Chapter 9

Syntax and Semantics

9.1 Introduction

This chapter describes the syntax and set-theoretic semantics of the logic supported by the
HOL system, which is a variant of Church’s simple theory of types [3] and will henceforth
be called the HOL logic, or just HOL. The meta-language for this description will be
English, enhanced with various mathematical notations and conventions. The object
language of this description is the HOL logic. Note that there is a ‘meta-language’, in
a different sense, associated with the HOL logic, namely the programming language ML.
This is the language used to manipulate the HOL logic by users of the system, and is
described in detail in Part I of DESCRIPTION. It is hoped that because of context, no
confusion results from these two uses of the word ‘meta-language’. When ML is described
in Part I, ML is the object language under consideration—and English is again the meta-
language!

The HOL syntax contains syntactic categories of types and terms whose elements are
intended to denote respectively certain sets and elements of sets. This set theoretic
interpretation will be developed along side the description of the HOL syntax, and in
the next chapter the HOL proof system will be shown to be sound for reasoning about
properties of the set theoretic model.! This model is given in terms of a fixed set of sets U,
which will be called the universe and which is assumed to have the following properties.

Inhab Each element of I/ is a non-empty set.

Sub If X elfand 0 #Y C X, then Y € Y.

Prod If X e Y and Y € U, then X x Y € U. The set X x Y is the cartesian product,
consisting of ordered pairs (z,y) with x € X and y € Y, with the usual set-theoretic
coding of ordered pairs, viz. (x,y) = {{z},{z,y}}.

Pow If X € U, then the powerset P(X)={Y :Y C X} is also an element of U.

Infty U contains a distinguished infinite set 1.

!There are other, ‘non-standard’ models of HOL, which will not concern us here.

101

102 Chapter 9. Syntax and Semantics

Choice There is a distinguished element ch € [[x<, X. The elements of the product
[Txcu X are (dependently typed) functions: thus for all X € U, X is non-empty by
Inhab and ch(X) € X witnesses this.

There are some consequences of these assumptions which will be needed. In set theory
functions are identified with their graphs, which are certain sets of ordered pairs. Thus
the set X—Y of all functions from a set X to a set Y is a subset of P(X x Y); and it is
a non-empty set when Y is non-empty. So Sub, Prod and Pow together imply that U
also satisfies

Fun If X e Y and Y € U, then X—=Y € U.

By iterating Prod, one has that the cartesian product of any finite, non-zero number
of sets in U is again in U. U also contains the cartesian product of no sets, which is to
say that it contains a one-element set (by virtue of Sub applied to any set in U—Infty
guarantees there is one); for definiteness, a particular one-element set will be singled out.

Unit U contains a distinguished one-element set 1 = {0}.

Similarly, because of Sub and Infty, U/ contains two-element sets, one of which will be
singled out.

Bool U contains a distinguished two-element set 2 = {0, 1}.

The above assumptions on U are weaker than those imposed on a universe of sets by
the axioms of Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC), principally
because U is not required to satisfy any form of the Axiom of Replacement. Indeed, it is
possible to prove the existence of a set U with the above properties from the axioms of
ZFC. (For example one could take U to consist of all non-empty sets in the von Neumann
cumulative hierarchy formed before stage w + w.) Thus, as with many other pieces of
mathematics, it is possible in principal to give a completely formal version within ZFC set
theory of the semantics of the HOL logic to be given below.

9.2 Types

The types of the HOL logic are expressions that denote sets (in the universe). Following
tradition, o, possibly decorated with subscripts or primes, is used to range over arbitrary
types.

There are four kinds of types in the HOL logic. These can be described informally by
the following BNF grammar, in which o ranges over type variables, ¢ ranges over atomic
types and op ranges over type operators.

9.2. Types 103

o == a | ¢ | (on,...,00)0p | o109
| S —— N———

‘ atomic types compound types

type variables function types
(domain o1, range o)

In more detail, the four kinds of types are as follows.

1. Type variables: these stand for arbitrary sets in the universe. In Church’s original
formulation of simple type theory, type variables are part of the meta-language and
are used to range over object language types. Proofs containing type variables were
understood as proof schemes (i.e. families of proofs). To support such proof schemes
within the HOL logic, type variables have been added to the object language type
system.?

2. Atomic types: these denote fixed sets in the universe. Each theory determines a
particular collection of atomic types. For example, the standard atomic types bool
and ind denote, respectively, the distinguished two-element set 2 and the distin-
guished infinite set 1.

3. Compound types: These have the form (oy,...,0,)op, where oy, ..., 0, are
the argument types and op is a type operator of arity n. Type operators denote
operations for constructing sets. The type (oy,...,0,)op denotes the set resulting
from applying the operation denoted by op to the sets denoted by oy, ..., 0,. For
example, list is a type operator with arity 1. It denotes the operation of forming all
finite lists of elements from a given set. Another example is the type operator prod
of arity 2 which denotes the cartesian product operation. The type (oy, 09)prod is
written as oy X o9.

4. Function types: If o; and o, are types, then o;—05 is the function type with
domain o, and range o,. It denotes the set of all (total) functions from the set
denoted by its domain to the set denoted by its range. (In the literature o;—o0y is
written without the arrow and backwards—i.e. as 0907.) Note that syntactically —
is simply a distinguished type operator of arity 2 written with infix notation. It is
singled out in the definition of HOL types because it will always denote the same
operation in any model of a HOL theory—in contrast to the other type operators
which may be interpreted differently in different models. (See Section 9.2.2.)

It turns out to be convenient to identify atomic types with compound types constructed
with O-ary type operators. For example, the atomic type bool of truth-values can be
regarded as being an abbreviation for ()bool. This identification will be made in the

2This technique was invented by Robin Milner for the object logic PPX of his LCF system.

104 Chapter 9. Syntax and Semantics

technical details that follow, but in the informal presentation atomic types will continue
to be distinguished from compound types, and ()¢ will still be written as c.

9.2.1 Type structures

The term ‘type constant’ is used to cover both atomic types and type operators. It is
assumed that an infinite set TyNames of the names of type constants is given. The greek
letter v is used to range over arbitrary members of TyNames, ¢ will continue to be used to
range over the names of atomic types (i.e. 0-ary type constants), and op is used to range
over the names of type operators (i.e. n-ary type constants, where n > 0).

It is assumed that an infinite set TyVars of type variables is given. Greek letters o, 3, . . .,
possibly with subscripts or primes, are used to range over Tyvars. The sets TyNames and
TyVars are assumed disjoint.

A type structure is a set € of type constants. A type constant is a pair (v,n) where
v € TyNames is the name of the constant and n is its arity. Thus 2 C TyNames x N
(where N is the set of natural numbers). It is assumed that no two distinct type constants
have the same name, i.e. whenever (v,n;) € Q and (v,n) € Q, then n; = ns.

The set Typesq of types over a structure {2 can now be defined as the smallest set such
that:

e TyVars C Typesq.
e If (1,0) € Q then ()v € Types,,.
e If (v,n) € Q and o; € Types, for 1 < i < n, then (o1, ... ,0,)v € Types,,.
o If 0y € Typesy and o9 € Typesy then 0;— 0y € Typesq.
The type operator — is assumed to associate to the right, so that
O1—09—> ... —=0,—0
abbreviates
01— (09— ... = (0, —0)...)

The notation tyvars(o) is used to denote the set of type variables occurring in o.

9.2.2 Semantics of types

A model M of a type structure € is specified by giving for each type constant (v,n) an
n-ary function

My):U" —U

9.2. Types 105

Thus given sets Xi,..., X, in the universe U, M(v)(Xy,...,X,) is also a set in the
universe. In case n = 0, this amounts to specifying an element M (v) € U for the atomic
type v.

Types containing no type variables are called monomorphic, whereas those that do
contain type variables are called polymorphic. What is the meaning of a polymorphic
type? One can only say what set a polymorphic type denotes once one has instantiated
its type variables to particular sets. So its overall meaning is not a single set, but is rather
a set-valued function, U™ — U, assigning a set for each particular assignment of sets
to the relevant type variables. The arity n corresponds to the number of type variables
involved. It is convenient in this connection to be able to consider a type variable to be
involved in the semantics of a type o whether or not it actually occurs in o, leading to
the notion of a type-in-context.

A type context, as, is simply a finite (possibly empty) list of distinct type variables
at,...,apn. A type-in-contert is a pair, written as.o, where as is a type context, o is a
type (over some given type structure) and all the type variables occurring in o appear
somewhere in the list as. The list as may also contain type variables which do not occur
in 0.

For each o there are minimal contexts as for which as.o is a type-in-context, which
only differ by the order in which the type variables of o are listed in as. In order to select
one such context, let us assume that TyVars comes with a fixed total order and define the
canonical context of the type o to consist of exactly the type variables it contains, listed
in order.3

Let M be a model of a type structure 2. For each type-in-context as.o over €2, define
a function

[as.o]a U™ — U
(where n is the length of the context) by induction on the structure of o as follows.

e If 0 is a type variable, it must be «; for some unique i = 1,...,n and then [as.o]y
is the ith projection function, which sends (Xy,..., X,) e U" to X; € U.

e If o is a function type o1—0y, then [as.o]ys sends Xs € U™ to the set of all functions
from [Jas.o1]a(Xs) to [as.oa]a(Xs). (This makes use of the property Fun of U.)

e If 0 is a compound type (o1,...,0,)v, then Jas.c]y sends Xs to M(v)(S,...,Sm)
where each S; is [as.o;]p(Xs).

One can now define the meaning of a type ¢ in a model M to be the function

loly U — U

31t is possible to work with unordered contexts, specified by finite sets rather than lists, but we choose
not to do that since it mildly complicates the definition of the semantics to be given below.

106 Chapter 9. Syntax and Semantics

given by [as.o]y, where as is the canonical context of 0. If ¢ is monomorphic, then n =0
and [o]a can be identified with the element [o]a/() of Y. When the particular model M
is clear from the context, [_]5; will be written [_].

To summarize, given a model in U of a type structure {2, the semantics interprets
monomorphic types over €2 as sets in & and more generally, interprets polymorphic types
involving n type variables as n-ary functions 4™ — U on the universe. Function types
are interpreted by full function sets.

Examples Suppose that 2 contains a type constant (b, 0) and that the model M assigns
the set 2 to b. Then:

1. [b—=b—b] =222 € U.

2. [(a—=b)—a] : U — U is the function sending X € U to (X—2)—X € U.

a
3. [, B.(a—b)—a] : U*> — U is the function sending (X,Y) € U? to (X—2)—X €

Uu.

Remark A more traditional approach to the semantics would involve giving meanings to
types in the presence of ‘environments’ assigning sets in U/ to all type variables. The use of
types-in-contexts is almost the same as using partial environments with finite domains—it
is just that the context ties down the admissible domain to a particular finite (ordered)
set of type variables. At the level of types there is not much to choose between the two
approaches. However for the syntax and semantics of terms to be given below, where
there is a dependency both on type variables and on individual variables, the approach
used here seems best.

9.2.3 Instances and substitution

If o0 and 7q,..., 7, are types over a type structure €2,
olr, ..., /B, -, Byl
will denote the type resulting from the simultaneous substitution for each « = 1,...,p of

7; for the type variable 3; in . The resulting type is called an instance of 0. The following
lemma about instances will be useful later; it is proved by induction on the structure of

0.
Lemma 1 Suppose that o is a type containing distinct type variables [, ..., 3, and that
o =o[r,...,m/B1,. .., 5] is an instance of o. Then the types i,...,7, are uniquely

determined by o and o’.
We also need to know how the semantics of types behaves with respect to substitution:

Lemma 2 Given types-in-context 5.0 and as.t; (i = 1,...,p, where p is the length of
Bs), let o' be the instance olrs/Ps]. Then as.o’ is also a type-in-context and its meaning

9.3. Terms 107

in any model M is related to that of Bs.o as follows. For all Xs € U™ (where n is the
length of as)

[as.o'](Xs) = [Bs.0](Jas.71](Xs), ..., [as. 7] (Xs))

Once again, the lemma can be proved by induction on the structure of o.

9.3 Terms

The terms of the HOL logic are expressions that denote elements of the sets denoted by
types. The meta-variable ¢ is used to range over arbitrary terms, possibly decorated with
subscripts or primes.

There are four kinds of terms in the HOL logic. These can be described approximately by
the following BNF grammar, in which x ranges over variables and ¢ ranges over constants.

t uw= oz | ¢ | tt | Azt
T ~—~ Hr
constants T A-abstractions
variables function applications

(function ¢, argument t')

Informally, a A-term Az. ¢t denotes a function v — t[v/x]|, where t[v/z]| denotes the
result of substituting v for x in . An application ¢ ¢’ denotes the result of applying the
function denoted by ¢ to the value denoted by #. This will be made more precise below.

The BNF grammar just given omits mention of types. In fact, each term in the HOL
logic is associated with a unique type. The notation ¢, is traditionally used to range over
terms of type 0. A more accurate grammar of terms is:

te = 2y | o | (tose) | (AToy- toy)ersos

In fact, just as the definition of types was relative to a particular type structure (2,
the formal definition of terms is relative to a given collection of typed constants over).
Assume that an infinite set Names of names is given. A constant over Q) is a pair (c,),
where ¢ € Names and o € Types,. A signature over €2 is just a set X of such constants.

The set Termsy, of terms over Xq is defined to be the smallest set closed under the
following rules of formation:

1. Constants: If (c,0) € Xq and o' € Typesq is an instance of o, then (c,o’) €
Termsy,,. Terms formed in this way are called constants and are written c,.

2. Variables: If 2+ € Names and o € Typesq, then var z, € Termsy,. Terms formed
in this way are called variables. The marker var is purely a device to distinguish

108 Chapter 9. Syntax and Semantics

variables from constants with the same name. A variable var z, will usually be
written as z,, if it is clear from the context that x is a variable rather than a
constant.

3. Function applications: If ¢,/_,, € Termsy, and t', € Termsy,,, then (ty 5 t,), €
Termss,,. (Terms formed in this way are sometimes called combinations.)

4. A-Abstractions: If var z,, € Termsy, and t,, € Termsy,, then (AZy,. t5,)0; 500 €
Termss,,.

Note that it is possible for constants and variables to have the same name. It is also
possible for different variables to have the same name, if they have different types.

The type subscript on a term may be omitted if it is clear from the structure of the
term or the context in which it occurs what its type must be.

Function application is assumed to associate to the left, so that ¢ ¢, t, ... t,, abbreviates
(.o ((tt) ta) ... tn).
The notation Az @y -+ x,. t abbreviates Axy. (Axg. -+ (Azp. t) <+).

A term is called polymorphic if it contains a type variable. Otherwise it is called
monomorphic. Note that a term ¢, may be polymorphic even though ¢ is monomorphic—
for example, (fa—p Ta)p, where b is an atomic type. The expression tyvars(t,) denotes
the set of type variables occurring in ¢,.

An occurrence of a variable x, is called bound if it occurs within the scope of a textually
enclosing Az, otherwise the occurrence is called free. Note that Az, does not bind x, if
o # o'. A term in which all occurrences of variables are bound is called closed.

9.3.1 Terms-in-context

A context as,rs consists of a type context as together with a list zs = xq, ..., z,, of distinct
variables whose types only contain type variables from the list as.

The condition that zs contains distinct variables needs some comment. Since a variable
is specified by both a name and a type, it is permitted for xs to contain repeated names,
so long as different types are attached to the names. This aspect of the syntax means that
one has to proceed with caution when defining the meaning of type variable instantiation,
since instantiation may cause variables to become equal ‘accidentally’: see Section 9.3.3.

A term-in-context as,xs.t consists of a context together with a term ¢ satisfying the
following conditions.

e s contains any type variable that occurs in s and ¢.
e 15 contains any variable that occurs freely in ¢.

e 15 does not contain any variable that occurs bound in ¢.

9.3. Terms 109

The context as,xs may contain (type) variables which do not appear in ¢. Note that
the combination of the second and third conditions implies that a variable cannot have
both free and bound occurrences in t. For an arbitrary term, there is always an a-
equivalent term which satisfies this condition, obtained by renaming the bound variables
as necessary.* In the semantics of terms to be given below we will restrict attention to
such terms. Then the meaning of an arbitrary term is taken to be the meaning of some
a-variant of it having no variable both free and bound. (The semantics will equate a-
variants, so it does not matter which is chosen.) Evidently for such a term there is a
minimal context as,rs, unique up to the order in which variables are listed, for which
as,xs.t is a term-in-context. As for type variables, we will assume given a fixed total order
on variables. Then the unique minimal context with variables listed in order will be called
the canonical context of the term t.

9.3.2 Semantics of terms

Let Yq be a signature over a type structure Q (see Section 9.3). A model M of Xq is
specified by a model of the type structure plus for each constant (c,0) € ¥ an element

M(c,o) €] lolm(Xs)

Xseun

of the indicated cartesian product, where n is the number of type variables occurring in
o. In other words M(c,o) is a (dependently typed) function assigning to each Xs € Y"
an element of [o]u (Xs). In the case that n = 0 (so that o is monomorphic), [o] was
identified with a set in & and then M (c, o) can be identified with an element of that set.

The meaning of HOL terms in such a model will now be described. The semantics
interprets closed terms involving no type variables as elements of sets in U (the particular
set involved being derived from the type of the term as in Section 9.2.2). More generally, if
the closed term involves n type variables then it is interpreted as an element of a product
[Txscun Y (Xs), where the function Y : Y™ — U is derived from the type of the term (in
a type context derived from the term). Thus the meaning of the term is a (dependently
typed) function which, when applied to any meanings chosen for the type variables in the
term, yields a meaning for the term as an element of a set in /. On the other hand, if the
term involves m free variables but no type variables, then it is interpreted as a function
Y x -+ x Y,,—Y where the sets Yi,...,Y,, in U are the interpretations of the types of
the free variables in the term and the set Y € U is the interpretation of the type of the
term; thus the meaning of the term is a function which, when applied to any meanings
chosen for the free variables in the term, yields a meaning for the term. Finally, the most

4Recall that two terms are said to be a-equivalent if they differ only in the names of their bound
variables.

110

Chapter 9. Syntax and Semantics

general case is of a term involving n type variables and m free variables: it is interpreted
as an element of a product

II Yi(Xs) x - x ¥, (Xs) = V(Xs)

Xseun

where the functions Yi,...,Y,,,Y : U — U are determined by the types of the free
variables and the type of the term (in a type context derived from the term).

More precisely, given a term-in-context as,zs.t over Y suppose

e t has type 7

® 15 =xq,...,Ty and each x; has type o;

08 = (i, ...,0n.

Then since as,75.t is a term-in-context, as.7 and as.o; are types-in-context, and hence

give rise to functions [as.7[y and [as.o;]y from U™ to U as in section 9.2.2. The meaning

of as,xs.t in the model M will be given by an element

los,as.t]y €] (m [[as.aj]]M(Xs)) —Jas. 7] (Xs).

Xscun \j=1

In other words, given

Xs = (X1,...,X,) €U
w = (Y1, - Ym) € [os.o1] (Xs) x -+ x [as.op]ar (Xs)

one gets an element [as,zs.t] 5 (Xs)(ys) of [as.7]a(Xs). The definition of [as,as.t]y pro-
ceeds by induction on the structure of the term ¢, as follows. (As before, the subscript

M will be dropped from the semantic brackets [-] when the particular model involved is

clear from the context.)

If t is a variable, it must be z; for some unique j = 1,...,m, so 7 = o, and then
[as,zs.t](Xs)(ys) is defined to be y;.

Suppose t is a constant c,/, where (c,0) € g and o' is an instance of 0. Then
by Lemma 1 of 9.2.3, ¢/ = o[m,...,7,/P1,..., 53] for uniquely determined types
Ti,...,T, (where f3y,..., [, are the type variables occurring in o). Then define
[as,zs.t](Xs)(ys) to be M(c,o)([as.71](Xs), ..., [as.7,](Xs)), which is an element of
[as.7](Xs) by Lemma 2 of 9.2.3 (since 7 is o').

Suppose t is a function application term (#; t5) where ¢; is of type 7'—7 and ¢, is
of type 7'. Then f = [as,zs.t;](Xs)(ys), being an element of [as.7'—7](X5s), is a
function from the set [as.7'](Xs) to the set [as.7](Xs) which one can apply to the
element y = [as,xs.t5](Xs)(ys). Define [as,xs.t](Xs)(ys) to be f(y).

9.3. Terms 111

e Suppose t is the abstraction term Az.towhere x is of type 7 and ¢y of type 7.
Thus 7 = 71—7 and [as.7[(Xs) is the function set [as.7;](Xs)—[as.72](Xs). Define
[os,xs.t](Xs)(ys) to be the element of this set which is the function sending y €
[as.m](Xs) to Jas,as,x.t2](Xs)(ys, y). (Note that since as,xs.t is a term-in-context,
by convention the bound variable does not occur in s and thus as,rs,x.t; is also
a term-in-context.)

Now define the meaning of a term ¢, in a model M to be the dependently typed function

t-1e I (m [[ozs.aj]](Xs)) —[as.T](Xs)

XseUn \j=1
given by [as,xs.t.], where as,xs is the canonical context of ¢,. So n is the number of type
variables in t,, as is a list of those type variables, m is the number of ordinary variables
occurring freely in ¢, (assumed to be distinct from the bound variables of ;) and the o;
are the types of those variables. (It is important to note that the list as, which is part of
the canonical context of ¢, may be strictly bigger than the canonical type contexts of o;
or 7. So it would not make sense to write just [o;] or [7] in the above definition.)

If ¢, is a closed term, then m = 0 and for each Xs € U™ one can identify [¢.] with the
element [t,](Xs)() € [as.7](Xs). So for closed terms one gets

ftle TT fosr](%s)

Xseun
where as is the list of type variables occurring in ¢, and n is the length of that list. If
moreover, no type variables occur in ¢, then n = 0 and [¢;] can be identified with the
element [¢,]() of the set [7] € U.

The semantics of terms appears somewhat complicated because of the possible depen-
dency of a term upon both type variables and ordinary variables. Examples of how the
definition of the semantics works in practice can be found in Section 10.4.2, where the
meaning of several terms denoting logical constants is given.

9.3.3 Substitution

Since terms may involve both type variables and ordinary variables, there are two different
operations of substitution on terms which have to be considered—substitution of types
for type variables and substitution of terms for variables.

Substituting types for type variables in terms

Suppose t is a term, with canonical context as,rs say, where as = aq,...,q,, 15 =
Ti,...,%Tm and where for j = 1,...,m the type of the variable z; is 0;. If as’.7; (i =
1,...,n) are types-in-context, then substituting the types 7; for the type variables a; in

the list xs, one obtains a new list of variables zs’. Thus the jth entry of zs’ has type

0 = o04]7s/as]. Only substitutions with the following property will be considered.

112 Chapter 9. Syntax and Semantics

In instantiating the type variables as with the types 7s, no two distinct vari-
ables in the list 25 become equal in the list 25'.°

This condition ensures that as’, xs’ really is a context. Then one obtains a new term-in-
context as’,xs’.t’ by substituting the types 7s = 71,...,7, for the type variables as in ¢
(with suitable renaming of bound occurrences of variables to make them distinct from the
variables in zs"). The notation

t[1s/as]

is used for the term ¢'.
Lemma 3 The meaning of as',xs'.t' in a model is related to that of t as follows. For all

Xs' € U™ (where n' is the length of as')

[as' s’ #'](Xs") = [t]([as" .71] (XS), . .., [as’. 7] (XS)).

Lemma 2 in 9.2.3 is needed to see that both sides of the above equation are elements
of the same set of functions. The validity of the equation is proved by induction on the
structure of the term ¢.

Substituting terms for variables in terms

Suppose t is a term, with canonical context as,xs say, where as = aq,...,q,, 15 =
T1,...,%Ty, and where for j = 1,...,m the type of the variable z; is 0;. If one has terms-
in-context as,as’.t; for j = 1,...,m with ¢; of the same type as z;, say o;, then one
obtains a new term-in-context as,xs’.t” by substituting the terms ts = ¢,,...,t,, for the
variables a5 in ¢ (with suitable renaming of bound occurrences of variables to prevent the
free variables of the ¢; becoming bound after substitution). The notation

t[ts /5]

is used for the term ¢".

Lemma 4 The meaning of as,as’.t" in a model is related to that of t as follows. For all

XseU" and all ys' € [as.oy] x -+ x [as.0p,] (where o7 is the type of ;)

[os, 25" (Xs) (5s) = [t](Xs) ([os,a5" 11] (Xs) (y'), . . ., [os,25" 2] (Xs) (15'))

Once again, this result is proved by induction on the structure of the term ¢.

5Such an identification of variables could occur if the variables had the same name component and
their types became equal on instantiation.

9.4. Standard notions 113

9.4 Standard notions

Up to now the syntax of types and terms has been very general. To represent the standard
formulas of logic it is necessary to impose some specific structure. In particular, every type
structure must contain an atomic type bool which is intended to denote the distinguished
two-element set 2 € U, regarded as a set of truth-values. Logical formulas are then
identified with terms of type bool. In addition, various logical constants are assumed
to be in all signatures. These requirements are formalized by defining the notion of a
standard signature.

9.4.1 Standard type structures

A type structure Q is standard if it contains the atomic types bool (of booleans or truth-
values) and ind (of individuals). (In the literature, the symbol o is often used instead of
bool and ¢ instead of ind.)

A model M of Q is standard if M(bool) and M (ind) are respectively the distinguished
sets 2 and I in the universe U.

It will be assumed from now on that type structures and their models are standard.

9.4.2 Standard signatures

A signature Yq is standard if it contains the following three primitive constants:
= bool—bool—sbool
—a—a—rbool

€(a—bool)—a

The intended interpretation of these constants is that = denotes implication, =,_,_,pool
denotes equality on the set denoted by o, and £(;_, 00— denotes a choice function on
the set denoted by o. More precisely, a model M of Xq will be called standard if

e M (=, bool—bool—bool) € (2—2—2) is the standard implication function, sending
bt €2 to

n_J 0 ifb=1andd =0
(b=1) = { 1 otherwise
e M(=,a—a—bool) € [Ixey -X—X—2 is the function assigning to each X € U the
equality test function, sending z,2' € X to

1 ife=2a
0 otherwise

r=x)=

114 Chapter 9. Syntax and Semantics

e M(e, (a—bool)—a) € Txey -(X—2)—X is the function assigning to each X € U
the choice function sending f € (X—2) to

ch(f~H{1}) if f7H{1} #0
chx(f) = { ch(X) otherwise

where f~1{1} = {z € X : f(z) = 1}. (Note that f~*{1} is in & when it is non-
empty, by the property Sub of the universe U given in Section 9.1. The function ch
is given by property Choice.)

It will be assumed from now on that signatures and their models are standard.

Remark This particular choice of primitive constants is arbitrary. The standard collec-
tion of logical constants includes T (‘true’), F (‘false’), = (‘implies’), A (‘and’), V (‘or’),
= (‘not’), V (‘for all’), 3 (‘there exists’), = (‘equals’), ¢+ (‘the’), and € (‘a’). This set is
redundant, since it can be defined (in a sense explained in Section 10.5.1) from various
subsets. In practice, it is necessary to work with the full set of logical constants, and the
particular subset taken as primitive is not important. The interested reader can explore
this topic further by reading Andrews’ book [1] and the references it contains.

Terms of type bool are called formulas.
The following notational abbreviations are used:

Notation | Meaning

ly = t’g’ =g¢—o—bool to t’g’

t=>1t =>bool—s bool—bool tbool t’bool
ETqy. T 8(a—)boo])—)a()‘l‘a- t)

These notations are special cases of general abbreviatory conventions supported by the
HOL system. The first two are infixes and the third is a binder (see Section 11.4.3).

