n=2 will be found twice.(If the other subgoals cannot be solved with that instantiation and backtracking oc-curs, which will almost always happen.) One would expect, on average, that thisis a small price to pay; this is emphatically borne out in the results below, thoughthere are a few exceptional cases. What is important is that the remaining subgoalsare not solved twice, since then the duplication could amplify exponentially acrossthe proof tree. We will see below how to make sure of this.The above generalizes easily to more subgoals, g1; : : : ; gm. One alternative wouldbe to start by trying each in turn with depth bound n=m. However this implicitlyleads to m! di�erent reorderings. It's probably better to recursively divide the goalsinto two approximately equal parts, and treat them as above (with g1 and g2 nowstanding for sets of subgoals). In this way, instead of examining all m! permutationswe `only' get 2m�1. 9 Even with small branching factors this is an improvement,and in the (admittedly unlikely) event of very large branching factors, a signi�cantone.Using this optimization, the  Lo�s example is handled much more easily: it runsin 5.6 seconds, and requires 25,613 inferences. To be sure, it is still worse thanbest-�rst and depth-�rst search, but we will see below that the opposite is moreoften true.5 Redundancy in the proof skeletonAnticipating later results, we will see that optimized inference-bounded search doesbetter on average than depth-�rst search. Nevertheless, the margin is small enoughto seem quite surprising at �rst sight. After all, the blowup of the search space withdepth is usually dramatically exponential, so there's no real hope of �nding proofswith even one longish branch. The conclusion might be that a large number of theTPTP theorems have rather symmetric, and therefore shallow, proofs. This doesnot imply that the only proofs are highly symmetric. On the contrary, there aremany situations in mathematics where there is a great deal of redundancy in theproof skeleton.Consider proofs in equational logic; there are a certain number of axioms to-gether with re
exivity, symmetry and transitivity of equality, and congruence prop-erties for all the function symbols involved. Most reasonably large proofs can berearranged in myriad ways without greatly changing the proof size. (To say nothingof pointless detours like a = b = a = b = a = b.) First of all, transitivity chains canbe implemented by various di�erent associations of the one-step transitivity rule.Symmetry rules can be intermixed with transitivity rules in various di�erent ways,e.g. c = aa = c SYM c = ba = b TRANSversus9The recursion equations C1 = 1, C2k = 2C2k and C2k+1 = 2CkCk+1 must have a uniquesolution and Ck = 2k�1 is a solution. 7



c = bb = c SYM c = ab = a TRANSa = b SYMMoreover, instances of congruence rules can be 
oated up the proof tree pastsymmetry rules, and, at the cost of some duplication, past transitivity rules. Onecould easily arrive at a normal form theorem for equational proofs. For example,consistently 
oating symmetry and congruence rules up past transitivity rules, thensymmetry rules past congruence rules, would yield something like: each equationaltheorem has a proof which is either immediate re
exivity or else a right-associatedtransitivity chain, each equation in which is derived by applying congruence rules(possibly zero times) to either an axiom or the reversal of an axiom. By analogy withGentzen's cut-elimination theorem and its application in tableaux, even though suchproofs might be longer (e.g. congruence rules are duplicated by 
oating them uppast transitivity rules) the search space is dramatically reduced, making automatedproof search easier. Actually, tableaux enforce a canonical order beyond what isalready present in cut-free proof systems, since rule applications are always done ina �xed order (be it based on clever heuristics or simply on a round-robin basis).The above gives one reason why throwing in equality axioms is a poor way ofextending a proof procedure to deal with equality, a fact universally acknowledgedin the ATP community. The axioms allow enormous redundancy, blowing up thesearch space dramatically. Unfortunately many of the more mathematical TPTPproblems do just throw in the equality axioms like that. Even when they don't,it seems likely that there are similar redundancies lurking. A reduction to simpleprimitives always seems liable to lead to many ways of proving the same theorem.By the way, the above remarks suggest that a better set of equational axioms maybe possible by introducing several semantically equivalent equality symbols. Forexample, the transitivity rule could be:x =1 y ^ y = z ) x = zto force right-association. Some kind of weak `normal form' could be enforced bysuch methods; compare the way operator precedences and associativities are en-coded in programming language grammars by the introduction of extra nontermi-nals. Additional redundancy control mechanisms would still be desirable, though.In any case, that's another story. The above was mainly meant to emphasizethat (i) it isn't so surprising that inference-bounded search can perform badly,since there are still many redundancies involved, and (ii) it may be that there areboth highly symmetric and highly skewed proofs of the same fact, and focusingthe search on either of them may be an equally defensible policy, and better thanallowing both. Accordingly, we experimented with biasing the proof search in theoptimized inference-bounded case.First, instead of forcing one half of the subgoals or the other to be solved withsize � n=2, we force one to be solved with size � n=3, or � n=4 or � n=5. Thisof course means that not all proofs of size n will be found with the nominal sizelimit of n, but all will be solved at some larger value of n, while skewed proofs areencouraged. We will refer to the above as `a skew of 3' (or 4, 5, etc.) This is a verysimple modi�cation of the divide-and-conquer re�nement. To favour symmetricproofs, we simply insist that each of m subgoals is solved with size limit n=m. Ifone takes less than this, the di�erence is not made available to the others; if it failsthen no alternative orders need to be tried.8



6 ImplementationAll versions of the algorithm were coded in CAML Special Light, a compilableversion of the CAML language (Weis and Leroy 1993). This was because our originalinterest was in integrating the MESON procedure into an LCF-style interactivetheorem prover (Gordon, Milner, and Wadsworth 1979; Paulson 1987; Gordon andMelham 1993) which is written in CAML Light; compare the work of Tarver (1990).However the CAML language stands on its own merits: it's perfectly suited forthis kind of work, providing garbage-collected recursive data structures, uniformsupport for higher order functions, and a range of imperative features if required.Actually the programs are mostly applicative. In particular, instantiation is doneby maintaining instantiation lists, not by destructive assignment. Apart from the
ags controlling options and the incrementing of the inference counter, the onlyuses of imperative features are the arrays used to implement priority queues inthe best-�rst case, and the caching of continuations in the others (see below). Itwould probably be possible to achieve a signi�cant improvement in performance byrecoding in carefully optimized C, but at the cost of a much less clear and elegantimplementation. It was not our objective to compete with leading-edge theoremproving systems.First of all, the input clauses are reordered to put the smaller ones, i.e. those withfewer literals, �rst. Hence the rules which generate smaller numbers of subgoals willbe tried �rst. This seems a reasonable policy in general, though it actually makesthe runtimes longer for the  Lo�s example. Moreover, the literals within each ruleare reordered to put those with fewest free variables �rst (this being equal, thosewith the fewest variables which are not free in the conclusion). The idea is thatthese subgoals permit fewer choices of rules with which to unify, and so will leadto fruitless exploration being abandoned more quickly. Observe however that ourdivide-and-conquer optimization tends to negate the e�ect of this second kind ofreordering, since it often leads to the solution of the subgoals in di�erent orders.Note that, in contrast to the original PTTP and many of its descendants, the rulesare not compiled into code, but are interpreted at runtime.The best-�rst version is somewhat di�erent from the others. It maintains aheap-based priority queue of the current goal states, each goal state being a listof goal-ancestor pairs. At each iteration, the front of the queue is taken o�; ifit is empty then the goal is solved, otherwise its head goal is expanded using eachpossible rule; the possible subgoals generated are appended to the tail of the currentsubgoals, and each such new subgoal state is inserted into the queue, its priorityhaving been computed.The other versions are implemented using a continuation-passing style. Ratherthan retain a list of `additional goals to solve', a continuation is passed which willattempt to solve any additional goals under the instantiation given it as one of itsarguments (other arguments include the total size left for the solution). This givesthe program a very simple control structure, since backtracking can be initiatedwhen the continuation fails. It also allows greater 
exibility. For example, togenerate multiple possible solution instantiations for a goal containing variables,one could pass a toplevel continuation which stores the solution then fails; thiswould initiate backtracking. Such 
exibility is convenient for the divide-and-conqueroptimization, though of course it could be implemented in other ways.Variables in rules which are free in some or all of the hypotheses but not inthe conclusion do not become instantiated when the rule is applied, and must bereplaced with fresh variables to be later candidates for instantiation. This is doneimplicitly during uni�cation: variables are all given numbers, and those less thana certain value only appear in the rules. Consequently these can be bumped upby the currently active `o�set' value when they are encountered during uni�cation.9



This o�set value is also passed along through the chain of continuations, so that itonly gets incremented once per successful proof step.Continuations also allow a simple form of caching. First, note that if we aresolving two goals g1 and g2, and a solution of g1 is found which does not produceany new instantiations, then if the solution of g2 fails, no further solutions to g1need be tried, because these could only achieve greater instantiation of g2 andso there is no chance of its succeeding. This gives a simple search optimization;however, as pointed out by Stickel, it can interact badly with inference-boundediterative deepening: the point is that an alternative solution to g1 might use fewerinferences, and hence g2 could succeed even under the same or a more specialinstantiation because there are more inferences available. Stickel restricted thisoptimization to cases where the solution of g1 took just one inference (i.e. wassolved by a rule with no hypotheses or by the negation of an ancestor), though anoption was experimented with to treat non-instantiating solutions as if they wereof zero size.We generalize this as follows: each continuation has a cache or `memo' (Michie1968), so that it remembers the arguments it has already seen and failed on. Now ifthe continuation is called with an instantiation � and size n, and there was already acall with instantiation � and size m � n, the call fails at once (the sizes are ignoredif depth-bounded search is used). This seems to be quite a useful optimization inpractice, as indicated by some results below. We could adopt the re�nement of alsofailing with an instantiation �0 which is no more general than �. That would requiremore costly checks, but these might get repaid by eliminating many more redundantsearches. Such a facility has been incorporated into SETHEO; these rememberedinstantiations are there called `anti-lemmata'. We prefer the more neutral term`caching' because the name emphasizes that it isn't tied to theorem proving inparticular, but is applicable to Prolog-style search generally.10 However the term`anti-lemma' usefully emphasizes that the cache is only used in a negative way: \thishas already been tried, and it didn't work" rather than \this has already succeededand here are the instantiations it gave rise to that time". This more general kind ofcaching, where moreover the cache is more persistent (ours exists only ephemerallywith the continuation), has been explored by Astrachan and Stickel (1992).Caching is enough to deal with the problem which we have already mentionedin the optimized version: if a given pair of solutions is repeated in di�erent orders,it will generate the same instantiations, and caching will prevent the continuation'sbody from being called twice. However since setwise comparison of instantiationlists is expensive11 we pre-empt this �ltering out by an additional wrapper whichmakes the continuation fail immediately if the second goal is solved with size � n=2and then the �rst one is too (the other way round is permitted).It is never necessary to repeat a goal, so if a goal ever appears in its own ancestorlist, search of that branch can be abandoned immediately. This optimization wasalready included by Stickel. Of course, it may only happen that a repetition occursafter additional instantiations are performed. For example, applying a transitivityrule to P (a; b) gives P (a;X) and P (X; b) as subgoals, but if a later instantiationsets X to a or b, there is a repetition. For simplicity, we only check when addinga goal as an ancestor that it is not already in the list, under the currently pendinginstantiations. The best-�rst version does a complete check of the ancestor listeach time; this is rather costly, but otherwise that version can get stuck on ratherlong dead ends. In the other versions, such additional checks reduce the number ofinferences, but usually still increase runtimes.10Though of course from one point of view, that is theorem proving too. Some related techniquesfor avoiding redundant search are common in Prolog implementations.11To reduce consing, instantiation lists are augmented from the head, rather than being main-tained in a canonical order. 10



In some situations, it is impossible for a small increment in the inference boundto result in any new proofs. For example, if all the rules either have no hypothesesor 2, then it is impossible to generate new proofs by an increment of 1. As noted byStickel (1988), it is possible to record, each time a proof fails because it over
owsthe size limit, the amount by which it overspilled; the least such value can then bechosen as the next increment. We did not implement this optimization as Stickeldid since there seemed to be rather few situations where it is useful.7 ResultsThanks to the TPTP problem library (Suttner and Sutcli�e 1995), there are wellover 2,000 problems in clausal form available as a test suite. We decided to usethis, rather than some smaller collection, in the hope that it would exercise thedi�erent search strategies on a representatively wide range of problems. Version1.2.0 of the TPTP library contains 2,755 �xed-size problems; there are `generators'to produce di�erent sizes of generic ones, but we just took the single instance whichis also provided. Of these problems, our programs immediately detected that 4were satis�able, since there were no all-negative support clauses available to startthe search (recall that the rules with falsity as conclusion need only be tried for all-negative clauses).12 By the way, just about half the problems (1,378) have preciselyone possible support clause; most of the rest have just a few. There are 20 problemswhich have more than 10, the record-holder being PUZ028-3 with 432 supports.Given such a large set of problems, it was necessary to set quite low limits onCPU time in order to complete the tests in a reasonable time. We split the tests over20 Sparc-4 workstations, making some e�ort to compensate for small di�erences inhardware characteristics. Each problem was allocated a CPU time limit of 300seconds (5 minutes) and a (virtual) store limit of 12 megabytes (the latter is onlyreally relevant for the best-�rst implementation). Successful problems were rerunon a �xed machine to make the CPU times completely normalized. Of course it'spossible that a few problems took just over 5 minutes on the �rst machine eventhough they would have taken less on the second. We believe that such cases arerare, as is the converse situation of �nal runtimes exceeding 5 minutes; however theattentive reader may notice below a few instances of the latter phenomenon.7.1 Comparison of search strategiesFirst, we will give some statistics for the general success of each search strategy.We will just make explicit what the names stand for:� best: best-�rst search with the heuristic given above.� sym: inference-bounded search where each of the subgoals is given an equalshare of the inference limit and leftovers are not made available to the others.� deep: depth-bounded iterative deepening.� unopt: unoptimized inference-bounded search.� opt: optimized inference-bounded search.� skew-3: optimized inference-bounded search with a skew of 3.� skew-4: optimized inference-bounded search with a skew of 4.12There are probably plenty of others which are in fact satis�able; the TPTP library is intendedto contain a few such, as well as some whose status is open, such as the \Robbins conjecture".11



� skew-5: optimized inference-bounded search with a skew of 5.We give the number of TPTP problems solved in the 5 minute time and 12Mspace limits, the number which only that strategy solved, and the number on whichthat strategy was at least equal fastest. With some strategy or other, 976 problemswere solved; 495 problems were solved by every strategy. As already stated, this isfrom a total stock of 2,755 problems, 4 of which were 
agged as satis�able.Strategy Successes Only Fastestbest 593 22 219sym 768 1 332deep 816 43 397unopt 717 0 383opt 850 1 330skew-3 873 2 435skew-4 871 0 453skew-5 869 7 480From this table it is apparent that most modes have at least a few problems onwhich they shine, though it appears that the divide-and-conquer optimization witha skew of 3 is best on average. But the large number of di�erent strategies, and themany variants of our optimized version, tends to obscure individual comparisons,so let's also look at some interesting pairs, on the same basis. First, it is evidentthat the optimization is a clear improvement.Strategy Successes Only Fastestunopt 717 3 618opt 850 136 827It gets over a hundred more problems, while only 3 become impossible. Almostall runtimes are signi�cantly reduced by the optimization, often by one or twoorders of magnitude (see the large table of results below). We tried the threerogues without resource limits with the divide-and-conquer optimization to see justhow much worse they became. Problem LCL097-1 took 12:32.7 minutes `optimized'against 2:59.3 minutes `unoptimized'; and LCL107-1 took 8:21.2 against 2:16.9. Themost dramatic was NUM283-1.005, which took 46:54.8 instead of just 0:41.4 withoutthe divide-and-conquer optimization. We examined this theorem, and discoveredthat it is rather atypical: it essentially calculates 5! in unary arithmetic based onrecursive de�nitions of the arithmetic operations. As such the proof is (a) very long(150 inferences) and (b) completely deterministic. So it's not too surprising that theoptimization performs badly, since it explores alternative ways of making choiceseven where no choice exists. Most of the few instances where the optimization slowsthings down are also concentrated in the LCL100 area. These problems involvediscovering proofs from complicated single axioms in equivalential calculus. Theonly rules are the axioms and the rule of `condensed detachment' (from ` a � band ` a, deduce ` b). Once instantiation has made a goal su�ciently specializedthat it cannot be an instance of an axiom, failure is quick. Though not completelydeterministic as NUM283-1.005 is, these are clearly not good candidates for theoptimization.Our experience echoes that of SETHEO researchers (Letz, Schumann, Bayerl,and Bibel 1992), in that depth-bounded search seems to do better on average thanunoptimized inference-bounded search, though where inference bounded search suc-ceeds it is often faster: 12



Strategy Successes Only Fastestunopt 717 54 680deep 816 153 634However our optimized version works out signi�cantly better than depth-boundedsearch:Strategy Successes Only Fastestdeep 816 70 571opt 850 104 709Slightly surprisingly, notwithstanding the justi�cation above, our optimizationin conjunction with a slight skew (3) seems even better:Strategy Successes Only Fastestdeep 816 60 510skew-3 873 117 749We will now give a fairly comprehensive list of runtimes for di�erent strategieson di�erent problems. To save space and focus on the more interesting cases, weinclude only those where at least one strategy took over a minute (which includesexceeding the 5 minute limit), but at least one succeeded. That is, we excludeproblems which are either very easy or too di�cult.PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5BOO003-1 [B2 part 1] 2:20.0 5.5 4.4 3.6 3.6BOO003-2 [prob2 part1.ver2.in] 3:52.2BOO003-4 [TA] 4:38.6 2:25.7 1:15.6 57.1 39.8BOO004-1 [B2 part 2] 3.2 2:24.5 5.4 4.5 3.6 3.8BOO004-2 [prob2 part2.ver2.in] 5:04.6BOO004-4 [TA] 2:09.0 1:04.5 45.0 33.2BOO005-1 [B3 part 1] 5.9 2:36.3 9.9 8.1 6.6 7.0BOO006-1 [B3 part 2] 2:32.6 9.3 7.4 6.1 6.6BOO012-1 [B8] 2.2 3.8 1:25.2 1:03.2 50.2 44.7BOO012-3 [B8] 46.6 1:01.5BOO013-1 [B9] 3:58.4 3:03.6CAT001-3 [C1] 12.7 22.5 32.0 7.1 5.2 4.7 3.5CAT001-4 [C1] 6.3 8.6 7.3 4.9 3.7 3.4 2.5CAT002-3 [C2] 34.4 5.8 3.1 2.4 2.2 1.7CAT002-4 [C2] 3:06.0 15.6 2.4 2.3 1.8 1.6 1.3CAT003-3 [C3] 9.4 9.9 0.7 0.5 0.4 0.4 0.4CAT003-4 [C3] 4.1 3.6 0.3 0.4 0.3 0.3 0.3CAT004-3 [C4] 39.5 26.9 22.7 1:33.7CAT004-4 [C4] 1:13.8 27.5 18.5 14.1 53.5CAT005-1 [C5] 1.9 9.5 6.1 1:11.7CAT006-1 [C6] 1.8 6.4 6.1 1:09.7CAT008-1 [C8] 4:20.5CAT017-4 18.7 0.3 0.3 0.2 0.2 0.2 0.2CAT018-1 [p18.ver1.in] 11.5 16.8 10.2 17.4 16.6CAT019-3 [p15.ver3.no2.in] 4.1COL001-1 [C1] 11.2 4:34.7 2:44.1 2:21.0COL001-2 [C1] 2.2 0.5 1.6 1.3 1.0 1.0 1.0COL002-1 [C1.1] 1.1 0.1 0.2 0.2 0.2 0.2 0.2COL002-2 [C1] 0.2 0.4 0.2 0.2 0.2 0.2 0.1COL002-3 [C1] 0.2 0.0 0.0 0.1 0.1 0.1 0.1COL008-1 [Question 13] 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL009-1 0.8 0.1 0.6 0.5 0.5 0.4 0.5COL010-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL011-1 4:52.5COL015-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL017-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL019-1 0.9 0.0 0.2 0.1 0.2 0.2 0.1COL020-1 0.8 0.1 0.2 0.1 0.1 0.2 0.2COL021-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL022-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL023-1 36.9 1.2 0.6 0.5 0.4 0.4 0.3COL024-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL025-1 [stage1.in & stage2.in] 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL026-1 36.6 1.1 0.5 0.4 0.4 0.4 0.3COL027-1 38.8 1.2 0.6 0.5 0.4 0.4 0.4COL028-1 39.1 1.2 0.6 0.5 0.4 0.4 0.4COL030-1 0.4 6.8 0.8 0.3 0.3 0.2 0.2COL032-1 14.6 4.7 48.8 2.8 1.6 1.1 1.0COL033-1 1:48.4 50.6 27.3 21.1COL035-1 2.7 4.0 56.3 5.8 3.1 2.6 2.5
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PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5COL039-1 2.2 1.9 0.6 0.4 0.3 0.3 0.3COL040-1 [Question 5] 4:45.2 3:07.2 1:08.5 41.7 27.4COL041-1 3:26.0 2:09.0 1:16.7COL044-1 [CL3] 4:58.6 3:07.2 1:09.8 39.2 27.7COL045-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL048-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL050-1 [bird1.ver1.in] 0.0 0.0 0.0 0.0 0.0 0.0 0.0COL051-1 [bird2.ver1.in] 0.4 0.1 0.1 0.1 0.0 0.1 0.1COL052-1 [bird4.ver1.in] 32.5 2.1 5.4 1.7 1.1 0.8COL052-2 [bird4.ver2.in] 2:28.6 3.0 2.6 1.0 0.7 0.6COL054-1 [bird6.ver1.in] 0.3 0.1 0.4 0.3 0.2 0.2 0.3COL056-1 [bird8.ver1.in] 2:20.9 0.6 0.9 0.7 0.4 0.4 0.4COL057-1 [CL5] 5:00.9COL058-2 2:24.0 36.6 1:52.5 47.9 24.1COL060-1 [CL-1] 3:56.6 1:44.8 1:10.1COL060-2 [CL-1] 0.5 1:31.5 2:45.0 1:34.3 1:09.8COL060-3 [CL-1] 0.5 1:23.6 4:38.8 1:56.6 1:02.0 35.9 25.2COL061-1 [CL-2] 3:28.0COL061-2 [CL-2] 0.5 5:03.5 2:55.0COL061-3 [CL-2] 0.5 4:32.4 3:06.9 1:40.5 1:12.1COL062-2 [CL-3] 0.8COL062-3 [CL-3] 0.7COL063-2 [CL-4] 0.7COL063-3 [CL-4] 0.7COL063-4 [CL-4] 0.9COL063-5 [CL-4] 0.9COL063-6 [CL-4] 0.7COL064-10 [CL-5] 1.3COL064-11 [CL-5] 1.0COL064-2 [CL-5] 1.0COL064-3 [CL-5] 0.9COL064-4 [CL-5] 1.2COL064-5 [CL-5] 1.2COL064-6 [CL-5] 0.9COL064-7 [CL-5] 1.0COL064-8 [CL-5] 1.0COL064-9 [CL-5] 1.4COL066-2 [CL-7] 4:50.3 3:19.7COL066-3 [CL-7] 4:43.9 3:20.5COL070-1 [Question 11] 38.2 0.7 0.5 0.4 0.3 0.3 0.3COL075-1 2:30.4COL075-2 10.2 10.5 23.1 12.3 8.3 18.7COM004-1 0.2 20.1 6.0 2.8 1.0GEO001-1 [T1] 1:40.0GEO003-1 [T3] 1.3 0.5 0.4 0.4 0.4 0.4 0.3GEO003-2 [T3] 1.1 0.4 3:10.7 0.4 0.3 0.3 0.3 0.3GEO011-2 [T11] 0.3 0.4 0.3 0.3 0.3 0.3 0.3GEO011-3 [T11] 1.4 1.1 1.4 1.4 1.4 1.5 1.5GEO011-4 [T11] 0.3 0.3 0.3 0.3 0.3 0.3 0.3GEO017-2 [D4.1] 1:13.6 32.6 0.9 0.8 0.8 0.8GEO018-2 [D4.2] 0.5 9.0 0.4 0.4 0.3 0.3 0.4GEO020-2 [D4.4] 1.6 1:16.0 32.4 0.9 0.7 0.7 0.7GEO022-2 [D5] 1:16.3 32.6 1.0 0.8 0.8 0.8GEO022-3 [D5] 1.7 17.2 0.5 0.6 0.6 0.6 0.6GEO024-2 [D7] 1.1 0.5 3:14.5 0.4 0.4 0.3 0.4 0.3GEO026-2 [D9] 59.6GEO027-3 [D10.1] 8.1 2:18.8 14.4 11.1 10.8 10.8GEO039-2 [B1] 29.6 20.4 13.1GEO039-3 [B1] 2:13.7 2:11.3 2:11.7 2:07.6 2:10.4GEO040-2 [B2] 42.7GEO041-3 [B3] 22.2 29.3 30.6GEO047-3 [B9] 1:34.7 2:33.6 2:33.6GEO055-3 [R2.2] 2.1 5.2 0.7 0.6 0.7 0.7 0.7GEO056-2 [R3.1] 1.2 1.8 2.1 1.4 1.4 1.5GEO058-2 [R4] 1.6 8.4 6.0 3.0 2.8GEO058-3 [R4] 1:08.1 0.8 - 1.1 1.0 0.9 1.0 1.0GEO059-3 [R5] 4.7 1:06.4 4.2 4.2 4.1 3.9 4.1GEO064-3 [C2.1] 1.6 1.3 1.3 1.3 1.3 1.3 1.3GEO065-3 [C2.2] 1.6 1.3 1.2 1.2 1.3 1.3 1.3GEO066-3 [C2.3] 1.5 1.3 1.2 1.3 1.2 1.2 1.2GRP001-1 [wos10] 9.2 5.7 5.1 4.9GRP003-2 0.7 1.6 2.6 0.8 0.6 0.5 0.5GRP004-2 0.5 0.9 0.1 0.1 0.1 0.0 0.1GRP006-1 [EX6] 0.0 0.0 0.0 0.0 0.0 0.0 0.0GRP008-1 [wos4] 17.1 2.4 4:01.3 5.1 16.4 2:17.6GRP009-1 [wos6] 0.6 1.4 8.2 2.7 2.3 2.2 2.2GRP010-1 [wos7] 1.5 0.7 0.4 0.3 0.2 0.2 0.2GRP012-1 [wos9] 8.1 18.4 0.7 0.6 0.5 0.5 0.5GRP012-2 [ls36] 2:11.5 1:16.4 1:07.2 1:00.1GRP012-3 2:25.7 1:30.5 1:15.6 1:08.7GRP013-1 [wos11] 51.1 1:13.4 15.5 10.3 8.9 8.2 7.0GRP022-1 [wos8] 0.2 0.1 0.1 0.1 0.1 0.1 0.1GRP022-2 [Established lemma] 49.8 43.8 24.5 17.3 11.7GRP025-1 [G8] 2.0 0.6 20.5 2.6 6.0 7.2GRP025-2 [G8] 9.6 1.5 3.6 2.1 2.1 2.0 2.1GRP025-3 [G8] 1.3 0.6 17.9 2.4 5.8 6.7GRP025-4 [G8] 26.4 1.8 7.9 4.6 4.6 4.7 4.7GRP026-1 [G9] 3.1 0.7 33.8 4.0 8.3 10.5GRP026-2 [G9] 35.3 3.6 14.5 3.9 4.1 3.8 3.7GRP026-3 [G9] 1.9 0.6 29.4 4.0 8.5 9.9GRP026-4 [G9] 1:39.6 4.2 36.3 9.0 8.5 8.5 8.9
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PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5GRP027-1 0.2 0.2 0.2 0.2 0.2 0.2 0.2GRP027-2 [cyclic.ver3.in] 0.1 0.2 0.2 0.1 0.2 0.1 0.2GRP029-1 [wos1] 1:46.3 8.3 6.8 2.3 1.7 1.7GRP029-2 [G5] 23.5 7.9 5.5 2.2 1.7 1.7GRP030-1 [wos2] 1.4 2.9 1:15.9 2.5 1.4 1.1 1.1GRP031-1 [wos5] 21.3 6.3 1.8 0.3 0.3 0.3 0.3GRP031-2 [ls23] 0.1 0.2 0.1 0.1 0.1 0.1 0.1GRP034-3 [wos14] 0.2 0.2 0.1 0.1 0.1 0.1 0.0GRP036-3 [wos16] 5.4 3.2 0.7 0.8 0.5 0.5 0.5GRP037-3 [wos17] 35.3 12.3 6.7 5.3 5.0 5.3GRP046-2 1.8 0.7 0.1 0.1 0.1 0.1 0.1GRP047-2 0.3 2.4 4.2 2.3 1.4 1.4 1.3GRP123-1.003 [Bennett QG1] 1:28.8 3.6 1:06.1 51.5 1:03.7 1:11.1GRP123-2.003 1:36.2 4.0 1:09.1 55.0 1:06.6 1:13.0GRP123-3.003 1:41.3 5.6 1:16.3 57.8 1:05.3 1:15.8GRP123-4.003 2:24.7 7.0 1:28.2 58.6 1:07.2 1:19.1GRP123-6.003 [QG1a] 2:10.3 14.5 2:30.6 1:46.1 2:07.0 2:25.1GRP123-7.003 2:19.3 15.0 2:31.0 1:52.2 2:09.7 2:29.1GRP123-8.003 2:23.7 16.8 2:33.1 1:50.9 2:10.7 2:31.6GRP123-9.003 2:19.2 14.2 2:30.0 1:48.9 2:08.2 2:19.7GRP124-1.003 [Bennett QG2] 1:34.1 3.6 1:06.1 53.6 1:02.1 1:06.6GRP124-2.003 1:38.0 4.0 1:11.0 56.4 1:05.8 1:14.4GRP124-3.003 1:42.9 5.5 1:13.8 59.0 1:07.8 1:12.8GRP124-4.003 2:26.2 6.9 1:22.6 59.1 1:08.7 1:13.3GRP124-6.003 [QG2a] 2:18.5 14.5 2:28.2 1:48.4 2:05.9 2:23.9GRP124-7.003 2:19.0 13.8 2:28.3 1:46.6 2:04.2 2:28.6GRP124-8.003 2:20.7 16.0 2:31.6 1:53.2 2:10.9 2:19.8GRP125-1.003 [Bennett QG3] 1:35.8 7.6 2:20.9 1:50.6 1:55.7 2:01.8GRP125-2.003 1:35.8 9.6 2:36.9 1:56.0 2:04.6 2:13.0GRP125-3.003 1:50.7 13.6 2:39.5 1:59.7 2:08.7 2:18.5GRP125-4.003 40.4 3:39.2GRP127-1.003 [Bennett QG5] 1:32.8 8.9 2:13.8 1:38.5 1:48.6 2:11.9GRP127-2.003 1:41.0 12.1 2:27.1 1:45.0 1:57.5 2:12.2GRP127-3.003 1:50.2 18.3 2:30.8 1:47.5 2:01.2 2:17.1GRP127-4.003 41.4GRP129-1.002 [Bennett QG7] 1:08.7 5.5 4:24.8 2:58.3 2:38.9 2:45.3GRP129-2.002 1:15.8 6.9 3:20.6 2:58.6 3:14.4GRP129-3.002 1:33.3 10.0 4:38.1 4:21.0 4:47.0GRP129-4.002 10.6 41.1 44.8 7.4 6.5 8.8GRP130-1.002 [Bennett QG8] 10.3 1:22.4 5.6 37.9 29.5 31.2 36.7GRP130-2.002 10.0 1:33.4 7.4 44.0 33.6 35.7 42.4GRP130-3.002 16.1 1:52.7 10.5 59.0 50.8 54.0 1:05.9GRP130-4.002 7.5 13.5 3.6 53.9 5.8 7.3 8.7GRP131-1.002 [QG1-ni] 46.4GRP131-2.002 1:06.1GRP132-1.002 [QG2-ni] 43.3GRP132-2.002 1:02.5GRP133-1.002 [QG3-ni] 9.2 4:07.9 2:53.8 2:33.1 2:40.6GRP133-2.002 17.6 4:33.6 3:08.8 2:45.1 2:56.9GRP134-1.002 [QG4-ni] 1:14.0 2.9 3:47.4 3:10.0 3:18.5GRP134-2.002 1:29.8 4.9 4:13.0 3:44.5 3:42.1GRP135-1.002 [QG5-ni] 14.6 2:09.3 4.8 38.6 32.9 34.3 40.3GRP135-2.002 13.1 2:20.4 6.9 43.5 37.5 38.7 46.4GRP139-1 [ax glb1b] 3.6 0.5 0.9 1.1 1.0 0.8 1.5GRP140-1 [ax glb1c] 2:22.0 4:54.9 2:32.2 1:53.9 1:26.2GRP143-1 [ax glb2b] 0.3 0.1 0.2 0.4 0.3 0.2 0.3GRP145-1 [ax glb3b] 0.1 0.1 0.1 0.2 0.2 0.2 0.2GRP146-1 [ax lub1a] 3.5 0.5 1.0 1.1 0.9 0.8 1.6GRP148-1 [ax lub1c] 2:09.4 2:43.4 2:04.4 1:34.7GRP150-1 [ax lub2a] 0.1 0.1 0.1 0.1 0.1 0.1 0.1GRP152-1 [ax lub3a] 0.4 0.3 1.0 1.2 2.5 2.2 1.9GRP156-1 [ax mono1c] 0.4 8.1 1:31.4 11.6 7.6 6.3 4.9GRP159-1 [ax mono2c] 4.9 4:47.5GRP162-1 [ax transa] 39.2 1:48.5 55.2 1:19.0 1:05.1GRP163-1 [ax transb] 32.3 3:21.4 1:48.0 1:21.7 1:04.5GRP165-1 [lat1a] 14.9 25.1 2:22.0 1:12.2 51.3 38.5GRP166-3 [lat3a] 15.5 24.7 2:24.4 1:15.6 50.1 38.3GRP167-5 0.1 0.2 0.2 0.2 0.2 0.2 0.3GRP168-1 [p01a] 0.2 33.8 3:23.2 35.2 21.9 18.3 16.4GRP168-2 [p01b] 0.2 35.1 3:22.6 34.6 22.1 18.5 16.8GRP186-4 [p23x] 2.1 2:31.1 3:57.5 3:06.6GRP188-1 0.4 0.3 1.0 1.3 2.5 2.2 1.9GRP188-2 [p38a] 0.5 0.3 1.2 1.5 3.0 2.7 2.2HEN003-1 [H3] 2:10.1 1:55.5 2:09.1HEN003-2 [H3] 4:38.7 2:34.1 1:44.9HEN003-3 [HP3] 10.3 4.9 3.6 3.0HEN003-4 [H3] 5:01.4 19.1 8.6 5.9 4.9HEN003-5 [H3] 20.5 9.5 6.8 5.6HEN004-2 [H4] 4:18.0HEN004-4 [H4] 41.7 18.8 12.7 9.7HEN004-5 [H4] 4:33.2 3:01.2HEN005-2 [H5] 1:44.9 2:14.3 3:47.7HEN005-3 [HP5] 4:23.5 2:21.4 1:40.3HEN005-6 [H5] 4:40.3 3:12.9HEN006-4 [H6] 40.8 5.6 4.0 3.2 3.0HEN007-2 [H7] 3:51.7 26.7 19.3 15.7 15.3HEN007-4 [H7] 0.2 2.8 0.2 0.2 0.2 0.2 0.2HEN007-6 [H7] 53.0 3:21.6 20.6 14.7 11.2 11.6HEN008-1 [H8] 1:09.1 18.7 17.0 20.6 28.9HEN008-2 [H8] 36.0 25.2 20.8 19.1HEN008-3 [HP8] 52.5 4.7 2.8 2.2 1.7
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PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5HEN008-4 [H8] 2:06.1 4.6 15.2 9.4 6.2 5.2 4.4HEN008-5 [H8] 53.7 18.7 9.7 7.3 5.8HEN008-6 [H8] 34.3 6.6 4.1 3.1 2.7HEN009-2 [H9] 1:25.6 1:15.5HEN009-4 [H9] 0.4 7.3 2.7 0.7 0.6 1.8 7.2HEN009-5 [H9] 7.1 12.0 20.9HEN010-4 [H10] 2:22.2 1:38.8 16.1 10.0 8.5 6.3HEN010-6 [H10] 1:02.3 1:21.3 9.6 5.7 4.6 3.5HEN011-4 [H11] 1:32.5 1:41.9 4:42.4HEN012-1 2:53.1 2:22.8 2:40.9HEN012-3 [new.ver2.in] 12.4 6.1 4.5 3.4LCL006-1 [EC-69] 3:57.3 3:18.7LCL008-1 [EC-71] 2:57.5 6.7 0.5 0.6 0.4 0.3 0.3LCL009-1 [EC-72] 5:02.0LCL010-1 [EC-73] 3:00.5 6.9 20.6 13.5 30.1 49.2 1:56.7LCL022-1 [ec.in part 1] 4:41.2 1:19.8LCL023-1 [ec.in part 2] 4:50.7LCL033-1 [C0-45] 5.6 4.2 4.6 2.4 1.5 0.8LCL035-1 [C0-47] 1:12.5 2.8 1.1 0.9 0.5 0.7 1.2LCL045-1 [CN-6] 51.0 49.8 2:43.3 4:05.6 2:46.9LCL064-2 [morgan.six.ver1.in] 3:11.5 2:22.3 1:25.3 1:06.9 50.3LCL066-1 [CN-27] 3:51.4LCL076-3 [morgan.four.ver1.in] 1:43.7 48.3 36.4 26.9 28.4LCL077-2 [morgan.two.ver1.in] 1:36.3 2:06.7 3.7 2.8 2.2 2.0 2.1LCL081-1 [ls1] 2:33.4 1:20.5 1:50.1 56.7 35.3LCL082-1 [ls2] 3.5 2.7 1.5 0.8 0.5LCL096-1 [LG-89] 18.1 15.5 19.3 47.3 44.3LCL097-1 [CD-90] 4:11.8 3:24.3 2:59.3LCL098-1 [LG-91] 2.3 13.4 8.1 11.8 41.7 3:17.5 3:46.5 3:29.3LCL102-1 [LG-95] 43.4LCL106-1 [LG-99] 1.0 1:22.9 56.0 1.0 1.2 1.0 0.9 0.9LCL107-1 [LG-100] 1:04.3 8.4 2:16.9LCL111-1 [CADE-11 Competition 6] 16.3 17.3 1:05.3 1:02.6 54.5 43.4LCL118-1 [R-86] 3:35.4 23.0 28.3 18.8 13.5 30.8LCL120-1 [R-88] 6.2 15.4 11.9 29.9 1:32.8LCL130-1 [RG-111] 32.0 3.3 13.6 1:19.0LCL132-1 [Lemma 1] 22.4 2:55.9 1:10.2 35.9 1:07.3LCL143-1 [Lattice structure theorem 2] 17.6 28.5 1:49.2 1.2 0.8 0.8 0.7LCL174-1 [Problem 2.06] 0.0 0.0 0.0 0.0 0.0 0.0 0.0LCL178-1 [Problem 2.12] 0.2 0.1 0.1 0.0 0.0 0.0 0.0LCL182-1 [Problem 2.16] 21.8 15.8 13.2 13.1LCL187-1 [Problem 2.24] 0.2 0.1 0.1 0.1 0.0 0.1 0.0LCL189-1 [Problem 2.26] 0.2 0.1 0.1 0.1 0.1 0.1 0.0LCL193-1 [Problem 2.36] 0.4 0.4 0.3 0.1 0.1 0.1 0.1LCL194-1 [Problem 2.37] 5.1 2.4 2.4 0.8 0.6 0.5 0.5LCL195-1 [Problem 2.38] 30.2 21.3 18.3 17.6LCL196-1 [Problem 2.4] 2:37.3 2:13.5 2:11.2LCL199-1 [Problem 2.45] 7.0 4.6 3.8 3.4LCL200-1 [Problem 2.46] 1:48.9 44.7 51.2 1.4 0.9 0.8 0.7LCL201-1 [Problem 2.47] 11.7 7.8 6.5 6.0LCL202-1 [Problem 2.48] 47.8 26.2 21.2 20.6LCL203-1 [Problem 2.49] 12.6 8.5 6.9 6.7LCL204-1 [Problem 2.5] 12.9 8.5 7.3 6.8LCL205-1 [Problem 2.51] 1:04.7 38.9 33.9 30.3LCL206-1 [Problem 2.52] 13.3 9.0 8.0 7.5LCL207-1 [Problem 2.521] 1:51.2 44.9 52.0 2.2 1.5 1.3 1.3LCL208-1 [Problem 2.53] 1:57.6 1:21.5 1:10.2 1:07.9LCL210-1 [Problem 2.55] 4:05.1 3:32.0 3:24.8LCL211-1 [Problem 2.56] 2:38.2 1:36.3 1:47.1 3.3 2.7 2.1 2.1LCL213-1 [Problem 2.61] 3:04.7 1:41.8 1:53.9 7.1 5.8 5.2 4.9LCL214-1 [Problem 2.61] 2:51.4 1:41.8 1:53.6 5.6 4.5 4.0 3.8LCL215-1 [Problem 2.62] 26.3 17.9 16.4 14.7LCL216-1 [Problem 2.64] 2:18.1 1:02.9 1:12.9 3.5 2.6 2.2 2.1LCL217-1 [Problem 2.65] 2:31.3 1:03.8 1:14.3 5.4 4.2 3.8 3.6LCL218-1 [Problem 2.67] 22.2 15.8 13.5 12.5LCL226-1 [Problem 2.8] 0.0 0.0 0.0 0.0 0.0 0.0 0.0LCL230-1 [Problem 2.85] 3:41.1 2:39.8 2:12.4 2:07.7LCL231-1 [Problem 2.86] 4:01.0 3:24.6 3:19.7LDA003-1 [Problem 3] 19.6 7.0 3.7 2.4LDA007-3 [Problem 8] 55.4MSC002-1 [DBABHP] 0.7 4.2 1.3 1.1 0.7 0.8MSC002-2 0.5 3.7 1.2 0.9 0.7 0.7MSC006-1 [nonob.lop] 1.0 5.0 1.2 5.6 6.2 8.2 9.9MSC007-2.002 [Pelletier 73 (Size 4)] 11.6 9.3 0.6 1:32.5 0.8 0.8 0.7 0.9MSC008-1.002 1:08.8MSC008-2.002 51.6NUM002-1 [ls29] 0.2 0.3 1.5 0.7 0.7 0.6 0.6NUM003-1 [Chang-Lee-10c] 4.2 1.3 0.4 0.3 0.3 0.3 0.3NUM004-1 [Chang-Lee-10d] 0.2 0.3 1.2 0.6 0.5 0.5 0.5NUM020-1 [ls55] 0.1 0.0 0.0 0.0 0.0 0.0 0.0NUM021-1 [ls65] 2.4 8.2 3.8 2.9 2.6 2.1NUM024-1 [ls75] 9.5 9.0 13.5 14.6 13.3 12.0 22.0NUM027-1 [ls87] 53.0 1:22.8 46.5 30.7 25.1 23.2NUM180-1 [LIM2.1] 32.5 27.0 6.2 5.8 5.7NUM283-1.005 [fac2.lop (Size 2)] 2.2 6.0 41.4NUM284-1.010 [fib3.lop (Size 3)] 6.9 53.6PLA001-1 6.7 25.0 44.2 31.2 29.2 29.3PLA002-1 [Problem 5.7] 46.4 0.1 3.7 3.9 3.7 8.8 20.2PLA004-1 20.5PLA004-2 5.0PLA005-1 0.6
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PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5PLA005-2 1.9PLA006-1 0.4 0.1 0.2 0.2 0.1 0.1 0.1PLA007-1 3.6PLA008-1 43.3PLA009-1 2.3 4:42.8PLA009-2 10.3 21.1 5.8 3:25.8 3:56.7PLA010-1 2:45.1PLA011-1 1.9PLA011-2 0.7PLA012-1 1:25.7PLA013-1 3.6PLA014-1 24.8PLA014-2 6.4PLA015-1 2:52.6PLA016-1 1.7PLA017-1 1.1 0.5 4.6 4.6 1:50.3PLA018-1 46.2PLA019-1 1.7PLA021-1 3.0PLA022-1 0.9 12.1 0.3 3.1 1.6 1.4 1.1PLA022-2 1.8 0.5 3.5 1.8 1.5 1.2PLA023-1 1:24.5PRV001-1 [PV1] 12.4 6.5 3.3 1.3 1.5 1.7PRV005-1 [E4] 0.1 0.1 0.1 0.1 0.1 0.1 0.1PRV006-1 [E5] 1.2 1.8 0.4 0.4 0.4 0.4 0.4PUZ006-1 [mars venus.in] 3:49.5 33.8 15.8 9.9PUZ007-1 [mars venus2.in] 6.9 2:32.7 2:29.9 3:36.1PUZ008-3 5.2 2.2 10.7 3:13.6 54.0 34.3 29.4PUZ014-1 [The School Boys] 0.6 57.5 9.7PUZ016-2.003 0.3 0.6 1.9 0.6 0.3 0.3 0.3PUZ023-1 [Problem 27] 0.9 0.7 6.9 2:22.8 1.2 1.4 2.2 3.9PUZ024-1 [Problem 31] 0.4 0.1 0.3 0.2 0.2 0.2 0.2PUZ025-1 [Problem 35] 54.8 31.5 5.5 4.5 5.8 7.0PUZ027-1 [Problem 42] 2:59.5 3:22.1PUZ031-1 [Pelletier 47] 12.3 3.0PUZ032-1 [Problem 26] 21.4 1.8 23.0 1:04.3 3:25.2PUZ033-1 [winds.ver1.in] 0.7 0.0 0.3 0.5 0.3 0.2 0.2RNG001-1 [R1] 1:15.5 49.3 44.6 36.4RNG001-3 [EX6-T] 15.1 59.6 15.9 9.4 43.5 3:20.7RNG001-4 [R1] 2:19.0 5.2 4.5 3.9 3.9RNG001-5 [wos21] 1:14.0 49.5 42.9 37.9RNG002-1 [Established lemma] 0.5 0.9 20.8 3.8 2.9 2.7 2.7RNG003-1 [Established lemma] 0.7 1.8 22.4 4.5 3.5 3.3 3.3RNG005-2 [wos23] 0.1 0.1 0.1 0.1 0.1 0.1 0.2RNG006-1 [Problem 25] 0.4 38.0 0.3 0.2 0.2 0.2 0.2RNG006-2 [wos25] 0.5 1:49.8 0.3 0.2 0.2 0.2 0.2RNG023-6 1.5 0.2 0.2 0.2 0.2 0.2 0.2RNG023-7 1.9 0.3 0.2 0.3 0.2 0.2 0.2RNG024-6 1.6 0.2 0.1 0.2 0.1 0.1 0.2RNG024-7 1.9 0.3 0.2 0.3 0.2 0.2 0.2RNG037-2 [wos24] 0.1 0.1 0.2 0.1 0.1 0.2 0.1RNG038-1 [Problem 27] 3:55.7 2:48.4 2:45.2 2:31.4RNG038-2 [wos27] 0.2 0.1 0.2 0.2 0.1 0.2RNG040-1 [Problem 29] 0.2 0.2 0.2 0.2 0.2 0.2 0.2RNG040-2 [wos29] 1.1 1:14.4 19.8 6.0 21.8 1:19.3RNG041-1 [wos30] 17.9 3.2 3.3 3.3 3.2 3.3ROB010-1 [Lemma 3.3] 9.3 45.4 46.5 23.6 16.6 10.9ROB013-1 [Lemma 3.5] 1.0 14.2 16.8 4.6 2.6 5.1 11.0ROB016-1 [Corollary 3.7] 0.3 5.3 3.1 2.2 1.8 1.6ROB021-1 4.9 4:58.0 13.9 3:02.7 44.7 29.3 1:18.4SET005-1 [ls108] 2:13.0 28.2SET008-1 [ls115] 0.4 0.2 0.4 0.2 0.2 0.2 0.2SET009-1 [ls116] 31.4 3:16.4 19.9 1.6 0.7 0.5 0.4SET011-1 [ls121] 2:21.0 18.4 1:10.0SET014-2 [EST-S4] 3:43.5SET016-7 [OP4] 2.4 3.2 2.3 2.4 2.4 2.4 2.4SET018-7 [OP5] 2.5 3.2 2.5 2.4 2.5 2.5 2.5SET024-3 [Lemma 9] 1:51.8SET024-4 [Lemma 9] 1:53.4SET024-7 [SS2] 4:07.9 19.1 8.1 8.1 8.3 8.4SET025-3 [Lemma 10] 1:48.8 18.0 15.7 15.6 15.6 15.5SET025-4 [Lemma 10] 1:46.1 17.1 14.9 15.1 15.0 15.3SET025-7 [OP1] 2.1 2.8 2.1 2.1 2.1 2.1 2.1SET027-6 1.9 9.8 8.5 8.2 6.6SET027-7 [PO3] 2.0 10.8 9.1 9.0 6.9SET041-3 [Lemma 26] 2:39.8SET047-5 [p43.in] 0.4 0.1 0.1 0.4 1.0 3.7 10.0SET050-6 1.4 3.4 1:55.4 1.5 1.5 1.4 1.4 1.4SET051-6 1.4 3.4 1:50.5 1.5 1.5 1.4 1.5 1.4SET055-6 1.3 1.3 1:33.2 6.8SET059-7 [EQ2.4] 1.6 1.1 1.5 1.3 1.3 2.3 9.6 1:04.3SET061-7 [SP2] 9.6 25.5 9.9 10.3 10.3 10.0SET065-7 [SP5] 7.1 3:12.5 17.7 7.6 7.7 7.8 7.9SET073-7 [UP6.1] 7.3 2:21.7 20.0 7.7 7.7 8.0 8.1SET074-7 [UP6.2] 7.2 2:15.8 19.8 7.8 7.7 8.1 8.2SET075-7 [UP6 cor.] 7.8 2:21.2 19.7 7.9 7.7 8.0 7.8SET077-7 [SS1] 1.6 2.0 1.6 1.6 1.6 1.6 1.5SET079-7 [SS2 cor.1] 7.0 3.5 20.0 7.7 7.7 7.9 8.0SET080-6 1.7 1:18.6 1:12.3 1:11.3 1:09.6SET081-6 1.8 17.8 15.9 2.2 2.0 1.9 1.9SET081-7 [SS3] 4:14.3
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PROBLEM Best Sym Deep Unopt Opt Skew-3 Skew-4 Skew-5SET082-7 [SS4] 4:27.4SET083-6 2.3SET090-7 [SS7] 4:58.0 20.9 9.4 9.5 9.4 9.3SET093-6 1:11.6 2.4 2.4 2.3 2.3 2.2 2.2SET094-6 [SS10] 4.6SET098-7 [SS13 cor.1] 9.5 22.3 9.9 9.9 10.3 10.0SET101-6 1.7 23.2 1:28.6 11.3 10.2 10.4 9.9SET101-7 [OP2.1] 23.5 9.7 9.7 9.8 10.3SET102-7 [OP2.2] 22.9 9.4 9.3 9.8 9.8SET108-6 2:05.0 3.6 3.2 3.2 3.2 3.2SET117-6 1:10.1 2.4 2.5 2.2 2.1 2.2 2.3SET152-6 [C2.2] 2.3 6.3 1:51.6 1:35.0 1:36.4 1:38.4 1:33.1SET153-6 [C3.1] 2.3 1:48.2 6.1 1:59.7 1:44.4 1:40.0 1:44.7 1:40.9SET184-6 [SU2] 2.3 14.0 22.3 4.4 3.9 3.7 3.8SET187-6 [SU5] 2.8SET196-6 [LA1.3] 1.9 1.5 2:19.8 1.4 1.4 1.4 1.4 1.3SET197-6 [LA1.4] 2.0 1.4 2:20.5 1.4 1.4 1.4 1.4 1.4SET203-6 [CP1 cor.] 2:01.3 2.5 2:26.6SET204-6 [CP2] 2.5 3.1 2.1 3.7 3.4 16.1 1:50.8SET231-6 [CP14.1] 1.4 1.7 1.4 1.4 1.4 1.4 1.4SET234-6 [CP14.4] 2:05.2 1:55.2 1:54.8 1:48.0 1:54.9SET236-6 [CP15.2] 3:48.7 3:27.9 3:29.3 3:18.5SET239-6 [RS1] 9.7 21.0 2.7 2.5 2.6 2.5 2.5SET240-6 [RS2] 22.2 16.6 5.0 5.0 4.8 4.8SET241-6 [RS3] 36.3 49.2 7.0 6.6 6.2 6.5SET242-6 [RS4] 2.1 1:26.2 1.9 3.3 3.0 2.9 3.0 2.9SET252-6 [RS10.1] 2.9 13.5 22.4 4.7 4.2 4.0 4.0SET253-6 [RS10.2] 14.2 23.2 4.9 4.4 4.2 4.2SET411-6 [CO15] 4:12.5 3:50.2 3:50.2SET451-6 [SR1] 13.9 53.5 5.0 4.6 4.4 4.3SET479-6 [RP2.1] 7.6 32.6 2.3 2.4 2.3 2.3 2.3SET553-6 [CA1] 14.1 30.1 5.2 4.7 4.6 4.6SYN002-1.007:008 [eder7-8.lop] 1:06.3 56.7 1:57.3 3:51.4SYN004-1.007 [Problem 5.3] 0.1 0.3 0.2 5.9 1.7 16.3SYN010-1.005:005 [Example 5.1] 5.2 5.6 3.5SYN012-1 [Example] 33.2SYN038-1 [EX4-T] 31.1SYN058-1 [Pelletier 28] 0.0 0.0 0.0 0.0 0.0 0.0 0.0SYN067-2 16.5 3:58.7SYN070-1 [p46.in] 29.8 0.4 1:04.1 25.3 27.5 29.8SYN071-1 [Pelletier 48] 1.4 5.3 4.1 2.2 2.5 3.0 3.4SYN072-1 [Pelletier 49] 9.9 51.2 9.9 11.6 12.9SYN074-1 [Pelletier 51] 2:23.8 5.7 5.5 6.3SYN075-1 [Pelletier 52] 7.8 7.6 9.3SYN081-1 [Pelletier 59] 0.0 0.0 0.0 0.0 0.0 0.0 0.0SYN090-1.008 [T3n] 9.9SYN094-1.005 [U(T3n)] 51.2SYN096-1.008 [M(T3n)] 12.7SYN098-1.002 [Sym(U(T3n))] 1.2 0.3 2:00.6 1.4 1.5 1.7 2.1SYN099-1.003 [Sym(M(T2n))] 0.5 0.5 0.5 0.5 0.5 0.5 0.5SYN100-1.005 [Sym(M(T3n))] 28.5 3:46.1 1:32.6 50.5 31.8SYN102-1.007:007 [N(T3n))] 25.0SYN137-1 5.0 58.8 5.0 4:03.3 7.2 4.8 4.6 4.7SYN139-1 35.5 1:17.1 4.4 2:34.7 7.3 5.9 5.5SYN140-1 35.6 1:18.0 4.3 4:41.9 13.3 8.4 7.4SYN142-1 2:42.4 4.5 1:40.0SYN143-1 2:36.8 4.5 1:38.3SYN155-1 14.6 14.1 4.8 4.8 5.0SYN156-1 14.8 20.5 4.8 9.1 1:14.5SYN159-1 13.9 14.3 12.5 13.4SYN163-1 17.0 4:04.4 13.2 12.0 12.9SYN171-1 6.1 9.8 4.5 2:50.1 56.9 35.3SYN178-1 9.8 5.7 7.4 4.3 4.1 4.2 4.2SYN179-1 1:33.7 49.9 22.1 7.7 7.8 8.9SYN180-1 5.3 23.4 5.7 5.2 5.1SYN190-1 11.9 6.3 12.8 6.3 5.6 5.7SYN202-1 7.6 5.6 6.9 4.3 4.2 4.2 4.3SYN204-1 29.1 40.8 4.4 1:19.4 15.8 5.2 4.7 4.9SYN205-1 29.2 40.5 4.3 1:19.5 15.3 5.2 4.7 4.7SYN213-1 9.6 2:17.0 4.5 5.0 4.3 4.3 4.2SYN214-1 5.5 1:56.1 4.5 4.7 4.3 4.2 4.2SYN215-1 5.7 1:52.2 4.5 5.0 4.4 4.3 4.4SYN252-1 35.1 1:18.6 4.3 3:10.1 11.0 7.1 6.4SYN253-1 34.5 1:17.1 4.3 19.5 11.3 10.0SYN254-1 34.0 1:15.4 4.4 1:28.4 9.1 6.3 5.4SYN269-1 6.0 10.1 4.5 2:09.5 43.2 31.1SYN271-1 6.0 10.3 4.6 2:57.5 59.2 37.0SYN311-1 [H2] 0.1 4:06.0 3:27.7 3:58.2 3:41.2 3:41.9 3:42.4SYN328-1 [Ch12N3] 38.5 2.2 1:16.4 22.6 51.5 1:10.4SYN334-1 [Ch14N6] 29.1SYN347-1 [Ch17N3] 9.3 6.5 1.9 2:23.8 6.6 4.7 4:01.2 3:20.5SYN349-1 [Ch17N5] 11.0 1.3 0.4 3.1 6.0 12.6 23.1TOP001-2 [Lemma 1a] 11.8 1.6 10.1 8.0 5.7 5.0TOP005-2 [Lemma 1e] 7.2 1:05.9 14.8 23.7 3:10.97.2 The value of cachingOn the basis of these examples, caching is unmistakably worthwhile. Almost everyproblem is solved more quickly and with fewer inferences if caching is used (ofcourse it is inevitable that caching cannot increase the number of inferences, butthe time performing cache lookup may swamp any improvements). The di�erenceis not usually spectacular, but signi�cant. Caching permitted the solution of 40problems not solved without it, whereas only 3 were solved without and not with.Here are the situations where the runtimes are at least a minute (or not within 518



minutes) in one or both cases. Note that even if the number of inferences is thesame in both cases, a longer runtime in the no-caching case need not be put downto experimental error: caching may provide a cheaper way of discovering that norule applications at all are possible.Run times InferencesPROBLEM with without with withoutBOO003-4 2:25.7 3:47.0 159,185 259,953BOO004-4 2:09.0 3:25.9 137,484 227,705BOO012-1 1:25.2 2:35.8 150,869 261,774CAT008-1 4:20.5 450,863COL033-1 1:48.4 2:08.1 42,044 49,283COL040-1 3:07.2 3:41.4 62,727 76,417COL044-1 3:07.2 3:46.5 62,727 76,417COL060-3 1:56.6 3:39.5 82,422 149,162GEO039-2 2:37.5 154,897GEO039-3 2:11.3 2:13.7 189,818 193,121GEO040-2 3:49.1 233,073GEO047-3 2:33.6 2:38.9 228,579 235,054GRP012-2 2:11.5 2:36.0 192,809 230,074GRP012-3 2:25.7 3:07.9 192,119 238,679GRP022-2 43.8 1:03.8 56,719 86,825GRP123-1.003 1:06.1 3:02.4 225,810 591,981GRP123-2.003 1:09.1 3:18.2 236,541 631,936GRP123-3.003 1:16.3 3:10.7 245,418 622,364GRP123-4.003 1:28.2 3:26.8 274,002 645,597GRP123-6.003 2:30.6 521,931GRP123-7.003 2:31.0 522,064GRP123-8.003 2:33.1 530,070GRP123-9.003 2:30.0 521,931GRP124-1.003 1:06.1 3:01.0 225,810 591,990GRP124-2.003 1:11.0 3:18.4 236,541 631,945GRP124-3.003 1:13.8 3:12.6 245,418 622,373GRP124-4.003 1:22.6 3:22.0 274,002 645,606GRP124-6.003 2:28.2 521,580GRP124-7.003 2:28.3 521,713GRP124-8.003 2:31.6 529,719GRP125-1.003 2:20.9 452,451GRP125-2.003 2:36.9 469,749GRP125-3.003 2:39.5 482,600GRP127-1.003 2:13.8 411,861GRP127-2.003 2:27.1 430,332GRP127-3.003 2:30.8 439,273GRP129-1.002 4:24.8 914,465GRP129-4.002 44.8 1:12.1 140,807 240,859GRP130-2.002 44.0 1:05.8 157,509 236,495GRP130-3.002 59.0 1:22.1 209,928 295,491GRP130-4.002 53.9 1:19.2 176,369 252,369GRP133-1.002 4:07.9 872,714GRP133-2.002 4:33.6 972,901GRP135-2.002 43.5 1:01.9 164,029 228,835GRP140-1 4:54.9 160,911GRP162-1 1:48.5 1:55.6 79,665 93,281GRP163-1 3:21.4 3:42.2 139,252 166,843GRP165-1 2:22.0 3:06.9 81,756 117,876GRP166-3 2:24.4 3:07.7 81,813 117,933HEN004-4 41.7 1:05.3 68,435 117,368HEN005-2 1:44.9 2:52.4 206,307 382,583HEN008-2 36.0 1:11.4 73,288 157,874HEN009-2 1:25.6 2:10.5 171,004 264,807LCL045-1 2:43.3 2:44.0 26,693 26,693LCL064-2 2:22.3 2:24.3 22,504 23,771LCL081-1 1:20.5 1:24.0 12,748 12,748LCL111-1 1:02.6 1:08.0 16,883 16,883LCL130-1 1:19.0 1:26.1 8,251 8,251LCL132-1 2:55.9 4:41.4 146,118 239,709LCL196-1 4:28.4 148,815LCL205-1 1:04.7 58.6 37,867 37,867LCL208-1 1:57.6 1:51.8 71,728 71,728LCL230-1 3:41.1 3:35.2 105,707 105,707PUZ006-1 3:49.5 972,547PUZ008-3 3:13.6 313,948PUZ014-1 57.5 509,410RNG001-1 1:15.5 2:11.7 123,792 217,499RNG001-5 1:14.0 2:04.2 120,279 211,509RNG038-1 3:55.7 386,374ROB010-1 46.5 1:05.6 30,225 42,479SET005-1 2:13.0 377,191SET011-1 2:21.0 385,106SET080-6 1:18.6 1:23.9 112,094 112,149SET152-6 1:35.0 1:38.3 182,665 182,777SET153-6 1:44.4 1:44.9 182,195 182,307SET203-6 2:26.6 2:29.9 168,151 168,151SET234-6 1:55.2 1:47.1 182,364 182,366SET236-6 3:48.7 3:50.5 333,608 334,497SYN002-1.007:008 1:57.3 1:58.9 55,437 55,437SYN067-2 3:58.7 799,398SYN070-1 1:04.1 385,685
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Run times InferencesPROBLEM with without with withoutSYN072-1 51.2 2:12.8 191,493 500,951SYN074-1 2:23.8 314,333SYN100-1.005 3:46.1 1,211,849SYN139-1 2:34.7 438,113SYN140-1 4:41.9 778,650SYN155-1 14.1 34,340SYN156-1 20.5 57,983SYN163-1 4:04.4 767,717SYN179-1 22.1 1:21.8 55,139 258,502SYN180-1 23.4 65,199SYN190-1 12.8 27,993SYN204-1 15.8 31,569SYN205-1 15.3 30,576SYN252-1 3:10.1 531,046SYN254-1 1:28.4 227,636SYN311-1 3:58.2 3:41.1 278,299 278,299SYN328-1 1:16.4 302,604TOP005-2 1:05.9 2:02.5 155,369 288,657We have already emphasized that caching can be regarded as a general Prologimplementation optimization. For example, we have tried introducing caching ofcontinuations into a simple tableau prover roughly based on leanTAP (Beckert andPosegga 1994), also coded in CAML Light, though running interpreted (so theseruntimes are in
ated). On some problems (generally, the harder ones), cachingmakes a signi�cant improvement; in other cases it introduces only a modest loss.Here are a few results on the �rst 46 Pelletier problems:13Problem Without caching With caching1 0.00 0.0111 0.00 0.0021 0.01 0.0133 0.00 0.0134 118.56 68.0835 0.01 0.0136 0.01 0.0837 0.13 0.1338 0.78 0.8343 11.51 0.6144 0.01 0.0345 0.88 0.8846 0.15 0.117.3 The value of the positive re�nementThroughout the above tests, we used Plaisted's positive re�nement. At least we useda partial version: no ancestor solutions were tried for positive goals, but these werealways checked for repetition. Perhaps this is wasteful, but these equality tests arequite cheap since the ancestor lists are seldom long. As Plaisted points out, thereis an advantage in not even storing certain ancestors: global caching schemes aremore likely to be useful because with short ancestor chains the probability of agoal's arising in the same ancestor context is greatly increased.The process of running this test suite seemed a good opportunity to assessits usefulness; in the original article Plaisted (1990) gave an extensive theoreticalanalysis but no practical results. Accordingly, we also ran the `opt' version withoutthe positive re�nement but with no other change. The results are not clear-cut.Both versions solved exactly 850 problems within the time limit, but not the sameones: each solved 15 problems which the other didn't. The following problems weresolved only with the positive re�nement:13Some of these, like Andrews's challenge (34) are not directly solvable in a reasonable timeby MESON, which might lead one to suppose that tableaux are better than MESON. In somecases this is true; however if a preprocessing pass is added to split the problem into subproblems(e.g. to refute (p_ q) ^ r, refute p ^ r and q ^ r separately), which happens implicitly in tableauxanyway, then all the problems are trivial for MESON. For example Andrews's challenge splits into32 independent subproblems (if bi-implications are expanded appropriately during translation toclausal form), each of which is easy.
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PROBLEM Run time Inferences SizeNUM228-1 2.6 35 3PLA001-1 44.2 24,166 12PLA002-1 3.9 4,798 11PLA003-1 0.4 369 7PLA006-1 0.2 157 6PLA017-1 4.6 4,548 9PLA020-1 0.1 22 4PLA022-1 3.1 3,364 15PLA022-2 3.5 3,790 15PRV001-1 3.3 15,499 21PRV003-1 0.0 52 3PRV005-1 0.1 203 4PRV006-1 0.4 977 5SYN067-2 3:58.7 799,398 52SYN140-1 4:41.9 778,650 29while the following were solved only without it:PROBLEM Run time Inferences SizeCAT019-3 3:40.7 452,699 11GEO039-2 3:49.6 147,932 10GRP129-2.002 29.4 106,842 27GRP129-3.002 41.3 145,537 27GRP131-1.002 3:14.0 704,975 37GRP131-2.002 3:36.9 770,958 37GRP132-1.002 2:58.6 648,976 37GRP132-2.002 3:21.6 710,351 37GRP134-1.002 31.9 114,314 27GRP134-2.002 35.4 126,958 27PUZ007-1 3:53.2 846,428 28PUZ027-1 4:14.0 627,260 26PUZ031-1 4:34.8 1,204,039 53SET232-6 3:55.2 382,317 7SET233-6 3:57.0 382,318 7Otherwise, most of the results tend to be rather similar, with the positive re�ne-ment slightly better on average. It's worth noting that in completely Horn problems(and nearly half the TPTP problems are completely Horn), negative goals neverarise, so there is no substantial di�erence to be expected (the positive re�nement isslightly quicker because it just takes one sign check instead of selecting an emptyset of possible ancestors to unify with). Here are a few where the di�erence seemsparticularly clear-cut. Run times Inferences SizePROBLEM with without with without with withoutGRP135-1.002 38.6 10.0 148,122 38,662 29 23GRP135-2.002 43.5 11.5 164,029 42,695 29 23MSC006-1 5.6 17.6 25,613 67,402 20 20PUZ006-1 3:49.5 51.7 972,547 213,088 25 21PUZ014-1 57.5 5.8 509,410 49,129 71 47PUZ015-2.003 3.7 2.0 44,963 22,056 24 20PUZ025-1 5.5 3.1 19,244 9,836 18 16PUZ032-1 23.0 2.4 65,838 6,496 15 11SET152-6 1:35.0 3.3 182,665 3,679 6 5SET153-6 1:44.4 3.3 182,195 3,611 6 5SYN002-1.007:008 1:57.3 2:46.5 55,437 55,437 32 32SYN070-1 1:04.1 11.5 385,685 62,193 28 20SYN072-1 51.2 1:13.9 191,493 260,458 26 26TOP005-2 1:05.9 4.6 155,369 11,482 32 197.4 Full resultsBecause of space limitations, we cannot give a comprehensive listing of each searchmode, complete with runtimes, numbers of inferences and other statistics. Howeverthis is available as a text �le on the Web from:http://www.cl.cam.ac.uk/users/jrh/papers/me-results.txt.8 ConclusionsIt is clear that our optimization is a large advance on Stickel's original scheme foriterative deepening. Moreover this and caching, the other implementation optimiza-tion we have discussed, are rather general. The divide-and-conquer optimization isapplicable to any situation where search is bounded by a cumulative size measure.And caching can be regarded as a general Prolog optimization. So our work is a nicecomplement to the research that is being done on extending the model eliminationcalculus. There are lots of areas worthy of future investigation.21



1. Best-�rst search could be further explored. The present heuristics used areextremely simplistic, and it would be interesting to experiment with alterna-tives. More sophisticated search methods could be tried. In the above tests,the rather low space limit may have crippled it unfairly. Given a priorityqueue with reasonable locality properties, the queue size could be extendedwell beyond the physical store limit of the machine.2. The optimized form of inference-bounded search can be tried with other modelelimination calculi. For example, restart model elimination as developed byBaumgartner and Furbach (1993) is a variant which only uses natural contra-positives. The restart steps tend to introduce asymmetry into the proofs, soit may be that optimized inference-bounded search will perform still betterhere relative to depth-bounded search.3. It seems there should be scope for integrating the divide-and-conquer opti-mization more tightly with the iterative increase in the bound. For example,increasing any even number n by 1 doesn't change n=2, which leads to evengreater duplication of results than is usually the case with iterative deepen-ing. With some ingenuity, it ought to be possible to reduce this by combiningiterative deepening with descent down the subgoal tree.4. Combinations of inference and depth bounds could be tried. For example,inference bounded search in conjunction with a conservative but reasonabledepth bound might turn out to give the best of both worlds, avoiding excur-sions into extremely skewed proofs. But some care must be taken to avoidpointless reruns by the optimization if a search failed purely because of adepth overspill.AcknowledgementsThanks to Larry Paulson for spurring my interest in the MESON procedure, andto Ralph Back for letting me work on these topics. My work has been generouslyfunded by the European Commission under the Human Capital and Mobility pro-gramme. Comments on a draft of this paper from Richard Boulton and Jim Grundywere extremely helpful.ReferencesAstrachan, O. L. and Stickel, M. E. (1992) Caching and lemmaizing in model elimi-nation theorem provers. In Kapur, D. (ed.), 11th International Conference on Au-tomated Deduction, Volume 607 of Lecture Notes in Computer Science, Saratoga,NY, pp. 224{238. Springer-Verlag.Baumgartner, P. and Furbach, U. (1993) Model elimination without contrapositivesand its application to PTTP. Research report 12-93, Institute for ComputerScience, University of Koblenz, Rheinau 1, 56075 Koblenz, Germany.Beckert, B. and Posegga, J. (1994) leanTAP : lean, tableau-based theorem prov-ing. In Bundy, A. (ed.), 12th International Conference on Automated De-duction, Volume 814 of Lecture Notes in Computer Science, Nancy, France,pp. 793{797. Springer-Verlag. Extended version available on the Web fromhttp://i12www.ira.uka.de/~posegga/LeanTaP.ps.Z.Gordon, M. J. C. and Melham, T. F. (1993) Introduction to HOL: a theorem provingenvironment for higher order logic. Cambridge University Press.22



Gordon, M. J. C., Milner, R., and Wadsworth, C. P. (1979) Edinburgh LCF: AMechanised Logic of Computation, Volume 78 of Lecture Notes in Computer Sci-ence. Springer-Verlag.Letz, R., Mayr, K., and Goller, C. (1994) Controlled integrations of the cut rule intoconnection tableau calculi. Technical Report AR-94-01, Technische Universit�atM�unchen, Arcisstrasse 21, 80290 M�unchen, Germany.Letz, R., Schumann, J., Bayerl, S., and Bibel, W. (1992) SETHEO: A high-performance theorem prover. Journal of Automated Reasoning , 8, 183{212.Lifschitz, V. (1986) Mechanical Theorem Proving in the USSR: the LeningradSchool. Monograph Series on Soviet Union. Delphic Associates, 7700 LeesburgPike, #250, Falls Church, VA 22043. Phone: (703) 556-0278. See also `What isthe inverse method?' in the Journal of Automated Reasoning, vol. 5, pp. 1{23,1989.Loveland, D. W. (1968) Mechanical theorem-proving by model elimination. Journalof the ACM , 15, 236{251.Michie, D. (1968) \Memo" functions and machine learning. Nature, 218, 19{22.Paulson, L. C. (1987) Logic and computation: interactive proof with CambridgeLCF. Number 2 in Cambridge Tracts in Theoretical Computer Science. Cam-bridge University Press.Paulson, L. C. (1994) Isabelle: a generic theorem prover, Volume 828 of LectureNotes in Computer Science. Springer-Verlag. With contributions by Tobias Nip-kow.Plaisted, D. A. (1990) A sequent-style model elimination strategy and a positivere�nement. Journal of Automated Reasoning , 6, 389{402.Rudnicki, P. (1987) Obvious inferences. Journal of Automated Reasoning , 3, 383{393.Stickel, M. E. (1988) A Prolog Technology Theorem Prover: Implementation by anextended Prolog compiler. Journal of Automated Reasoning , 4, 353{380.Suttner, C. B. and Sutcli�e, G. (1995) The TPTP problem library. Technical ReportAR-95-03, Institut f�ur Infomatik, TU M�unchen, Germany. Also available as TR95/6 from Dept. Computer Science, James Cook University, Australia, and onthe Web.Tarver, M. (1990) An examination of the Prolog Technology Theorem-Prover. InStickel, M. E. (ed.), 10th International Conference on Automated Deduction, Vol-ume 449 of Lecture Notes in Computer Science, Kaiserslautern, Federal Republicof Germany, pp. 322{335. Springer-Verlag.Weis, P. and Leroy, X. (1993) Le langage Caml. InterEditions. See also the CAMLWeb page: http://pauillac.inria.fr/caml/.
23


