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Abstract

We present a modular proof of strong normalization for the Caleulus of Constructions of
Coquand and Huet (19885, 1988). This result was first proved by Coquand (1986), but our proof
is more perspicious. The method consists of a little juggling with some systems in the cube of
Barendregt (1989), which provides a fine structure of the caleulus of constructions. It is proved
that the strong normalization of the calculus of constructions is equivalent with the strong
normalization of Fa.

In order to give the proof, we first establish some properties of various type systems.
Therefore, we present a general framework of typed lambda caleuli, including many well-
known ones, ’

Capsule review

The calculus of constructions due to Coguand and Huet (1985, 1988} is a very popular subject
among those interested in computer science-oriented aspects of intuitionistic type theory. The
strong norimalization theorem for it, stating that all computation sequences terminate, is one
of the most basic results. The authors present a new proof of strong normalization obtained
essentially by combining ideas from several previous proofs of similar results for different
systems, allowing them to divide up the difficulties and cope with them one at a time. The paper
is self-contained and aill proofs are given in detail.

1 Introduction

The strong normalization {SN} property for the calculus of constructions (Coquand
and Huet, 1985, 1988) was proved by Coquand (1986}. This proof is rather ‘barogue’,
although it is reminiscent of other proofs of strong normalization for systems like the
simply or polymorphically typed lambda calculus. Therefore, we looked for a
conceptually more perspicious proof.

Barendregt (1989) gives a fine structure of the calculus of constructions. He defines
a natural cube of eight type systems, ordered along the edges by inclusion, of which
the smallest system is the simply typed lambda calculus 2>, and the most
complicated system is the calculus of constructions AC. Other systems in Barendregt’s

* Partially supported by the EEC ‘Project Stimulation ST2J/0374/C(EDB): Lambda Caleul Typé’.
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cube include the second order (polymorphic) lambda calculus 12, Girard’s Fo system
(called Aa in the cube) and AP, a system related to the AUTOMATH system AUT-QE and
studied by Harper et af, (1987) under the name LF.

The first step in our proof of strong normalization consists of defining a mapping
from AC into Ao such that reduction of terms is preserved. (This generalizes a method
of Harper et al. (1987) mapping AP into A-»). Then, motivated by three kinds of
abstractions possible in the various parts of the cube, reductions in Ao are divided
into three kinds. Two of these reductions turn out to be strongly normalizing. (For
one of them we need that A — is SN.) To show that the third notion of reduction (even
if mixed with the other two) is also SN, we map the terms of ko into the set A of
typefree lambda terms. Then a higher order version of the argument used for A2 (by
Girard (1972), or Tait (1975)) shows that Ao is SN.

The lemmas that are used in the proof of strong normalization are valid for a large
class of systems not included in the cube, Therefore, we start this paper by giving a
more general notion of type system, following definitions by Terlouw (198%4) and
Berardi {1988), and prove the basic lemunas for this general notion. This puts the
properties of the systems of the cube in a larger framework that might be useful for
other arguments about typed lambda caleuli. Berardi has shown that various logical
systems alse fit in the general notion of type system (see Barendregt, 1989, for some
examples), which again stresses the relationship between typed lambda calculus and
logic, usually expressed by the ‘formulae-as-types’ notion, discussed by Howard
{1980}

2 Tramework for type systems

A general notion of type system is presented, following definitions given by Terlouw
{19894, b) and Berardi (1988), generalizing Barendregt’s cube. This notion will serve
as a framework for reasoning about type systems and comparing various type systems
with each other. One can prove a number of basic properties for this notion, which
show how things work. We restrict ourselves to those properties that will be useful in
the argument about strong normalization.

Definition 1
A Generalized Type System (GTS) is a system consisting of the following objects

{i) Cons, a set of constants,
(ii) Sorr = Cons, a set of sorts,
(i) Axroar, a set of pairs (¢, ¢7), with ¢, ¢’e Cows,
< (iv) RuLk, a set of triples (5,5, 5%), with 5,5, 5" € SorT,
(v) for every s SorT, a set VAR® of variables.

The axiom pairs (¢, ¢’) will usually be denoted by c:¢’. If & = 5" in a rule (5, 5", 5”), then
the rule (5,4, ¢") will be written as (s5,5). A GTS will be denoted by the quadruple
(Cows, Sort, Axioa, RULE). For the set of all variables, we shall write V4g, so
VAR = | ;o501 VAR
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The idea of the GTS definition is that the sorts are the universes of the type system,
where the axioms give the hierarchical structure between them. The constants are
special objects of the type system, belonging to a universe or another constant. The
rules restrict the formation of the Il-type, the collection of {possibly dependent)
functions from one type to another. In Chapter 3 it can be seen how the GTS
definition works in the case of well-known systems such as simply and poly-
morphically typed lambda calculus and the calculus of constructions.

Definition 2
() A GTS (Cons, SorT, AxiosM, RULE) is functional iff

— Axtom < Consx Cons is a function, l.e., Ve, ¢, "€ CoNs,
[eie’,e:c”edxiom = =], .

— RULE < (SORT % SORT) X SORT is a function, 1.e., ¥5,, 8y, 55,5, € SORT.
{0835 82, 85), (81, 54, 53) E RULE = 5, = 53],

(iiy A GTS (Sorr, Cons, AxioM, RULE) is injective iff

— AxroM is infective on SORT X SORT, i.e., Vs, s € SorT, ce CoNS.
[s:c,5 i cedAxiom=>g = 5],

- RULE is injective fn_its second argument, 1.e., Vs, 8y, 55,5, € SORT.
[(53, 83, 53), (81, 50, 83} € RULE = 5, = 53).

A motivation for these two definitions is that type systems which are functional will
turn out to have the so calied ‘uniqueness of assignment’ property; the type that can
be assigned to a certain object is unique up to P-equality. (Even without knowing the
inference rules for GTSs, it will be clear that if 4x70Mr is not injective, a constant
might be typed with two different sorts which are not B-equal.) Further, the properties
of functionality and injectivity give rise to nice classifications of objects in a type
system, It is not worth explaining the interest of these two definitions at this point,
They will only become clear in view of the specific properties for functional and
injective GTSs that are given at the end of this chapter.
Let in the following { = (Sorr, Cons, AxioM, RULE) be a GTS.

Definition 3
(i) The collection of pseudoterms of L, PST(L), is defined by

ti= VAR] Cons| (¢ DAV ARt . D |(IIF 4R L. ).

(ii) If a term is one of the last three forms, it will be called a composed term.

The notions of bound variable and free variable of a pseudoterm are defined as usual,
A and II bind variables,

The substitution operator works as in the untyped lambda calculus; ffx:=t}
denotes the substitution of ¢ for x in the term ¢, Substitution is only allowed if no free
variables become bound.

Tust as in untyped lambda calculus, terms that only differ from each other in their
bound variables will be identified; we work modulo o-conversion, If the terms ¢ and

6 FPR |
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¢ are o-convertible, this is denoted by =1 In general, it will be assumed that the
bound variables in a term differ from the free ones.

Also, the notion of subterm is directly copied from the untyped case. (For precise
definitions, we refer to Barendregt, 1934).

Definition 4
(i) a redex is a pseudoterm of the form (Ax:. 03¢
(ii) one-step B-reduction, 4 (o1 just —), is defined by (Ax:r. )" >y Ix:=1",
and if ', #", then 1 gttt P iyt Axit.f -phxit. 1, IR ARV S H U A
Tx:t. /=y llxie.t” and TIx: ¢ 1> TIx1 1700, for alt 1,t, " e PST().
(iiiy B-reduction, —», is the transitive reflexive closure of —.
(iv) B-conversion, =, is the least equivalence relation generated by —».

Theorem 5
The reduction relation —» on PST(L) satisfies the Church—-Rosser properly, le.

VM, NePST(). [M = N= 3P PST{). M»P & N-»F].

Proof. ‘The proof of the Church-Rosser property for pseudoterms can be given in the
same way as the proof of Church-Rosser for the untyped lambda calculus. We do not
give it here. (For details sce Barendregt and Dekkers, 1990). O

Definition 6
(i) A C-assignment is an expression of the form A8, with A, BePST(},

(i) A {-declaration is an expression of the form x: 4, with AePST((), xe V4R,
(ili) A {-pseudocontext is a finite sequence of {-declarations,
(iv) A (-statement is an expression of the form T A: B, with I a {-pseudocontext,

A: B a {-assignment.

Definition 7
Let I and I = X, 4,, ..., X, 4, be pseudoconiexts.

(i) The domain of T', dom(T), is the set {x3, Xy, s X0}y

(i) For i< n, Ui (T restricted to i) is the pseudocontext x,:4,, e X Ay,
(i) For i< n, T\(x;14) = x;:4,, X g A gy Xt Agers s X A
(iv) TV < T (I is prefix of T') it 17 = T'[i for some i < A,

(v) I' =T (I is subcontext o Mifx:AdinT'=x:AdinT,

(vi) T» 1" iff T7 = x,: 45, ..., X, 1 4] and A,» A foralli<n

We now define for a pseudocontext I" and pseudoterms A and B, the notion ‘T'—A4: B
is true’. This definition picks the ‘legal” terms out of the set of pseudoterms and the
‘legal’ contexis out of the set of pseudocontexts. Instead of ‘T H.4: B is true’, we
shall just write T’} A: B, in words T proves A: B, or T assigns B to A. The notion of
[ A:B is generated by the axioms, and inference rules of the system . In case the
system £ in which we are working is not clear from the context, we write I'—, A B.
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Definition 8
(i) The axioms of { are the statements Fc:¢’, with ¢:¢’e AxioM,
(i) The inference rules of § are the rules of the following six forms

I'A:s . .
(Start) _F, A A with s& SORT, xe V4r®, x¢dom(T),

. I'A4Aws F-B:C . .
(Weakening) T.xAFB:C with se SORT, xe VAR®, x¢ dom‘(I‘),

I'B:5, T,x:BB,s,
I'1Ix:B,.B,:5,

{T1-rule) with (s,,5,, 8,) € RULE,

I'+~B:s, I,x:B,FBys, I',x:Bji-C:B,
I'Ax:B,.C:IIx:B,.B,

with (s,, 8, 8,) € RULE for some s, € SORT,

(A-rule)

B 1Ix:C,.C, T't=8,:C}
'8, B,:Clx:= B,] ’

{Application) F

I'—B:C THC:s
I't-B:C

{Conversion) with C = (', s€ SORT.
The statements above the line will be called premisés, the statements below the line the
conciusions of a rule,

Definition 9
A derivation in the system { is a finite well-founded tree with

(i) each leaf of the tree is an axiom of £,

(ii) each node of the tree which is not a leaf is a conclusion of an inference rule,
such that the successors of the node are exactly the premises of the inference
rule,

For A and A’ derivations in &, A < A’ (A subderivation of A) is defined as usual.

Definition 10
(I) Yor a derivation A, the length of A, Ih(A), is inductively defined by

(i) If A consists only of an axiom, then /A(A) =0,
(i) If the premises of the conclusion of A are F,...,JF,, with derivations
A, .., A, then Th(A) = max{Ih(Aj|l <i<ni+l

(I1) For a derivation A, the frace of A is the path in A that

(i) starts with the root and ends with a leaf,
(i) takes the left path in case of (application) or {conversion),
(i) takes the right path in case of {(weakening), (Il-rule) or (A-rule).

62
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Definition 11 :
Let T be a pseudocontext, 4, BePST((), A a derivation in £,

(i) A is a derivation of T A:B or A:{(I'—A4:B} iff '~ A:B is the root of the
derivation A,
(i) ' A:B is true or U= A: B iff A:(U'- 4:B) for some derivation A in £,

Notation 12. THAB:.CiffT+4:Band THB:C.

Definition 13
Let s&SORT.

@) Context(t)) = {I'|T - A:B for some 4, Be PST(D)},
(i) T-Term(l)={A|T+A:BorT'—B:4 for some BePST),
(iii) T-s-Term{{) = {A|TH- A:s},
(v) I-s-El({)={A|' A:B:s for some BePSTO)),
(V) Tenﬂ(‘:) = Ul"scunte:t({) F‘Te"m(@;
@) s-Term(®) = Urecontanio T-5-Term(Q),
(vii) 5-EIft) = UFECOM&J;L@} I-5-EI(L).

Definition 14
Let £ be a GTS, Me Term((), neN.

(@) n is an upperbound io the reductions starting from Miff
VM, M,, .., M, € Tarm() .M > M, > ...> M, > M, =ms nl,

(1) M is strongly normalizable, or SN(M), iff IneN.[» is an upperbound to the
reductions starting from M),

(i) ¢ satisfies the strong normalization property, or £ =S8N, iff
YM e Term{l). SN{M).

The fact that all terms of a set X are strongly normalizable will be denoted by SN(X).

In the following, the double negated version of (= SN will sometimes be used:
1IM, € Term(L). YmeN. M, M, ..., M, € Term(C). ¥i < m—1. [M,~ M}, stating
that there are no infinite reduction sequences in {. The proofs given below are
therefore not all constructive. Analysing the proofs, one can see, however, that the
proof of equivalence of Ao = SN and APw SN can be done in first order Heyting
arithmetic.

From the axioms and inference rules, it will be clear that if a constant does not
occur in any of the axioms or on the third place of a rule, then it does not occur in
“any statement of §. In the following, we shall therefore assume that

ce CoNs=>3c .c.c’ e Axlom V ¢ 1ce AXIOM
v ds,5 . (s, 5, ¢} RULE.

The rest of this chapter wilt consist of lemmas and proofs for the generalized type
systemns. For examples we refer to Chapter 3, in which the systems of Barendregt’s
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cube are defined as GTSs. Some more exotic examples can be found in Barendregt
(1989, e.g., the definition of predicate logics as GTSs. Barendregt also shows why, in
general, we want the set RULE to consist of triples (s,, 5,, 5), and not just pairs (s, 5,).

Lemma 15 (Free variables)
ForT'=x14,,%0 45 s xid, and THB:C,

@ FV (B:C) & {xy .00 X0h
() Vij<nx,=x=~i=]

Proof. Induction on the length of the derivation of ' B: C, distinguishing cases
according to the last applied inference rule. [

Lemma 16
For T = x,1 Ay, X5 Ap, ..r X, 0 A, € Context((),

(i) T'tc:¢ for all c:¢’ e Axion,
Gy I'x,0 4, for all i € n.

Proof. The proof of (i) is by easy induction on the length of the tree that proves
T" & Context({).

For the proof of (i), let A:(T+ B:C). The proof of T't—x,: 4, for alt i < n is by
induction on the fength of A, distinguishing cases according to the last applied rule.
The two interesting cases are when this is (start) or {weakening). We only treat the
case for the last rule being {(weakening), as the other case is quite similar.

If the last rule is (weakening), then ‘

X1 4, ...',x,,_l:A,,_IF-A,,:S XAy, nx, A, FBC
Xpidy x4, - B.C )

With one application of (start) we find that T'x,:4,. By induction hypothesis
Fln—1Fx,:4, for all i < n—1, so with one application of (weakening): "}~ x,: 4,
forall i n—1. il

Lemma 17 (Substitution)
For T, and Ty, y: A, ¥, e Context(), A, B, C,DeTerm({), ye VAR

I,y 4, B:C&T, D4
=Ty, Tly:= D]t B{y:= D]: (y:= D).

Proof. By induction on the length of the derivation of ', y: 4, T, I~ B: C, assuming
that ', = D: 4. We distinguish cases according to the last applied inference rule. If
this rule is (start) or (weakening), we distinguish subcases T', = ¢ and I', # &5,

If the last rule is (TT-rule}, (A-rule} or {conversion), or I', + ¢ and the last rule is
(start) or (weakening), then the statement follows immediately from the induction
hypothesis and an application of the rule.

If the last rule is (start) and T, = (J, then B=y and C= 4. Now y[y:=D]=D
and 4fy:= D] = 4, so we are done by the assumption I, - D: 4,
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If the last rule is {weakening) and I, = 4, then

IAd:s T,-B:C
I,y A=8:C

Now y¢FV(B:C), so Bly:= Dl = B and C[y:= D] = C, and we arc done.
If the last rule is {application), then B= B, B,, C = (,[x:= B,] and
ULyt A. T, B 11x:C,.C, T,y:4,T,By:C
I,y AT, B B,:Clxi= B,) )

Now by induction hypothesis and (application)
I, Tylyi= D= B, Byly:= D]: Cy[y:= D)[x:= Byfy:= D]}

We may assume that x¢ FI(T, 31 4,T,), so x %y and x¢ FV(D). It follows that
Cly:= Dlix:= B,[y:= D]l = C,[x:= B,][y:= D], and we are done. []

Lemma 18 (Thinning)
For 1,1V e Context((), B, Ce Term(()

I'=B:C&I'cI”
=1"FB:C.

Proof. By induction on the length of the derivation of I B: C, distinguishing cases
according to the last applied rule.

If '+ B:C is an axiom or the last rule was (start), we are done by lemma 2.16. If
the last rule is (weakening), we are done by the induction hypothesis. If the last rule
is (application) or (conversion), the statement follows from the induction hypothesis
and an application of the rule.

The argument for the cases when the last rule is (IT-rule) or (A-rule) is similar. We
treat the case for (II-rule).

LetT" 2T, B=1Ix:B,.8,, C=s, and

=85, I,x:B - B,:s,
P 1ix:B,.B,:s )

Then we may assume that x¢dom(I™), By induction hypothesis I B,:s,, so
I, x: B, € Contexi({). I, x: B, =2 T, x: B, so by induction hypothesis I'", x: B, - B, . 5,.
With one application of (If-rule) I"+Iix: B, . B,:s. {1

Lemma 19 (Stripping)
For T'=x1A,, ..., x,: A, & Contextl), M, N, P, Re Term(k)

(i) I't~¢:R, with ce Cons= 3¢’ e Cons.[R = ¢’ & ¢:c’ e Axiom),

(i) I'-x:R, withxeVar = i< ndseSorr.[| x=xVar* &
R=4,&

Tli—1+4,7),
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(i) I'HTIIx:M.N:R =T+M:s5 &
I,xiM—N:s, &
R =g,
for sone (5, 5,,5,) € RULE,
(iv) THAx:M.N:R =T+ M:s5 &

T,x:MbEB:s, &
I, x:Mt-N:B &
F=Ix:M.Bis, &

R=1Ix:M.B,

for some {5y, 5,,5,)€ RULE, Be Term(L},
("} 'EMN:R =T'+MIlx:A.B &

I'—N:A4 &

R = B[x:=N],

for some A, Be Term((), xe V4R,
(vi} Y+ P:R = Ice Cons.[R=c V '+ Ric & ce SORT).

Proof ()—(v). Let A:(I' P:R)in one of the first five cases above. When we follow
the trace of A, we only pass applications of (weakening) and {conversion), which do
not change the term P, until we hit upon a rule by which the term P is introduced. In
case (i) this is an axiom, in case (ii} this is (start), in case (iii) the (IT-rule), in case (iv)
the (h-rule), and in case (¥) the (application). In all cases, the conclusion of the rule
is T P: R, with T < T and R’ = R. The proof of the five cases above now follows
immediately by taking a look at the rule by which P is introduced, thinning the
context I to T and converting R’ to R. '

Proof (vi). By induction on the structure of P. Foltowing the trace up in the tree
A:{T+ P: R), we only pass applications of (weakening) until we hit upon (conversion),
or the rule by which P is introduced. In the first case we conclude that T'H R:s, for
some s& SorT, and we are done. In the second case we distinguish subcases according
to the structure of P (cases (i)-(v) above).

If P=ceCons, P=xeVar, P=IIx:M.Nor P= Ax:M.N, it is immediately
clear that R = ¢’ for some ¢’ € Cons or I’ R:s for some s&€SORT.

If P= MN, then R= Cy[x:=N], T-M:IIx:C,.C, and T+ N:C, for cextain
C,, C,. Applying the induction hypothesis to I'+ M:1Ix: C,. C, and case (iti}, we find
that I, x: C; b Cy 5. With the substitution lemma we obtain ' Clx:= Nlis,. O

Lemma 20 (Pernmitation)
For Ty and T, x:4,y:D,1',€ Context(D), B, Ce Term(L)
x4,y DT, -BC&
I EDis=>T,y:D,x:id,T,=B:C

Proof. Remark that T'y,y:D is a legal context and so, by I'y - A4:s" and thinning,
T,y:D,x:4 is a legal context too. If I', = z,: E,, ...,z,: E,, we may conclude that
Iy, y:D,x: A+ E,:s" for some sort 57, and so Ty, y: D, x: 4, z,: E, is legal. Proceeding
in this way for all i <n, we find that Iy, y:D,x:4,T, is a legal context. Using
thinning one concludes that [y, y:D,x:4, T B:C. 1
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Lemma 21 {Terms)
MeTerm(L)y<MeCong v Ar3C.T'—M:C.

Progf. According to the definition of Term((),
MeTerm)=3TaC =M. Cv THC M)

If T C: M, we find with the stripping lemma 19 (vi) that M=ceConsor'l-M:s
with seSorT < Cons. [

Lemma 22 (Subject reduction)
For T',T" e Context{l}, B, B, Ce Term(l) and '+ 8B.C

() B-»B =>T+E:C,
(i) T»T" =TI B:C.

Proof. By simultaneous induction on the length of the derivation of I't—=58:C,
distinguishing cases according to the fast applied inference rule. We prove the lemma
for one step reductions, so B> 8 or I'>1",

Proof of (i). If the last rule is (start), there is no redex in B.

If the last rule is (weakening), (conversion), (II-rule) or (A-rule), we are done by the
induction hypothesis. (For (IT-rule) and (A-rule), use also the induction hypothesis on
(i).)

If the last rule is {application), we distinguish subcases B = B, B, B B, = B’ (the
reduction taking place inside B, or B,), and B= (hx:4,.4,) B+ 4,[x:= B, = 8"
We treat the last case. Let B = (Ax:A,.4,) B, A,fx:= B,] and

DEdxidy Ay 1xiC . €y T BCy
T (Axi 4, Ag) By Colx:= By

Apply the stripping lemma to THAx: 4.4, Tx: C,. C,i5 to find

4,5 (1)
T,x:4, - A,:C;, forsome C;, =C, (2
I'x:C -Gy, 3
and A, =C,.
Further we have T+8,:C; {4

A'pplying {conversion) to (1) and (4), we find that
" ' Tk B, A, )
With the substitution lemma we conclude from (2) and (5) that
Ik 4fx:= B,]: Cyx:= B,). (6)
Again with the substitution lemma we conclude from (3) and (4) that

I'=C,[x:= B)]:s,
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and to (6) and (7) one can apply {conversion) to obtain I' = A4,[x:= B,]: C,fx:= B,],
which was to be proved.

Proof of (if). If the last rule is (II-rule), {h-rule), (application) or (conversion), we are
immediaftely done by induction hypothesis,

If the last rule is (start) or (weakening), we distinguish cases according to whether
or not the reduction took place in the last declaration of the context, If this is noft so,
we are done by induction hypothesis. If the reduction did take place id the last
declaration of the context, apply the induction hypothesis on (i) and (conversion) (in
case (start) was the last rule) and we are done. {7

Corollary 23
For I'e Context(l), B, C, C"' e Term(T)

I'-8:C&C»C'=1"B:C".

Proof. This follows immediately from stripping (vi}, applying subject reduction to the
term C and (conversion). [

Lemma 24 (Uniqueness of assignment for functional GTSs)
Let € be a functional GTS. For I'e Context((), B, C, C’ & Term(()

I'-B:C&THB:.C'=C=10C".

Proof. By induction on the structure of the pseudotermt B, As the proof is easy, we
only treat one case, for B =Ax:B,. B, Then, I, x:B,FB,:C, and ', x: B, - B,: C,
for some terms C, and C, and C=1IIx:B,.C,, C' =IIx:8,.C;. By induction
hypothesis C; = C,. Hence C=1IIx:8,.C,=C". [

Lemmma 25 {Strengthening modulo reduction for functional GTSs)
For T, x: 4, T'ye Contex(l), B, Ce Term(l)

I, x:4,T, b B:C, x¢ FY(T,) U FV(B)
=3C"e Term(y).[C-» C’ & T, T, - B:C1].

Progf. By induction on the length of the derivation of I'j,x:A4,T,.HB:C,
distinguishing cases according fo the last applied rule,

If the last rule is (start) or (TI-rule), we are done by the induction hypothesis and
one application of the rule.

If the last rule is (weakening), we are done by the induction hypothesis (distinguish
between I'y = F and ', & (3.) '

If the last rule is (conversion), we are done by induction hypothesis, Church-Rosser
property and Corollary 23.

If B=2Xz:B,.B,, C=11z:8,.C, and the last applied rule is (A-rule), then
ToxA, T, Bis, and I',x:4,T,,2:8, F58,:C,:s,, By induction hypothesis
I, T, By:5, and T}, Ty, 2: B, - B,: C, for some C; with C,—» C,.

Now, I'},T,,2: B, (38, (By siripping (vi): C; = ce Cons and C;:s, is an axiom
or T,y z: B Chis5eSoRT and 5 =5, by uniqueness of assignment.) With one




166 Herman Geuvers and Mark-Jon Nederhof

application of (A-rule), we conclude that T',I',}-Az:B,.B,:IIz: B,.C;, where
C-»T1z2:B,.C,.

If B=B,8, C=C,)Jx:=B,], and the last applied rule is (application), then
[x:d, T B 11z:C,.Cy and Ty, x:4,T,+B,:C,. By induction hypothesis
I, B,:1z:C.C, and ', T, B,:Cy, for some C;,Cy,C, with C,—»Cj,
C,-» €] and C,— C;. Take Cy such that C;—» Cy and C,-» €Y. With Corollary
23 and (application), we find I'}, T, B, B,: Cilx: = B,] with C— Cj[x:= B,].

Corollary 26 (Strengthening for functional GTSs)
Let € be a functionaf G1S. For I, x: A, I';e Context(L), B, Ce Term(l)

T, x4, Ty B:C, x¢ FV(T,) U F¥(B:C)
=TT, B:C.

Proof. By Lemma 25, we know that I',, T, B: (", with C—» C'. By siripping (vi},
there are two possibilities, CeCons or I';,x: 4, T, CiseSorr. In the first case
" = C, and we are done. In the second case, I}, I, C:s by Lemma 25 so with one
application of (conversion): I',,I', = B:C. O

The idea of proving the previous corollary using Lemma 25 is due to Luo (1988),
who has used it in a proof of strong normalization for an extended calculus of
constructions.

Definition 27
Let Te Context(C), ix:B, . B,, ,x:B,.B,, B, B,e Term((}.

(i) Tx:B,.B, is formed by (s;,5,,8,) in T il
{53, 85, 8,) 6 RULE &
I'+-B,:s, &
T,x:B, 8,5,

(i) dx:B,.B, is formed by (5,,8,,8,) n I" iff

AC,, C e Term(l). (s, 5,,5,) € RULE &
I'=ax:B,.B,: 11x:C; . C, &
Hx:C,.C, is formed by (s, 55 85) in T
(itty B, B, is formed by (5,,5,,8,) in T iff
3C,, CyeTerm({). (81,5, 5,) € RULE &
I'=B:1x:C,.C, &

IIx:C,. G, is formed by (s,,58,, 85 in I,

Remark 28. By this definition, all composed terms are formed by a certain rule. For
the first two cases, this follows immediately from the stripping-femma, For the third
case, this follows from the stripping-lemma 19 (v) and (vi) and case ().

Lemma 29 (Uniqueness of formation for functional GTSs)
Let £ be a functional GTS. For I'e Context(l), Be Term(L), B composed
B formed by (sy,34,5,) in I" & B formed by (57, 55,85} in T

I R o
=8y = 8,8 = SZ,Sa = 53,
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Proof. We are done if we prove the following property. If IIx:B,. B, formed by
(8185, 85) in I, Ix:. B]. B; formed by (s, 55, 53) in T and 11x: B, . B, »Ilx:B,. B;, then
8 =5, 8, =5, and 8, = 5.

For the cases M =0Ax:B;.B, and M= B, B, the proof then follows by
the uniqueness of assignment. Namely, if I'—Ax:B,.B,:1Ix:C;.C, and
FH2xiBy By:TIx: €. Cy, rtespectively I'-B,:1Ix:C,.C, and - 8:1Ix:C;. C,
with I[Ix: C,. C, formed by (s,5,,5,) in T and Ilx: C}. C, formed by (57, 85,:55) in T,
then ITx: C;. C, = Ix: €. C;. So, take (with Church-Rosser) ITx: Cy. Cy, such that
IIx: G Cy-» IIx: €7 C; and Tx: Cy. C, —» ITx: C;. €. Then IIx: C1.C; is formed by
(51,85, 85) and (53,55, 5) in T, s0 s, = 5, 5, = 5, and 85 = 8.

The proof of the property runs as follows. Let IIx:B,. B, be formed by (s, s;,5,)
in T, TIx:B;.B, formed by (s},s5,5}) in I" and IIx:B,.B, »Mx:8,.B, Then
T't=B,:sy, I, x:Bi b Byis, and T'H By 5], T, x: By - Bt ). By subject reduction and
uniqueness of assignment s, = s} and s, =s,. So 5, =s,. [J

Lemma 30 (Classification for injective GTSs)
Let € be an injective GTS. For 5,5 ¢ SORT, s & &',

(@} s-Term(C) ns~-Term(f) = &
(i) -1 n 5-EIL) = .

Progf. The proof of (i) and (ii) is simultaneous, by induction on the structure of
pseudoterms. We only treat the induction step for variables and for terms B of the
form B, B,. For the other induction steps, the statement follows immediately from the
induction hypothesis using the injectivity propertics.

Let I'b-x:B:s and T x:B:s'. Then x:4el for certain 4 with 4 =B, and
I'i-d:s, and x:4"eI” for certain 4° with 4’ = B’ and I - A":5, (Where s, is the
sort for which xe V4r®). By Church-Rosser, subject reduction and uniqueness of
assignment s, = s and s, = 5. For ' x:5 and I x:5 the argument is similar,

Let T'HB,B,:C and I 5B, B,:C’. Then =B Hx:C . Cpisg, THB,1Ctsy,
Lox:Cib-Cyisy, and IV BTk CrL Coisy, TV B,:Clisl, Ix:CiHCs;, for
certain terms Cy, Cy, C, C; and {s,, 5, 55), (57, 85, 55) € RULE with C[x = B,] = C and
Cilxi=B]=C".

By induction hypothesis 5, = 57, 5; = 5 and so s, = 4,

By substitution I't- Cy[x:= B,):s, and I - Cjfx:= B,]:5,.

If now I't=Cis and I C":5, then by Church-Rosser, subject reduction and
uniqueness of assignment, s = 5, and s* = s, s0 5= &,

If C=sand C= ¢, then by subject reduction and uniqueness of assignment 5:s,
and 15, are axioms, so s=5. [

The previous lemma motivates terminologies such as ‘7 is a s- Term’, or “tis a s-Elt’.
These notions are not ambiguous in an injective GTS. That the lemma does not hold
in general for systems which are not injective is shown by the following example,
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l Example 31
Let £ be given by

SoRT = {*,#",V,V',A, A", (1},
Axion = [x:5, V1V, A1 A%,
Rurk = {(+,V,[D), (., A, O}
oe VARY, B VARY ,ye VARY , x e VAR*, fe VARD,
then £ is not injective and
o, BiA fra= B xiabfxipriA,
oV, o>y, xiabfxiy:V,
so fxeA-Eif({) and fxeV-EI(t).
Corollary 32 (Unigueness of formation for injective G'T'Ss)
Let { be an injective GTS. For T,T" e Context((), M e Term{(), M composed
M formed by (s,,5,,8,) in T & M formed by (51,85, 55) in 1”7
=8 = 8,8, = 8,8 = 8

Proaf. Usiﬂg the classification lemma for injective {, the proof runs just like the proof
of the uniqueness of formation lemma for functional £, 7]

This corollary allows us to use the terminology ‘formed by’ without mentioning the
context I', in case of an injective GTS. That the corollary is not true for just functional
(T8 is shown by the following example.

Example 33
Let the system { be given by
SORT = {5}, §3, 5%, S1},
AXIOM = {8,185y, 5583, 53 53},
RULE = {31, 53, 8), (5155, $3)},
V,2€ VAR, x e VAR™,
‘Then Mx:y.z is formed by (5,,5,,5,) in the context y:s,,z:5,,

Mx:y.z is formed by (s,,55,55) in the context y:s5,,z:5;.

3 Barendregt’s cube of typed lambda calculi

Barendregt’s cube consists of a coherent collection of eight type systems, each one
corresponding with a vertex of a cube such that there is an inclusion relation along
the edges of the cube. The systems of the cube will be defined by giving for each of




