
Chapter 9Syntax and Semanti
s
9.1 Introdu
tionThis 
hapter des
ribes the syntax and set-theoreti
 semanti
s of the logi
 supported by theHOL system, whi
h is a variant of Chur
h's simple theory of types [3℄ and will hen
eforthbe 
alled the HOL logi
, or just HOL. The meta-language for this des
ription will beEnglish, enhan
ed with various mathemati
al notations and 
onventions. The obje
tlanguage of this des
ription is the HOL logi
. Note that there is a `meta-language', ina di�erent sense, asso
iated with the HOL logi
, namely the programming language ML.This is the language used to manipulate the HOL logi
 by users of the system, and isdes
ribed in detail in Part I of DESCRIPTION. It is hoped that be
ause of 
ontext, no
onfusion results from these two uses of the word `meta-language'. When ML is des
ribedin Part I, ML is the obje
t language under 
onsideration|and English is again the meta-language!The HOL syntax 
ontains synta
ti
 
ategories of types and terms whose elements areintended to denote respe
tively 
ertain sets and elements of sets. This set theoreti
interpretation will be developed along side the des
ription of the HOL syntax, and inthe next 
hapter the HOL proof system will be shown to be sound for reasoning aboutproperties of the set theoreti
 model.1 This model is given in terms of a �xed set of sets U ,whi
h will be 
alled the universe and whi
h is assumed to have the following properties.Inhab Ea
h element of U is a non-empty set.Sub If X 2 U and ; 6= Y � X, then Y 2 U .Prod If X 2 U and Y 2 U , then X � Y 2 U . The set X � Y is the 
artesian produ
t,
onsisting of ordered pairs (x; y) with x 2 X and y 2 Y , with the usual set-theoreti

oding of ordered pairs, viz. (x; y) = ffxg; fx; ygg.Pow If X 2 U , then the powerset P (X) = fY : Y � Xg is also an element of U .Infty U 
ontains a distinguished in�nite set I.1There are other, `non-standard' models of HOL, whi
h will not 
on
ern us here.101
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sChoi
e There is a distinguished element 
h 2 QX2U X. The elements of the produ
tQX2U X are (dependently typed) fun
tions: thus for all X 2 U , X is non-empty byInhab and 
h(X) 2 X witnesses this.There are some 
onsequen
es of these assumptions whi
h will be needed. In set theoryfun
tions are identi�ed with their graphs, whi
h are 
ertain sets of ordered pairs. Thusthe set X!Y of all fun
tions from a set X to a set Y is a subset of P (X � Y ); and it isa non-empty set when Y is non-empty. So Sub, Prod and Pow together imply that Ualso satis�esFun If X 2 U and Y 2 U , then X!Y 2 U .By iterating Prod, one has that the 
artesian produ
t of any �nite, non-zero numberof sets in U is again in U . U also 
ontains the 
artesian produ
t of no sets, whi
h is tosay that it 
ontains a one-element set (by virtue of Sub applied to any set in U|Inftyguarantees there is one); for de�niteness, a parti
ular one-element set will be singled out.Unit U 
ontains a distinguished one-element set 1 = f0g.Similarly, be
ause of Sub and Infty, U 
ontains two-element sets, one of whi
h will besingled out.Bool U 
ontains a distinguished two-element set 2 = f0; 1g.The above assumptions on U are weaker than those imposed on a universe of sets bythe axioms of Zermelo-Fraenkel set theory with the Axiom of Choi
e (ZFC), prin
ipallybe
ause U is not required to satisfy any form of the Axiom of Repla
ement. Indeed, it ispossible to prove the existen
e of a set U with the above properties from the axioms ofZFC. (For example one 
ould take U to 
onsist of all non-empty sets in the von Neumann
umulative hierar
hy formed before stage ! + !.) Thus, as with many other pie
es ofmathemati
s, it is possible in prin
ipal to give a 
ompletely formal version within ZFC settheory of the semanti
s of the HOL logi
 to be given below.9.2 TypesThe types of the HOL logi
 are expressions that denote sets (in the universe U). Followingtradition, �, possibly de
orated with subs
ripts or primes, is used to range over arbitrarytypes.There are four kinds of types in the HOL logi
. These 
an be des
ribed informally bythe following BNF grammar, in whi
h � ranges over type variables, 
 ranges over atomi
types and op ranges over type operators.



9.2. Types 103� ::= �type variables6 j 
atomi
 types6 j (�1; : : : ; �n)op| {z }
ompound types6 j �1!�2| {z }fun
tion types(domain �1, range �2)6In more detail, the four kinds of types are as follows.1. Type variables: these stand for arbitrary sets in the universe. In Chur
h's originalformulation of simple type theory, type variables are part of the meta-language andare used to range over obje
t language types. Proofs 
ontaining type variables wereunderstood as proof s
hemes (i.e. families of proofs). To support su
h proof s
hemeswithin the HOL logi
, type variables have been added to the obje
t language typesystem.22. Atomi
 types: these denote �xed sets in the universe. Ea
h theory determines aparti
ular 
olle
tion of atomi
 types. For example, the standard atomi
 types booland ind denote, respe
tively, the distinguished two-element set 2 and the distin-guished in�nite set I.3. Compound types: These have the form (�1; : : : ; �n)op, where �1, : : :, �n arethe argument types and op is a type operator of arity n. Type operators denoteoperations for 
onstru
ting sets. The type (�1; : : : ; �n)op denotes the set resultingfrom applying the operation denoted by op to the sets denoted by �1, : : :, �n. Forexample, list is a type operator with arity 1. It denotes the operation of forming all�nite lists of elements from a given set. Another example is the type operator prodof arity 2 whi
h denotes the 
artesian produ
t operation. The type (�1; �2)prod iswritten as �1 � �2.4. Fun
tion types: If �1 and �2 are types, then �1!�2 is the fun
tion type withdomain �1 and range �2. It denotes the set of all (total) fun
tions from the setdenoted by its domain to the set denoted by its range. (In the literature �1!�2 iswritten without the arrow and ba
kwards|i.e. as �2�1.) Note that synta
ti
ally!is simply a distinguished type operator of arity 2 written with in�x notation. It issingled out in the de�nition of HOL types be
ause it will always denote the sameoperation in any model of a HOL theory|in 
ontrast to the other type operatorswhi
h may be interpreted di�erently in di�erent models. (See Se
tion 9.2.2.)It turns out to be 
onvenient to identify atomi
 types with 
ompound types 
onstru
tedwith 0-ary type operators. For example, the atomi
 type bool of truth-values 
an beregarded as being an abbreviation for ()bool. This identi�
ation will be made in the2This te
hnique was invented by Robin Milner for the obje
t logi
 PP� of his LCF system.
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ste
hni
al details that follow, but in the informal presentation atomi
 types will 
ontinueto be distinguished from 
ompound types, and ()
 will still be written as 
.9.2.1 Type stru
turesThe term `type 
onstant' is used to 
over both atomi
 types and type operators. It isassumed that an in�nite set TyNames of the names of type 
onstants is given. The greekletter � is used to range over arbitrary members of TyNames, 
 will 
ontinue to be used torange over the names of atomi
 types (i.e. 0-ary type 
onstants), and op is used to rangeover the names of type operators (i.e. n-ary type 
onstants, where n > 0).It is assumed that an in�nite set TyVars of type variables is given. Greek letters �; �; : : :,possibly with subs
ripts or primes, are used to range over Tyvars. The sets TyNames andTyVars are assumed disjoint.A type stru
ture is a set 
 of type 
onstants. A type 
onstant is a pair (�; n) where� 2 TyNames is the name of the 
onstant and n is its arity. Thus 
 � TyNames � NN(where NN is the set of natural numbers). It is assumed that no two distin
t type 
onstantshave the same name, i.e. whenever (�; n1) 2 
 and (�; n2) 2 
, then n1 = n2.The set Types
 of types over a stru
ture 
 
an now be de�ned as the smallest set su
hthat:� TyVars � Types
.� If (�; 0) 2 
 then ()� 2 Types
.� If (�; n) 2 
 and �i 2 Types
 for 1 � i � n, then (�1; : : : ; �n)� 2 Types
.� If �1 2 Types
 and �2 2 Types
 then �1!�2 2 Types
.The type operator ! is assumed to asso
iate to the right, so that�1!�2! : : :!�n!�abbreviates�1!(�2! : : :!(�n!�) : : :)The notation tyvars(�) is used to denote the set of type variables o

urring in �.9.2.2 Semanti
s of typesA model M of a type stru
ture 
 is spe
i�ed by giving for ea
h type 
onstant (�; n) ann-ary fun
tionM(�) : Un �! U



9.2. Types 105Thus given sets X1; : : : ; Xn in the universe U , M(�)(X1; : : : ; Xn) is also a set in theuniverse. In 
ase n = 0, this amounts to spe
ifying an element M(�) 2 U for the atomi
type �.Types 
ontaining no type variables are 
alled monomorphi
, whereas those that do
ontain type variables are 
alled polymorphi
. What is the meaning of a polymorphi
type? One 
an only say what set a polymorphi
 type denotes on
e one has instantiatedits type variables to parti
ular sets. So its overall meaning is not a single set, but is rathera set-valued fun
tion, Un �! U , assigning a set for ea
h parti
ular assignment of setsto the relevant type variables. The arity n 
orresponds to the number of type variablesinvolved. It is 
onvenient in this 
onne
tion to be able to 
onsider a type variable to beinvolved in the semanti
s of a type � whether or not it a
tually o

urs in �, leading tothe notion of a type-in-
ontext.A type 
ontext, �s, is simply a �nite (possibly empty) list of distin
t type variables�1; : : : ; �n. A type-in-
ontext is a pair, written �s:�, where �s is a type 
ontext, � is atype (over some given type stru
ture) and all the type variables o

urring in � appearsomewhere in the list �s. The list �s may also 
ontain type variables whi
h do not o

urin �.For ea
h � there are minimal 
ontexts �s for whi
h �s:� is a type-in-
ontext, whi
honly di�er by the order in whi
h the type variables of � are listed in �s. In order to sele
tone su
h 
ontext, let us assume that TyVars 
omes with a �xed total order and de�ne the
anoni
al 
ontext of the type � to 
onsist of exa
tly the type variables it 
ontains, listedin order.3Let M be a model of a type stru
ture 
. For ea
h type-in-
ontext �s:� over 
, de�nea fun
tion[[�s:�℄℄M : Un �! U(where n is the length of the 
ontext) by indu
tion on the stru
ture of � as follows.� If � is a type variable, it must be �i for some unique i = 1; : : : ; n and then [[�s:�℄℄Mis the ith proje
tion fun
tion, whi
h sends (X1; : : : ; Xn) 2 Un to Xi 2 U .� If � is a fun
tion type �1!�2, then [[�s:�℄℄M sends Xs 2 Un to the set of all fun
tionsfrom [[�s:�1℄℄M(Xs) to [[�s:�2℄℄M(Xs). (This makes use of the property Fun of U .)� If � is a 
ompound type (�1; : : : ; �m)�, then [[�s:�℄℄M sends Xs to M(�)(S1; : : : ; Sm)where ea
h Sj is [[�s:�j ℄℄M(Xs).One 
an now de�ne the meaning of a type � in a model M to be the fun
tion[[�℄℄M : Un �! U3It is possible to work with unordered 
ontexts, spe
i�ed by �nite sets rather than lists, but we 
hoosenot to do that sin
e it mildly 
ompli
ates the de�nition of the semanti
s to be given below.
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sgiven by [[�s:�℄℄M , where �s is the 
anoni
al 
ontext of �. If � is monomorphi
, then n = 0and [[�℄℄M 
an be identi�ed with the element [[�℄℄M () of U . When the parti
ular model Mis 
lear from the 
ontext, [[ ℄℄M will be written [[ ℄℄.To summarize, given a model in U of a type stru
ture 
, the semanti
s interpretsmonomorphi
 types over 
 as sets in U and more generally, interprets polymorphi
 typesinvolving n type variables as n-ary fun
tions Un �! U on the universe. Fun
tion typesare interpreted by full fun
tion sets.Examples Suppose that 
 
ontains a type 
onstant (b; 0) and that the modelM assignsthe set 2 to b. Then:1. [[b!b!b℄℄ = 2!2!2 2 U .2. [[(�!b)!�℄℄ : U �! U is the fun
tion sending X 2 U to (X!2)!X 2 U .3. [[�; �:(�!b)!�℄℄ : U2 �! U is the fun
tion sending (X; Y ) 2 U2 to (X!2)!X 2U .Remark A more traditional approa
h to the semanti
s would involve giving meanings totypes in the presen
e of `environments' assigning sets in U to all type variables. The use oftypes-in-
ontexts is almost the same as using partial environments with �nite domains|itis just that the 
ontext ties down the admissible domain to a parti
ular �nite (ordered)set of type variables. At the level of types there is not mu
h to 
hoose between the twoapproa
hes. However for the syntax and semanti
s of terms to be given below, wherethere is a dependen
y both on type variables and on individual variables, the approa
hused here seems best.9.2.3 Instan
es and substitutionIf � and �1; : : : ; �n are types over a type stru
ture 
,�[�1; : : : ; �p=�1; : : : ; �p℄will denote the type resulting from the simultaneous substitution for ea
h i = 1; : : : ; p of�i for the type variable �i in �. The resulting type is 
alled an instan
e of �. The followinglemma about instan
es will be useful later; it is proved by indu
tion on the stru
ture of�.Lemma 1 Suppose that � is a type 
ontaining distin
t type variables �1; : : : ; �p and that�0 = �[�1; : : : ; �n=�1; : : : ; �p℄ is an instan
e of �. Then the types �1; : : : ; �p are uniquelydetermined by � and �0.We also need to know how the semanti
s of types behaves with respe
t to substitution:Lemma 2 Given types-in-
ontext �s:� and �s:�i (i = 1; : : : ; p, where p is the length of�s), let �0 be the instan
e �[�s=�s℄. Then �s:�0 is also a type-in-
ontext and its meaning



9.3. Terms 107in any model M is related to that of �s:� as follows. For all Xs 2 Un (where n is thelength of �s)[[�s:�0℄℄(Xs) = [[�s:�℄℄([[�s:�1℄℄(Xs); : : : ; [[�s:�p℄℄(Xs))On
e again, the lemma 
an be proved by indu
tion on the stru
ture of �.9.3 TermsThe terms of the HOL logi
 are expressions that denote elements of the sets denoted bytypes. The meta-variable t is used to range over arbitrary terms, possibly de
orated withsubs
ripts or primes.There are four kinds of terms in the HOL logi
. These 
an be des
ribed approximately bythe following BNF grammar, in whi
h x ranges over variables and 
 ranges over 
onstants.t ::= xvariables6 j 

onstants6 j t t0|{z}fun
tion appli
ations(fun
tion t, argument t0)6 j �x: t| {z }�-abstra
tions6Informally, a �-term �x: t denotes a fun
tion v 7! t[v=x℄, where t[v=x℄ denotes theresult of substituting v for x in t. An appli
ation t t0 denotes the result of applying thefun
tion denoted by t to the value denoted by t0. This will be made more pre
ise below.The BNF grammar just given omits mention of types. In fa
t, ea
h term in the HOLlogi
 is asso
iated with a unique type. The notation t� is traditionally used to range overterms of type �. A more a

urate grammar of terms is:t� ::= x� j 
� j (t�0!� t0�0)� j (�x�1 : t�2)�1!�2In fa
t, just as the de�nition of types was relative to a parti
ular type stru
ture 
,the formal de�nition of terms is relative to a given 
olle
tion of typed 
onstants over 
.Assume that an in�nite set Names of names is given. A 
onstant over 
 is a pair (
; �),where 
 2 Names and � 2 Types
. A signature over 
 is just a set �
 of su
h 
onstants.The set Terms�
 of terms over �
 is de�ned to be the smallest set 
losed under thefollowing rules of formation:1. Constants: If (
; �) 2 �
 and �0 2 Types
 is an instan
e of �, then (
; �0) 2Terms�
 . Terms formed in this way are 
alled 
onstants and are written 
�0 .2. Variables: If x 2 Names and � 2 Types
, then var x� 2 Terms�
 . Terms formedin this way are 
alled variables. The marker var is purely a devi
e to distinguish
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svariables from 
onstants with the same name. A variable var x� will usually bewritten as x�, if it is 
lear from the 
ontext that x is a variable rather than a
onstant.3. Fun
tion appli
ations: If t�0!� 2 Terms�
 and t0�0 2 Terms�
 , then (t�0!� t0�0)� 2Terms�
. (Terms formed in this way are sometimes 
alled 
ombinations.)4. �-Abstra
tions: If var x�1 2 Terms�
 and t�2 2 Terms�
 , then (�x�1 : t�2)�1!�2 2Terms�
.Note that it is possible for 
onstants and variables to have the same name. It is alsopossible for di�erent variables to have the same name, if they have di�erent types.The type subs
ript on a term may be omitted if it is 
lear from the stru
ture of theterm or the 
ontext in whi
h it o

urs what its type must be.Fun
tion appli
ation is assumed to asso
iate to the left, so that t t1 t2 : : : tn abbreviates( : : : ((t t1) t2) : : : tn).The notation �x1 x2 � � � xn: t abbreviates �x1: (�x2: � � � (�xn: t) � � � ).A term is 
alled polymorphi
 if it 
ontains a type variable. Otherwise it is 
alledmonomorphi
. Note that a term t� may be polymorphi
 even though � is monomorphi
|for example, (f�!b x�)b, where b is an atomi
 type. The expression tyvars(t�) denotesthe set of type variables o

urring in t�.An o

urren
e of a variable x� is 
alled bound if it o

urs within the s
ope of a textuallyen
losing �x�, otherwise the o

urren
e is 
alled free. Note that �x� does not bind x�0 if� 6= �0. A term in whi
h all o

urren
es of variables are bound is 
alled 
losed .9.3.1 Terms-in-
ontextA 
ontext �s;xs 
onsists of a type 
ontext �s together with a list xs = x1; : : : ; xm of distin
tvariables whose types only 
ontain type variables from the list �s.The 
ondition that xs 
ontains distin
t variables needs some 
omment. Sin
e a variableis spe
i�ed by both a name and a type, it is permitted for xs to 
ontain repeated names,so long as di�erent types are atta
hed to the names. This aspe
t of the syntax means thatone has to pro
eed with 
aution when de�ning the meaning of type variable instantiation,sin
e instantiation may 
ause variables to be
ome equal `a

identally': see Se
tion 9.3.3.A term-in-
ontext �s;xs:t 
onsists of a 
ontext together with a term t satisfying thefollowing 
onditions.� �s 
ontains any type variable that o

urs in xs and t.� xs 
ontains any variable that o

urs freely in t.� xs does not 
ontain any variable that o

urs bound in t.



9.3. Terms 109The 
ontext �s;xs may 
ontain (type) variables whi
h do not appear in t. Note thatthe 
ombination of the se
ond and third 
onditions implies that a variable 
annot haveboth free and bound o

urren
es in t. For an arbitrary term, there is always an �-equivalent term whi
h satis�es this 
ondition, obtained by renaming the bound variablesas ne
essary.4 In the semanti
s of terms to be given below we will restri
t attention tosu
h terms. Then the meaning of an arbitrary term is taken to be the meaning of some�-variant of it having no variable both free and bound. (The semanti
s will equate �-variants, so it does not matter whi
h is 
hosen.) Evidently for su
h a term there is aminimal 
ontext �s;xs, unique up to the order in whi
h variables are listed, for whi
h�s;xs:t is a term-in-
ontext. As for type variables, we will assume given a �xed total orderon variables. Then the unique minimal 
ontext with variables listed in order will be 
alledthe 
anoni
al 
ontext of the term t.9.3.2 Semanti
s of termsLet �
 be a signature over a type stru
ture 
 (see Se
tion 9.3). A model M of �
 isspe
i�ed by a model of the type stru
ture plus for ea
h 
onstant (
; �) 2 �
 an elementM(
; �) 2 YXs2Un[[�℄℄M (Xs)of the indi
ated 
artesian produ
t, where n is the number of type variables o

urring in�. In other words M(
; �) is a (dependently typed) fun
tion assigning to ea
h Xs 2 Unan element of [[�℄℄M (Xs). In the 
ase that n = 0 (so that � is monomorphi
), [[�℄℄M wasidenti�ed with a set in U and then M(
; �) 
an be identi�ed with an element of that set.The meaning of HOL terms in su
h a model will now be des
ribed. The semanti
sinterprets 
losed terms involving no type variables as elements of sets in U (the parti
ularset involved being derived from the type of the term as in Se
tion 9.2.2). More generally, ifthe 
losed term involves n type variables then it is interpreted as an element of a produ
tQXs2Un Y (Xs), where the fun
tion Y : Un �! U is derived from the type of the term (ina type 
ontext derived from the term). Thus the meaning of the term is a (dependentlytyped) fun
tion whi
h, when applied to any meanings 
hosen for the type variables in theterm, yields a meaning for the term as an element of a set in U . On the other hand, if theterm involves m free variables but no type variables, then it is interpreted as a fun
tionY1 � � � � � Ym!Y where the sets Y1; : : : ; Ym in U are the interpretations of the types ofthe free variables in the term and the set Y 2 U is the interpretation of the type of theterm; thus the meaning of the term is a fun
tion whi
h, when applied to any meanings
hosen for the free variables in the term, yields a meaning for the term. Finally, the most4Re
all that two terms are said to be �-equivalent if they di�er only in the names of their boundvariables.
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sgeneral 
ase is of a term involving n type variables and m free variables: it is interpretedas an element of a produ
tYXs2Un Y1(Xs)� � � � � Ym(Xs)! Y (Xs)where the fun
tions Y1; : : : ; Ym; Y : Un �! U are determined by the types of the freevariables and the type of the term (in a type 
ontext derived from the term).More pre
isely, given a term-in-
ontext �s;xs:t over �
 suppose� t has type �� xs = x1; : : : ; xm and ea
h xj has type �j� �s = �1; : : : ; �n.Then sin
e �s;xs:t is a term-in-
ontext, �s:� and �s:�j are types-in-
ontext, and hen
egive rise to fun
tions [[�s:� ℄℄M and [[�s:�j ℄℄M from Un to U as in se
tion 9.2.2. The meaningof �s;xs:t in the model M will be given by an element[[�s;xs:t℄℄M 2 YXs2Un0� mYj=1[[�s:�j ℄℄M (Xs)1A![[�s:� ℄℄M (Xs):In other words, givenXs = (X1; : : : ; Xn) 2 Unys = (y1; : : : ; ym) 2 [[�s:�1℄℄M (Xs)� � � � � [[�s:�m℄℄M (Xs)one gets an element [[�s;xs:t℄℄M (Xs)(ys) of [[�s:� ℄℄M (Xs). The de�nition of [[�s;xs:t℄℄M pro-
eeds by indu
tion on the stru
ture of the term t, as follows. (As before, the subs
riptM will be dropped from the semanti
 bra
kets [[ ℄℄ when the parti
ular model involved is
lear from the 
ontext.)� If t is a variable, it must be xj for some unique j = 1; : : : ; m, so � = �j and then[[�s;xs:t℄℄(Xs)(ys) is de�ned to be yj.� Suppose t is a 
onstant 
�0 , where (
; �) 2 �
 and �0 is an instan
e of �. Thenby Lemma 1 of 9.2.3, �0 = �[�1; : : : ; �p=�1; : : : ; �p℄ for uniquely determined types�1; : : : ; �p (where �1; : : : ; �p are the type variables o

urring in �). Then de�ne[[�s;xs:t℄℄(Xs)(ys) to be M(
; �)([[�s:�1℄℄(Xs); : : : ; [[�s:�p℄℄(Xs)), whi
h is an element of[[�s:� ℄℄(Xs) by Lemma 2 of 9.2.3 (sin
e � is �0).� Suppose t is a fun
tion appli
ation term (t1 t2) where t1 is of type � 0!� and t2 isof type � 0. Then f = [[�s;xs:t1℄℄(Xs)(ys), being an element of [[�s:� 0!� ℄℄(Xs), is afun
tion from the set [[�s:� 0℄℄(Xs) to the set [[�s:� ℄℄(Xs) whi
h one 
an apply to theelement y = [[�s;xs:t2℄℄(Xs)(ys). De�ne [[�s;xs:t℄℄(Xs)(ys) to be f(y).



9.3. Terms 111� Suppose t is the abstra
tion term �x:t2where x is of type �1 and t2 of type �2.Thus � = �1!�2 and [[�s:� ℄℄(Xs) is the fun
tion set [[�s:�1℄℄(Xs)![[�s:�2℄℄(Xs). De�ne[[�s;xs:t℄℄(Xs)(ys) to be the element of this set whi
h is the fun
tion sending y 2[[�s:�1℄℄(Xs) to [[�s;xs;x:t2℄℄(Xs)(ys; y). (Note that sin
e �s;xs:t is a term-in-
ontext,by 
onvention the bound variable x does not o

ur in xs and thus �s;xs;x:t2 is alsoa term-in-
ontext.)Now de�ne the meaning of a term t� in a model M to be the dependently typed fun
tion[[t� ℄℄ 2 YXs2Un0� mYj=1[[�s:�j ℄℄(Xs)1A![[�s:� ℄℄(Xs)given by [[�s;xs:t� ℄℄, where �s;xs is the 
anoni
al 
ontext of t� . So n is the number of typevariables in t� , �s is a list of those type variables, m is the number of ordinary variableso

urring freely in t� (assumed to be distin
t from the bound variables of t� ) and the �jare the types of those variables. (It is important to note that the list �s, whi
h is part ofthe 
anoni
al 
ontext of t, may be stri
tly bigger than the 
anoni
al type 
ontexts of �jor � . So it would not make sense to write just [[�j℄℄ or [[� ℄℄ in the above de�nition.)If t� is a 
losed term, then m = 0 and for ea
h Xs 2 Un one 
an identify [[t� ℄℄ with theelement [[t� ℄℄(Xs)() 2 [[�s:� ℄℄(Xs). So for 
losed terms one gets[[t� ℄℄ 2 YXs2Un[[�s:� ℄℄(Xs)where �s is the list of type variables o

urring in t� and n is the length of that list. Ifmoreover, no type variables o

ur in t� , then n = 0 and [[t� ℄℄ 
an be identi�ed with theelement [[t� ℄℄() of the set [[� ℄℄ 2 U .The semanti
s of terms appears somewhat 
ompli
ated be
ause of the possible depen-den
y of a term upon both type variables and ordinary variables. Examples of how thede�nition of the semanti
s works in pra
ti
e 
an be found in Se
tion 10.4.2, where themeaning of several terms denoting logi
al 
onstants is given.9.3.3 SubstitutionSin
e terms may involve both type variables and ordinary variables, there are two di�erentoperations of substitution on terms whi
h have to be 
onsidered|substitution of typesfor type variables and substitution of terms for variables.Substituting types for type variables in termsSuppose t is a term, with 
anoni
al 
ontext �s;xs say, where �s = �1; : : : ; �n, xs =x1; : : : ; xm and where for j = 1; : : : ; m the type of the variable xj is �j. If �s0:�i (i =1; : : : ; n) are types-in-
ontext, then substituting the types �i for the type variables �i inthe list xs, one obtains a new list of variables xs0. Thus the jth entry of xs0 has type�0j = �j[�s=�s℄. Only substitutions with the following property will be 
onsidered.
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sIn instantiating the type variables �s with the types �s, no two distin
t vari-ables in the list xs be
ome equal in the list xs0.5This 
ondition ensures that �s0; xs0 really is a 
ontext. Then one obtains a new term-in-
ontext �s0;xs0:t0 by substituting the types �s = �1; : : : ; �n for the type variables �s in t(with suitable renaming of bound o

urren
es of variables to make them distin
t from thevariables in xs0). The notationt[�s=�s℄is used for the term t0.Lemma 3 The meaning of �s0;xs0:t0 in a model is related to that of t as follows. For allXs0 2 Un0 (where n0 is the length of �s0)[[�s0;xs0:t0℄℄(Xs0) = [[t℄℄([[�s0:�1℄℄(Xs0); : : : ; [[�s0:�n℄℄(Xs0)):Lemma 2 in 9.2.3 is needed to see that both sides of the above equation are elementsof the same set of fun
tions. The validity of the equation is proved by indu
tion on thestru
ture of the term t.Substituting terms for variables in termsSuppose t is a term, with 
anoni
al 
ontext �s;xs say, where �s = �1; : : : ; �n, xs =x1; : : : ; xm and where for j = 1; : : : ; m the type of the variable xj is �j. If one has terms-in-
ontext �s;xs0:tj for j = 1; : : : ; m with tj of the same type as xj, say �j, then oneobtains a new term-in-
ontext �s;xs0:t00 by substituting the terms ts = t1; : : : ; tm for thevariables xs in t (with suitable renaming of bound o

urren
es of variables to prevent thefree variables of the tj be
oming bound after substitution). The notationt[ts=xs℄is used for the term t00.Lemma 4 The meaning of �s;xs0:t00 in a model is related to that of t as follows. For allXs 2 Un and all ys0 2 [[�s:�01℄℄� � � � � [[�s:�0m0 ℄℄ (where �0j is the type of x0j)[[�s;xs0:t00℄℄(Xs)(ys0) = [[t℄℄(Xs)([[�s;xs0:t1℄℄(Xs)(ys0); : : : ; [[�s;xs0:tm℄℄(Xs)(ys0))On
e again, this result is proved by indu
tion on the stru
ture of the term t.5Su
h an identi�
ation of variables 
ould o

ur if the variables had the same name 
omponent andtheir types be
ame equal on instantiation.



9.4. Standard notions 1139.4 Standard notionsUp to now the syntax of types and terms has been very general. To represent the standardformulas of logi
 it is ne
essary to impose some spe
i�
 stru
ture. In parti
ular, every typestru
ture must 
ontain an atomi
 type bool whi
h is intended to denote the distinguishedtwo-element set 2 2 U , regarded as a set of truth-values. Logi
al formulas are thenidenti�ed with terms of type bool. In addition, various logi
al 
onstants are assumedto be in all signatures. These requirements are formalized by de�ning the notion of astandard signature.9.4.1 Standard type stru
turesA type stru
ture 
 is standard if it 
ontains the atomi
 types bool (of booleans or truth-values) and ind (of individuals). (In the literature, the symbol o is often used instead ofbool and � instead of ind.)A model M of 
 is standard if M(bool) and M(ind) are respe
tively the distinguishedsets 2 and I in the universe U .It will be assumed from now on that type stru
tures and their models are standard.9.4.2 Standard signaturesA signature �
 is standard if it 
ontains the following three primitive 
onstants:)bool!bool!bool=�!�!bool"(�!bool)!�The intended interpretation of these 
onstants is that ) denotes impli
ation, =�!�!booldenotes equality on the set denoted by �, and "(�!bool)!� denotes a 
hoi
e fun
tion onthe set denoted by �. More pre
isely, a model M of �
 will be 
alled standard if� M(); bool!bool!bool) 2 (2!2!2) is the standard impli
ation fun
tion, sendingb; b0 2 2 to(b) b0) = ( 0 if b = 1 and b0 = 01 otherwise� M(=; �!�!bool) 2 QX2U :X!X!2 is the fun
tion assigning to ea
h X 2 U theequality test fun
tion, sending x; x0 2 X to(x =X x0) = ( 1 if x = x00 otherwise
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s� M("; (�!bool)!�) 2 QX2U :(X!2)!X is the fun
tion assigning to ea
h X 2 Uthe 
hoi
e fun
tion sending f 2 (X!2) to
hX(f) = ( 
h(f�1f1g) if f�1f1g 6= ;
h(X) otherwisewhere f�1f1g = fx 2 X : f(x) = 1g. (Note that f�1f1g is in U when it is non-empty, by the property Sub of the universe U given in Se
tion 9.1. The fun
tion 
his given by property Choi
e.)It will be assumed from now on that signatures and their models are standard.Remark This parti
ular 
hoi
e of primitive 
onstants is arbitrary. The standard 
olle
-tion of logi
al 
onstants in
ludes T (`true'), F (`false'), ) (`implies'), ^ (`and'), _ (`or'),: (`not'), 8 (`for all'), 9 (`there exists'), = (`equals'), � (`the'), and " (`a'). This set isredundant, sin
e it 
an be de�ned (in a sense explained in Se
tion 10.5.1) from varioussubsets. In pra
ti
e, it is ne
essary to work with the full set of logi
al 
onstants, and theparti
ular subset taken as primitive is not important. The interested reader 
an explorethis topi
 further by reading Andrews' book [1℄ and the referen
es it 
ontains.Terms of type bool are 
alled formulas.The following notational abbreviations are used:Notation Meaningt� = t0� =�!�!bool t� t0�t) t0 )bool!bool!bool tbool t0bool"x�: t "(�!bool)!�(�x�: t)These notations are spe
ial 
ases of general abbreviatory 
onventions supported by theHOL system. The �rst two are in�xes and the third is a binder (see Se
tion 11.4.3).


