
Inverting Inductively De�ned Relations in LEGOConor McBrideDepartment of Computer ScienceUniversity of Edinburgh1 IntroductionInverting an inductively de�ned relation essentially consists of observing thatany of its inhabitants must be derivable by at least one of its inference rules.For example, let us de�ne � inductively by the rules�zzero � n m � n �ssucm � suc nNow suppose we have the hypothesis, x � zero. Inverting, we see that, sincezero cannot equal suc n, only rule �z could have yielded this conclusion, thuswe deduce that x = zero. Likewise, if we have suc x � y, inversion shows thatonly rule �s could have applied, hence y = sucz for some z and, moreover x � z.In essence, inverting a hypothesis gives us its `predecessor' premises with re-spect to each rule, constrained by equations which reect the validity of the ruleinstance.The notion of `inversion' has a history in logic [Pra65]. It is analogous to Clark'snotion of the `completion' of a logic program, used to give a semantics of `neg-ation as failure' [Cla78], and also bears considerable resemblance to the idea of`de�nitional reection' given by Halln�as in [Hal91]. Given a hypothesis, we maygain useful information by asking how it can have come to be true|it is thisnatural mode of reasoning which inversion captures.An inversion principle corresponds to case analysis on a derivation, rather thanthe full recursion inherent in an induction principle. Although it reduces a knowninhabitant of the relation to the premises from which it follows, it provides no in-ductive hypotheses for those premises. However, as Burstall observes in [Bur96],an inversion is often all that is necessary to complete a proof by induction over arelated structure. Indeed, rule induction for � can be derived from its inversionprinciple by induction over the natural numbers.The impetus behind our work is the inversion facility in the Coq system [Coq],originally implemented by Murthy, with subsequent elaboration by Cornes and

Terrasse [CT95]. Our approach di�ers from theirs in that it is centred on uni�c-ation. For a given hypothesis to follow from a particular rule, it must unify withthat rule's conclusion, and the premises, instantiated by the uni�er, must hold.Where the Coq package proves particular inversion lemmas for particular hy-potheses, we prove a generic lemma for each inductively de�ned relation, in-ternalising the uni�cation problems as systems of equations. We then supply atactic which solves a certain class of �rst-order uni�cation problems|this canbe applied uniformly to the subgoals generated by an inversion.We believe that this approach yields a clearer presentation of inversion which isrelatively simple to implement. We shall also see that it solves a larger class ofproblems.2 Generic Inversion LemmasIn general, an inductively de�ned relation R~t, where ~t is a sequence of paramet-ers, may be given by a set of inference rules like so:~P1[~x1] rule1R~t1[~x1] : : : ~Pn[~xn] rulenR~tn[~xn]where ~Pi is a sequence of premises (perhaps involving R) and the ~xi are theschematic variables for rulei.LEGO's Inductive command [Pol94] allows such relations to be representedas Dybjer-style inductive families of types [Dyb91], provided they fall withinthe positivity restrictions given by Luo in [Luo94]. The induction principle andreductions corresponding to the rules are then generated in accordance withLuo's characterisation and added as assumptions to the local context.The generic inversion lemma which we shall use is as follows:R~s 8~x1: ~s = ~t1[~x1]! ~P1[~x1]! �...8~xn: ~s = ~tn[~xn]! ~Pn[~xn]! �� (y)This should be recognisable, via currying of the higher order de�nition of dis-junction, as the Clark-style completion lemma:8~s: R ~s! Wni=1 9~xi: (~s = ~ti ^ ~Pi[~xi])

Provided the equations are well-typed, we can generate this lemma as a type inLEGO and prove it by an easy induction on the derivation of R~s. The inductivecase for rulei instantiates ~s to ~ti[~xi] and supplies the ~Pi[~xi] as hypotheses, so thecorresponding premise of the inversion lemma can be applied to prove �.Observe that the e�ect of applying this lemma to an instance R~s of the familyR is to replace a goal � by a bunch of subgoals, one for each rulei, like so:8~xi: ~s = ~ti[~xi]! ~Pi[~xi]! �The ~s = ~ti[~xi] conditions capture the requirement that our hypothesis uni�eswith the conclusion of rulei, while the ~Pi[~xi] conditions force the rule's premisesto hold. If there is no uni�er, then the subgoal is vacuous. If we can establish amost general uni�er, �, then the subgoal reduces to� ~Pi[~xi]! ��In this light, our inversion lemma bears a strong resemblance to Tamaki andSato's unfold transformations for logic programs [TS84] and Eriksson's proposedrule of de�nitional reection [Eri91]:f��; �C ` �A : � = mgu(a; b) for de�nition b(Cg�; a ` AThe crucial distinction is that the uni�cation in our treatment is at the objectlevel. In systems such as ALF [Mag95], where the type theory is strengthenedby pattern matching, inversion comes for free.The inversion facility added to LEGO establishes the generic lemma (y) for eachR once and for all at the time R is de�ned. Reducing the subgoals generatedfor speci�c R-hypotheses then depends on our ability to solve the uni�cationproblems they contain.The current implementation is limited by the requirement that the equationsrepresenting the uni�cation problems be well-typed. This can fail to be the casewhen there is type dependency between parameters of the relation. For example,a relation R : �t : SET: (list t)! Prop would give rise to equationss = t! ls = lt! : : :where ls has type (list s) but lt has type (list t). Inversion principles are notautomatically generated in these cases. Similar problems can arise in expressingthe injectivity of datatype constructors (see section 4.4).

3 First-Order Uni�cation for Constructor FormsIn their survey of rule-based uni�cation, [JK91], Jouannaud and Kirchner give a�rst-order uni�cation algorithm, `Tree-Unify', which is complete for what theycall `constructor forms'. We have adapted it for inductive datatypes in LEGO. Apartial implementation of Tree-Unify is the basis of a tactic speci�cally intendedto simplify the subgoals generated by inversion.Given variables X, we de�ne the constructor forms T of an inductive datatypewith constructors C recursively as follows:T ::=X j C T1 : : : TnNow, motivated by the structure of subgoals left by inversion, let us represent auni�cation problem by a sequence of equational premises in a goal:s1 = ti1 ! : : :! sj = tij ! �We present the algorithm Tree-Unify in a re�nement style. The backwards-directed transition rules in �gure 1 are applied repeatedly until either the goalis proved or no equations remain. The leading equation, s = t determines whichrule is appropriate at each step in a syntax-directed way. Figure 2 tabulates thischoice according to the form of s (ranging vertically) and t (ranging horizont-ally).For example, if we have the equation x = y for distinct variables x and y, thencoalescence is chosen, removing the superuous variable; if the two sides havedistinct outermost constructors c and c0, then conict applies, proving the goal.It is easily shown that each transition preserves the constructor form propertyof these uni�cation problems.

deletion �x = x! �coalescence [y 7! x]� x; y distincty = x! �conict c 6= c0c ~s = c0 ~t! �injectivity ~s = ~t! �c ~s = c ~t! �checking x 2 FV(~s)c ~s = x! �elimination [x 7! c ~s]� x 62 FV(~s)c ~s = x! �Fig. 1. Transition rules for Tree-Unifys = t t is x (x 6= y) t is c ~t t is c0 ~ts is x deletion applys is y coalescence symmetryif x 2 FV(~s)s is c ~s then checking injectivity conict(c 6= c0) else eliminationFig. 2. Tree-Unify is syntax directed by leading equation s = tTheorem1. Tree-Unify terminates.Proof. Examining the behaviour of the transitions, we �nd that conict andchecking cause termination directly.Further, the side-condition on elimination ensures that both it and coales-cence strictly reduce the number of distinct variables remaining in the problem.The deletion and injectivity rules each reduce the total size of the terms in theproblem,where the size of a term is simply the total number of variable referencesand constructor applications therein. Neither rule introduces new variables.Hence termination follows by a lexicographic induction on the number of distinctvariables in the problem, then the total size of the problem. 2

The soundness of any implementation of Tree-Unify is ultimately guaranteedby the requirement that the synthesised proofs should typecheck. Nonetheless,it seems appropriate to make an informal argument for the soundness of thealgorithm. We postpone discussion of the implementation di�culties until thenext section.Theorem2. Tree-Unify is sound.Proof. We examine each transition rule.deletion is trivial. coalescence and elimination follow from the substitutivityof equality.conict holds because the equation c~s = c0~t fails to have the Leibnitz property|by case analysis, we can check that c ~s has c as its head, while c0 ~t does not.injectivity is essentially the observation that equality is preserved by the ap-plication of the `predecessor' functions which map c ~t to each ti. (There is apractical problem constructing these `predecessor' functions in the presence ofdependently-typed arguments, as we shall see in section 4.4.)This leaves checking. For any inductive datatype, we can de�ne the strict sub-term ordering < and show by induction that s < t! s 6= t. If x 2 FV (~s) thenx is a strict subterm of c ~s, hence the hypothesis c ~s = x is absurd. 2We turn now to the question of completeness.Theorem3. Given goal,s1 = t1 ! : : :! sj = tj ! �with si, ti in constructor form, Tree-Unify will either prove the goal or reduce itto �� where � is a most general uni�er for the initial j equations.Proof. We have seen that if the head equation is in constructor form, thereis always exactly one transition rule applicable, and that the transition rulespreserve the constructor form property of the problem. Since Tree-Unify alwaysterminates, it must either prove the goal or remove the leading j equations,applying a sequence of substitutions � to the remainder of the goal. It remains,therefore, to show that this � is a most general uni�er for those equations.We shall make an argument by induction over the sequence of transition rulesapplied.If Tree-Unify applies no transition rules, then there must be no constructor formequations|the identity substitution is trivially a most general uni�er for theempty problem.

Now we must check that each transition rule preserves this completeness prop-erty. For conict and checking there is nothing to prove, whilst for deletionand injectivity, the requirement is trivial.Both coalescence and elimination may be treated as instances of[x 7! s]� x 62 FV (s)s = x! �Suppose, inductively, that the substitution sequence � generated for [x 7! s]� isa most general uni�er for that problem.We must show that � � [x 7! s] is a most general uni�er for s = x! �.By hypothesis, � uni�es [x 7! s]�, so � � [x 7! s] certainly uni�es �. Clearly, italso uni�es x with s. Hence � � [x 7! s] is certainly a uni�er for s = x! �.Now suppose some � uni�es s = x ! �. Necessarily, � = � � [x 7! s]. Hence, �uni�es [x 7! s]�.Again, our inductive hypothesis tells us that, since � is a most general uni�erfor [x 7! s]�, � = � � � for some � .Hence � = � � [x 7! s] = � � � � [x 7! s].Hence � � [x 7! s] is a most general uni�er for s = x! � as required. 24 Qnify: A Partial Implementation of Tree-UnifyThe previous section exhibited the uni�cation algorithm Tree-Unify and some ofits properties. In this section, we examine its implementation as the new LEGOtactic, Qnify1, and point out some of the pragmatic issues and di�culties whicharose in this task.The representation of a uni�cation problem as a goal with equational premisesenables a very simple implementation which makes considerable use of exist-ing data structures and tactics (see [LEGO]). The state of the problem is justthe goal itself, viewed as a stack of equations. The transition rules correspondto re�nement tactics executed according to a simple syntactic analysis of thehead equation. The current implementation performs no reduction on termsand hence fails to detect expressions which convert to constructor applications,although the user can force this computation explicitly beforehand|the possib-ility of introducing some weak head normalisation into the mechanism is underinvestigation.1 pronounced `kunify' to emphasise it is a uni�cation tactic, and named after thesubstitution tactic Qrepl, on which it heavily relies

Qnify handles equations not susceptible to any of the transition rules by intro-ducing them into the context and proceeding with the remainder of the problem.Qnify will introduce non-equational premises in the same way, in order to gainaccess to an equation further down the goal.4.1 deletionWe remove the initial x = x from the goal, simply by introducing it into thecontext.4.2 coalescenceGiven an initial y = x premise, we introduce it to the context and use theexisting Qrepl tactic to substitute one variable for the other in the remainderof the goal.This begs the pragmatic question of which way round to make the substitution.A generic inversion lemma will often introduce variables which are not requiredfor some applications, and our tactic is geared to eliminate them. We achievethis by choosing to substitute for the variable which has smaller scope. Theremaining variable, being `more global', tends to be more useful.4.3 conictIn their treatment of inversion [CT95], Cornes and Terrasse show us how toprove equations c ~s = c0 ~t absurd using the computational power of the calculusand the substitutive property of equality.For each constructor c of each inductive type T , we construct a discriminatorfunction T is c : T ! Prop which returns > for any c ~s and ? otherwise.If c0 is any other constructor, we then havec ~s = c0 ~t > equivT is c (c ~s) =substT is c (c0 ~t) equiv?If requested, LEGO will generate the discriminator functions at declaration timefor any simple inductive datatype. Qnify will then deploy them in conictproofs.

4.4 injectivityAgain, our attempts to prove constructors injective follow the same pattern asthose of Cornes and Terrasse, and have the same successes and failures.If we can de�ne a batch of suitable predecessor functions c predi which returnti given c~t and a suitably typed dummy value otherwise, then the correspondinginjectivity proof is given byc ~s = c ~t =reflsi = si equivsi = c predi (c ~s) =substsi = c predi (c ~t) equivsi = tiHowever, the choice of dummy value is not always straightforward. For simpleinductive datatypes, any element will do. If we construct the predecessor func-tions locally to the injectivity theorem, we can simply use the hypothetical siitself. For inductive families, the dummy values required may vary in type, andare frequently far from obvious. Hence injectivity theorems are only generatedfor simple inductive datatypes.As with inversion principles, type dependency between the arguments of a con-structor may prevent injected equalities from typechecking. For example, if con-structor c has type �n : nat: (vect n)! T , then c m u = c n v gives rise to theill-typed injected equality u = v. At present, our implementation detects thisproblem and does not attempt to prove injectivity for such constructors, issuinga warning, but allowing the rest of the de�nition to go through.4.5 checkingGiven an equation x = t, substituting [x 7! t] without checking that x 62 FV(t)runs the risk of in�nite regress. However, automating the proof of the checkingrule is far from easy. Qnify responds to such cases by warning the user, makingno substitution and deleting the o�ending equation from the problem.The strict subterm ordering argument presented in the previous section wouldrequire the automatic generation of much extra equipment for each inductivedatatype. Such facilities would be of bene�t to users in a wide variety of applic-ations, but the task is large and has not been done.In the mean time, a more speci�c technique for automating the disproof ofc ~s[x] = x (arising from conversations with Andrew Adams) is to select one

occurrence of x within ~s[x] and construct the recursive function f (given here inML style):fun f c ~s[x] = suc (f x)| f = zeroApplying f to both sides of the o�ending equation, we getsuc (f x) = f xWe need merely have proved in advance that 8n:sucn 6= n and the result followsat once.This technique should be implementable easily in Coq, where pattern-matchingde�nition and �xpoint recursion are both supported [Cor96, Gim94], allowingthe function to be represented directly at the object level, whatever its depth ofrecursion. LEGO provides only one-step elimination rules for its inductive data-types, requiring f to be `compiled' into primitive recursive form.An experimentalimplementation of this procedure is in progress at time of writing.4.6 eliminationGiven an equation x = t, and having checked that x 62 FV(t), Qnify uses Qreplto substitute [x 7! t].Qnify does not check that t is in constructor form. However, the occurrencecheck is su�cient to guarantee termination.5 Examples and Comparative StudyIn this section, we consider three example inversion proofs which show the powerof our treatment and also help to justify some of the pragmatic choices madein the implementation. We will also examine similar facilities in other theorem-proving systems.Our presentation follows the convention of labelling assumptions in the contextwith identi�ers and outstanding proof obligations with ? symbols.

5.1 Induction and Inversion for �This simple example shows a proof by natural number induction and � inversion,where perhaps one might have expected rule induction. We shall prove? : 8x: suc x � x �! ?As we have already remarked, rule induction on the � premise is not required.Induction on x and inversion of � is su�cient.For the case x = zero, inverting the hypothesis suczero � zero yields subgoalswhich zero with a successor. Qnify proves both of these:? : 8n: suc zero = zero �! zero = n �! ?? : 8m: suc zero = sucm �! 8n: zero = suc n �! m � n �! ?Observe how the implementation has placed the equations as far left as theirdependencies permits. LEGO does not distinguish between `schematic variables'like m and n here, and `premises' like m � n. They are merely arguments toa dependently typed constructor function. It seems desirable to position theequations so that Qnify applies its substitutions as widely as possible, as weshall see when establishing the inductive step:x ih : suc x � x �! ?? : suc (suc x) � suc x �! ?The interesting case of the inversion is then? : 8m: suc (suc x) = sucm �! 8n: suc x = suc n �! m � n �! ?Qnify applies injectivity and substitutes [m 7! suc x] and [n 7! x]. Note thatthe positioning of the equations ensures that these apply to the m � n premise,and that it is better to keep x, which occurs in the inductive hypothesis, than nwhich is local to the inversion. The simpli�ed subgoal follows immediately:? : suc x � x �! ?5.2 The Advantage of Uni�cationCoq's inversion facilities (see [CT95]) prove speci�c inversion lemmas for speci�chypotheses. Where our generic lemma has a case for each inference rule, Coq

will simplify and possibly eliminate these cases from a given lemma by applyingconstructor conict and injectivity results. However, by performing substitutionsteps within the equational problem, we capitalise on the power of uni�cationwhere Coq does not.Consider the datatype of unlabelled binary trees:leaf : tree s; t : treenode s t : treeThe reexive relation, refl, on this datatype can be represented as an induct-ively de�ned relation with inference rule:refl t tThe corresponding inversion principle encapsulates the idea that the two ar-guments of any inhabitant of this relation must unify. Our approach addressesthis question where mere appeals to constructor conict and injectivity do not.Similarly, repeated instances of the same schematic variable must correspond toterms which unify.The proof of the following goal shows how our facility addresses both of theseissues:? : 8x: refl (node x leaf) (node (node leaf leaf) x) �! ?Inverting the refl premise gives us? : 8t: (node x leaf) = t �! (node (node leaf leaf) x) = t �! ?Qnify applies elimination(node (node leaf leaf) x) = (node x leaf) �! ?then injectivity,(node leaf leaf) = x �! x = leaf �! ?then elimination,(node leaf leaf) = leaf �! ?

and �nally proves the goal by conict.At present, the `Inversion' tactic in Coq does not attempt to unify the twoinstantiations of x, and hence stops short of proving this goal. The extra stepscould easily be done by hand or by a user-supplied tactic. It should not be di�cultto adapt Coq's inversion package to the same range of problems addressed byQnify.5.3 Proving an Operational Semantics DeterministicIn this example, we sketch the proof that the operational semantics for a simple`while' language is deterministic. This example is partly motivated by the similarexample given by Camilleri and Melham for their inductive relation package inthe HOL system [HOL, CM92].A command C executed in state s yields state t (denoted s < C > t) accordingto the inductive de�nition given in �gure 3s < skip > ss < V := E > ([V := E]s)s < C > t t < C 0 > us < C;C 0 > us < C 0 > t B s = falses < ifB thenC elseC 0 > ts < C > t B s = trues < ifB thenC elseC 0 > tB s = falses < whileB doC > ts < C > t t < whileB doC > u B s = trues < whileB doC > uFig. 3. Evaluation Relation for a Simple Imperative LanguageOur goal is to show this semantics deterministic, ie:

? : 8C: 8s; t: 8H : s < C > t: 8u: 8H 0 : s < C > u: t = uThe proof proceeds by induction on H and inversion of H 0. We may use the newfeatures of LEGO to express this plan as a composite tactic, also adding hintsto dispose of the trivial cases:Lego> Induction H Then intros Then Invert H' Then QnifyThen (Refine Eq refl Else Immed);Qnify eliminates the bulk of the uninteresting cases by conict|those where Hand H0 take di�erent values of C. Reexivity of equality is enough for both skipand :=, whilst the Immed catches the trivial inductions|again, the pragmaticpositioning of equalities in the inversion lemma and the substitution of oldervariables for newer ones reduces a number of cases directly to their inductivehypotheses.The only cases which require user intervention are:{ sequential composition and while with B s = trueThese both have two inductive hypotheses, corresponding to two phases ofexecution. Using the �rst inductive hypothesis, the intermediate states res-ulting from the two executions of C are shown to be the same. Having madethis substitution explicitly, the second inductive hypothesis then completesthe result.{ if and while with B s = true = falseBs cannot be true inH and false inH0 or vice versa. However, Bs is not inconstructor form, so the user must assist in these four cases. A substitutiongives true = false, and Qnify �nishes the conict proof.Camilleri and Melham give the full HOL90 source for their treatment of thisoperational semantics athttp://www.dcs.glasgow.ac.uk/ tfm/ftp2.htmlTheir package, as detailed in [CM92], enables the de�nition of the evaluation andthe automatic derivation of theorems corresponding to the induction and inver-sion principles generated by LEGO. Other tactics automatically prove conictand injectivity properties for the constructors of the language syntax.However, they provide nothing akin to Qnify which simpli�es inversion subgoalsby attacking the uni�cation problems they contain. Progress from the inversion

is largely ad hoc, although HOL users have at their disposal a large library ofrewriting tactics and the full power of ML for programming with them.The proof of determinacy is built from the bottom up. Firstly, the inversionprinciple `ecases', the conict theorems `distinct' and the injectivity theorems`const11' are combined into a tactic similar to the uni�cation-free inversiontactic in Coq.val SIMPLIFY = REWRITE_RULE (distinct :: const11);val CASE_TAC = DISCH_THEN(STRIP_ASSUME_TAC oSIMPLIFY oONCE_REWRITE_RULE[ecases]);Next, CASE TAC is used to build a speci�c inversion lemma for each inferencerule of the evaluation relation. Here is the derivation for skip:val SKIP_THM = store_thm("SKIP_THM",(--`!s1 s2. EVAL skip s1 s2 = (s1 = s2)`--),REPEAT GEN_TAC THEN EQ_TAC THENL[CASE_TAC THEN ASM_REWRITE_TAC [],DISCH_THEN SUBST1_TAC THEN MAP_FIRST RULE_TAC rules]);Finally, these lemmas are used in the induction itself:val DETERMINISTIC = store_thm ("DETERMINISTIC",(--`!C st1 st2. EVAL C st1 st2 ==>!st3. EVAL C st1 st3 ==> (st2 = st3)`--),RULE_INDUCT_TAC THEN REPEAT GEN_TAC THENL[REWRITE_TAC [SKIP_THM],REWRITE_TAC [ASSIGN_THM],PURE_ONCE_REWRITE_TAC [SEQ_THM] THEN STRIP_TAC THENFIRST_ASSUM MATCH_MP_TAC THENRES_TAC THEN ASM_REWRITE_TAC [],IMP_RES_TAC IF_T_THM THEN ASM_REWRITE_TAC [],IMP_RES_TAC IF_F_THM THEN ASM_REWRITE_TAC [],IMP_RES_TAC WHILE_F_THM THEN ASM_REWRITE_TAC [],IMP_RES_THEN(fn th => PURE_ONCE_REWRITE_TAC [th]) WHILE_T_THM THENSTRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THENRES_TAC THEN ASM_REWRITE_TAC []]);

Although it is perhaps a little unfair to compare the raw ML of HOL with thecleaner interfaces of LEGO or Coq, it seems clear from this example that theuni�cation and rewriting preformed by the single LEGO tactic Qnify capturesa wide variety of cases which must be addressed individually and by hand inHOL.6 Conclusions and Further WorkThis work owes a considerable debt to that of Cornes and Terrasse in Coq([CT95]). Our formulation and proof of generic inversion principles follow theirs,as do our constructor conict and injectivity results.However, the insight`inversion = predecessor premises + equational constraints'has led us to a treatment which is intuitive, easy to implement and highly e�ect-ive in practice. We analyse the equational information separately via the uni-�cation algorithm described in this paper. Its speci�cation is clear, it is soundand complete with respect to constructor forms and the tactic Qnify, to whichit gives rise, has proved independently useful.For example, recent work extends the inversion facility to cover full inductionon the derivation of a relation. A goal of form? : 8~x: R~t[~x] �! �is �rst rewritten? : 8~y: R ~y �! 8~x: ~y = ~t[~x] �! �so that the induction principle generated for R is applicable. The equationsintroduced are ripe for simpli�cation with Qnify.This new Induction tactic deals with the problem of type dependency withinparameters yielding ill-typed equations by packaging the related parameters intuples which share the same �-type. A similar repair could be made to bothinversion and injectivity theorems, extending the class of de�nition for whichthey can be generated.It would seem both worthwhile and tractable to extend all of these new facilitiesto encompass mutual inductive de�nitions. This work may be carried out in thenear future.

At present, work is in progress implementing checking proofs. The compilationof the necessary functions does appear both systematic and tractable, withoutrecourse to �xpoints.All the new facilities described in this paper, together with documentation de-scribing their usage is available on the web athttp://www.dcs.ed.ac.uk/home/lego/html/alpha/Acknowledgements The author would like to thank Cristina Cornes for providingthe model for this work and much useful advice. Much gratitude is due also toRod Burstall, James McKinna and Alan Smaill for their patience, guidance andsupport.References[Bur96] R. M. Burstall. Inductively De�ned Relations: A Brief Tutorial. ExtendedAbstract. In Haveraan, M., and Owe, O., and Dahl, O.-J., editors, RecentTrends in Data Types Speci�cation. Springer LNCS 1130, pp14{17. 1996.[CM92] J. Camilleri and T. Melham. Reasoning with Inductively De�ned Relations inthe HOLTheorem Prover. Technical Report No. 265 University of CambridgeComputer Laboratory. 1992.[Cla78] K. Clark. Negation as Failure. pp293-322 of Logic and Data Bases, editedby H. Gallaire and J. Minker. Plenum Press. 1978.[Coq] C. Cornes, J. Courant, J.F. Fillâ�tre, G. Huet, C. Murthy, C. Parent, C.Paulin, B. Werner. The Coq Proof Assistant Reference Manual, Version 5.10.Projet Coq, Inria-Rocquencourt and CNRS-ENS Lyon, France.[Cor96] C. Cornes Compilation du Filtrage avec Types D�ependants dans le Syst�emeCoq. Actes de la r�eunion du pôle Sp�eci�cation et Preuves du GDR Program-mation. Orleans, Novembre 1996.[CT95] C. Cornes, D. Terrasse. Automating Inversion of Inductive Predicates in Coq.In BRA Workshop on Types for Proofs and Programs, Turin, June 1995. Toappear in LNCS series.[Eri91] L.-H. Eriksson. A �nitary version of the calculus of partial inductive de�n-itions. In: L.-H. Eriksson, L. Halln�as & P. Schroeder-Heister (editors), Ex-tensions of Logic Programming. Second International Workshop, ELP-91,Stockholm. Springer LNCS 596, pp89{134. 1992.[Dyb91] P. Dybjer. Inductive Sets and Families in Martin-L�of's Type Theory. pp280{306 of Logical Frameworks, edited by G. Huet and G. Plotkin. CUP 1991.[Gim94] E. Giminez. Codifying guarded de�nitions with recursive schemes. Proceed-ings of Types 94, pp39{59.[Hal91] L. Halln�as. Partial Inductive De�nitions. Theoretical Computer Science. Vol.87. pp115{142. 1991.[HOL] Introduction to HOL; A theorem proving environment for higher order logic.Edited by M.J.C. Gordon and T.F. Melham. CUP 1993.

[JK91] Jean-Pierre Jouannaud and Claude Kirchner. Solving Equations in AbstractAlgebras: A Rule-Based Survey of Uni�cation. pp257{321 of ComputationalLogic: Essays in Honor of Alan Robinson, edited by Jean-Louis Lassez andGordon Plotkin, MIT Press, 1991.[Luo94] Zhaohui Luo. Computation and Reasoning: A Type Theory for ComputerScience. OUP 1994.[LEGO] Zhaohui Luo, Randy Pollack. LEGO Proof Development System: UserManual. Technical Note, 1992.[Mag95] Lena Magnusson. The Implementation of ALF. PhD Thesis. Chalmers Uni-versity of Technology and University of G�oteborg, Sweden. January 1995.[Pau87] L. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF.Cambridge Tracts in Theoretical Computer Science 2. CUP 1987.[Pol94] Randy Pollack. Incremental Changes in LEGO: Technical Note, 1994.[Pra65] Prawitz, D. Natural Deduction: A Proof-Theoretical Study. Almqvist &Wiksell. Stockholm, 1965.[TS84] H. Tamaki, T. Sato. Unfold/Fold Transformation of Logic Programs. Pro-ceedings of Second International Logic Programming Conference. pp127{138.Uppsala, 1984.

This article was processed using the LaTEX macro package with LLNCS style

