Inverting Inductively Defined Relations in LEGO

Conor McBride

Department of Computer Science
University of Edinburgh

1 Introduction

Inverting an inductively defined relation essentially consists of observing that
any of its inhabitants must be derivable by at least one of its inference rules.

For example, let us define < inductively by the rules

m<n
<: e

- —S8
zero < n sucm < sucn

Now suppose we have the hypothesis, z < zero. Inverting, we see that, since
zero cannot equal suc n, only rule <, could have yielded this conclusion, thus
we deduce that x = zero. Likewise, if we have suc # < y, inversion shows that

only rule <; could have applied, hence y = sucz for some z and, moreover < z.

In essence, inverting a hypothesis gives us its ‘predecessor’ premises with re-
spect to each rule, constrained by equations which reflect the validity of the rule
instance.

The notion of ‘inversion’ has a history in logic [Pra65]. It is analogous to Clark’s
notion of the ‘completion’ of a logic program, used to give a semantics of ‘neg-
ation as failure’ [Cla78], and also bears considerable resemblance to the idea of
‘definitional reflection’ given by Hallnas in [Hal91]. Given a hypothesis, we may
gain useful information by asking how it can have come to be true—it is this
natural mode of reasoning which inversion captures.

An inversion principle corresponds to case analysis on a derivation, rather than
the full recursion inherent in an induction principle. Although it reduces a known
inhabitant of the relation to the premises from which it follows, it provides no in-
ductive hypotheses for those premises. However, as Burstall observes in [Bur96],
an inversion is often all that 1s necessary to complete a proof by induction over a
related structure. Indeed, rule induction for < can be derived from its inversion
principle by induction over the natural numbers.

The impetus behind our work is the inversion facility in the Coq system [Coq],
originally implemented by Murthy, with subsequent elaboration by Cornes and

Terrasse [CT95]. Our approach differs from theirs in that it is centred on unific-
ation. For a given hypothesis to follow from a particular rule, it must unify with
that rule’s conclusion, and the premises, instantiated by the unifier, must hold.

Where the Coq package proves particular inversion lemmas for particular hy-
potheses, we prove a generic lemma for each inductively defined relation, in-
ternalising the unification problems as systems of equations. We then supply a
tactic which solves a certain class of first-order unification problems—this can
be applied uniformly to the subgoals generated by an inversion.

We believe that this approach yields a clearer presentation of inversion which is
relatively simple to implement. We shall also see that it solves a larger class of
problems.

2 Generic Inversion Lemmas

In general, an inductively defined relation R, where i is a sequence of paramet-
ers, may be given by a set of inference rules like so:

P[7] P, [7,]
R[] R

3

rule,,

1

O~k

-
nxn

where P; is a sequence of premises (perhaps involving R) and the #; are the
schematic variables for rule;.

LEGO’s Inductive command [Pol94] allows such relations to be represented
as Dybjer-style inductive families of types [Dyb91], provided they fall within
the positivity restrictions given by Luo in [Luo94]. The induction principle and
reductions corresponding to the rules are then generated in accordance with
Luo’s characterisation and added as assumptions to the local context.

The generic inversion lemma which we shall use is as follows:

This should be recognisable, via currying of the higher order definition of dis-
junction, as the Clark-style completion lemma:

—

V5. RE— \/i, 37 (F=1; A B[E)])

Provided the equations are well-typed, we can generate this lemma as a type in
LEGO and prove it by an easy induction on the derivation of R 3. The inductive
case for rule; instantiates 5 to ;[#;] and supplies the]5;[52] as hypotheses, so the
corresponding premise of the inversion lemma can be applied to prove @.

Observe that the effect of applying this lemma to an instance R § of the family
R is to replace a goal @ by a bunch of subgoals, one for each rule;, like so:

The 5 = t_;[i"l] conditions capture the requirement that our hypothesis unifies
with the conclusion of rule;, while the]5;[52] conditions force the rule’s premises
to hold. If there is no unifier, then the subgoal is vacuous. If we can establish a
most general unifier, o, then the subgoal reduces to

o B[] — o®

In this light, our inversion lemma bears a strong resemblance to Tamaki and
Sato’s unfold transformations for logic programs [TS84] and Eriksson’s proposed
rule of definitional reflection [Eri91]:

{eleCt+ oA : ¢ =mgu(a,b)for definition b < C'}
IaF A

The crucial distinction is that the unification in our treatment i1s at the object
level. In systems such as ALF [Mag95], where the type theory is strengthened
by pattern matching, inversion comes for free.

The inversion facility added to LEGO establishes the generic lemma (1) for each
R once and for all at the time R is defined. Reducing the subgoals generated
for specific R-hypotheses then depends on our ability to solve the unification
problems they contain.

The current implementation is limited by the requirement that the equations
representing the unification problems be well-typed. This can fail to be the case
when there is type dependency between parameters of the relation. For example,
a relation R : ITt : SET. (1ist ¢) — Prop would give rise to equations

s=t—ls=lt — ...

where [s has type (1ist s) but [t has type (1ist ¢). Inversion principles are not
automatically generated in these cases. Similar problems can arise in expressing
the injectivity of datatype constructors (see section 4.4).

3 First-Order Unification for Constructor Forms

In their survey of rule-based unification, [JK91], Jonannaud and Kirchner give a
first-order unification algorithm, “Tree-Unify’, which is complete for what they
call ‘constructor forms’. We have adapted it for inductive datatypes in LEGO. A
partial implementation of Tree-Unify is the basis of a tactic specifically intended
to simplify the subgoals generated by inversion.

Given variables X, we define the constructor forms 7" of an inductive datatype
with constructors C' recursively as follows:

T:=X|CT,...T,

Now, motivated by the structure of subgoals left by inversion, let us represent a
unification problem by a sequence of equational premises in a goal:

51 Iti1—>...—>5]'2ti]'—>@

We present the algorithm Tree-Unify in a refinement style. The backwards-
directed transition rules in figure 1 are applied repeatedly until either the goal
is proved or no equations remain. The leading equation, s = ¢ determines which
rule is appropriate at each step in a syntax-directed way. Figure 2 tabulates this
choice according to the form of s (ranging vertically) and ¢ (ranging horizont-

ally).

For example, if we have the equation # = y for distinct variables and y, then
coalescence is chosen, removing the superfluous variable; if the two sides have
distinet outermost constructors ¢ and ¢’, then conflict applies, proving the goal.

It 1s easily shown that each transition preserves the constructor form property
of these unification problems.

¢

deletion ——
T =z — @
[y — z]®
coalescence ——— g, y distinct
y=x — ¢
conflict —————c#c
c§=cdt1— &
e §=i{—o
injectivity
cS§=ct— &
checking ——— 7€ FV(35)
cS§=z— @
o ecde
elimination @——MmM — 4 o4 FV(g‘)

cS§=x— &

Fig. 1. Transition rules for Tree-Unify

| s:t” tisz (z #y) | tisct |tisct
sis T deletion apply
s1is y|| coalescence symmetry
if £ € FV(3)

s is ¢ §|| then checking |injectivity|conflict
(c # c')||else elimination]|

Fig. 2. Tree-Unify is syntax directed by leading equation s = ¢

Theorem 1. Tree-Unify terminates.

Proof. Examining the behaviour of the transitions, we find that conflict and
checking cause termination directly.

Further, the side-condition on elimination ensures that both it and coales-
cence strictly reduce the number of distinct variables remaining in the problem.

The deletion and injectivity rules each reduce the total size of the terms in the
problem, where the size of a term is simply the total number of variable references
and constructor applications therein. Neither rule introduces new variables.

Hence termination follows by a lexicographic induction on the number of distinct
variables in the problem, then the total size of the problem. a

The soundness of any implementation of Tree-Unify 1s ultimately guaranteed
by the requirement that the synthesised proofs should typecheck. Nonetheless,
it seems appropriate to make an informal argument for the soundness of the
algorithm. We postpone discussion of the implementation difficulties until the
next section.

Theorem 2. Tree-Unify 1s sound.

Proof. We examine each transition rule.

deletion is trivial. coalescence and elimination follow from the substitutivity
of equality.

conflict holds because the equation ¢5 = ¢'t fails to have the Leibnitz property—
by case analysis, we can check that ¢ & has ¢ as its head, while ¢’ ¢ does not.

injectivity is essentially the observation that equality is preserved by the ap-
plication of the ‘predecessor’ functions which map ¢ to each ;. (There is a
practical problem constructing these ‘predecessor’ functions in the presence of
dependently-typed arguments, as we shall see in section 4.4.)

This leaves checking. For any inductive datatype, we can define the strict sub-
term ordering < and show by induction that s <t — s #t. If x € FV(5) then
x 1s a strict subterm of ¢ &, hence the hypothesis ¢ § = z is absurd. a

We turn now to the question of completeness.
Theorem 3. Given goal,
s51=11 —...—=s8 =1t -

with s;, t; in constructor form, Tree- Unify will either prove the goal or reduce it
to c® where o 1s a most general unifier for the initial j equations.

Proof. We have seen that if the head equation is in constructor form, there
i1s always exactly one transition rule applicable, and that the transition rules
preserve the constructor form property of the problem. Since Tree-Unify always
terminates, it must either prove the goal or remove the leading j equations,
applying a sequence of substitutions o to the remainder of the goal. It remains,
therefore, to show that this ¢ is a most general unifier for those equations.
We shall make an argument by induction over the sequence of transition rules
applied.

If Tree-Unify applies no transition rules, then there must be no constructor form
equations—the identity substitution is trivially a most general unifier for the
empty problem.

Now we must check that each transition rule preserves this completeness prop-
erty. For conflict and checking there is nothing to prove, whilst for deletion
and injectivity, the requirement is trivial.

Both coalescence and elimination may be treated as instances of

x — sl
[] z & FV(s)

S§=r —

Suppose, inductively, that the substitution sequence ¢ generated for [z — s]® is
a most general unifier for that problem.

We must show that o o [& — s] is a most general unifier for s = 2 — @.

By hypothesis, o unifies [¢ +— 5]®, so ¢ o [# — s] certainly unifies @. Clearly, it
also unifies # with s. Hence o o [z + 5] is certainly a unifier for s = 2 — @.

Now suppose some p unifies s = # — @. Necessarily, p = p o [— s]. Hence, p
unifies [¢ — s]P.

Again, our inductive hypothesis tells us that, since o 1s a most general unifier
for [@ +— s]®, p = 7 o o for some 7.

Hence p=pofz—s]=7o0c0[xr s]|.

Hence o o [& — s] is a most general unifier for s = ¢ — @ as required. o

4 Qnify: A Partial Implementation of Tree-Unify

The previous section exhibited the unification algorithm Tree-Unify and some of
its properties. In this section, we examine its implementation as the new LEGO
tactic, Qnify’, and point out some of the pragmatic issues and difficulties which
arose in this task.

The representation of a unification problem as a goal with equational premises
enables a very simple implementation which makes considerable use of exist-
ing data structures and tactics (see [LEGOQ]). The state of the problem is just
the goal itself, viewed as a stack of equations. The transition rules correspond
to refinement tactics executed according to a simple syntactic analysis of the
head equation. The current implementation performs no reduction on terms
and hence fails to detect expressions which convert to constructor applications,
although the user can force this computation explicitly beforehand—the possib-
ility of introducing some weak head normalisation into the mechanism is under
investigation.

! pronounced ‘kunify’ to emphasise it is a unification tactic, and named after the
substitution tactic Qrepl, on which it heavily relies

Qnify handles equations not susceptible to any of the transition rules by intro-
ducing them into the context and proceeding with the remainder of the problem.
Qnify will introduce non-equational premises in the same way, in order to gain
access to an equation further down the goal.

4.1 deletion

We remove the initial £ = x from the goal, simply by introducing it into the
context.

4.2 coalescence

Given an initial y = & premise, we introduce it to the context and use the
existing Qrepl tactic to substitute one variable for the other in the remainder
of the goal.

This begs the pragmatic question of which way round to make the substitution.
A generic inversion lemma will often introduce variables which are not required
for some applications, and our tactic is geared to eliminate them. We achieve
this by choosing to substitute for the variable which has smaller scope. The
remaining variable, being ‘more global’, tends to be more useful.

4.3 conflict

In their treatment of inversion [CT95], Cornes and Terrasse show us how to
prove equations ¢ 5 = ¢’ ¢ absurd using the computational power of the calculus
and the substitutive property of equality.

For each constructor ¢ of each inductive type T', we construct a discriminator
function 7'_is_e : T — Prop which returns T for any ¢ § and L otherwise.

If ¢’ is any other constructor, we then have

T
, - —— equiv
cs=ct T_is_c(c¥)
=sub
T_is_c (c/ f)] subst
— equiv

L

If requested, LEGO will generate the discriminator functions at declaration time
for any simple inductive datatype. Quify will then deploy them in conflict
proofs.

4.4 injectivity

Again, our attempts to prove constructors injective follow the same pattern as
those of Cornes and Terrasse, and have the same successes and failures.

If we can define a batch of suitable predecessor functions c_pred; which return
t; given ct and a suitably typed dummy value otherwise, then the corresponding
injectivity proof is given by

=refl
S, = 8§;
- equivY
cF=ct s; = cpred; (¢ §)
=subst
s; = cpred; (ct) .
equiv

SZ'ItZ'

However, the choice of dummy value is not always straightforward. For simple
inductive datatypes, any element will do. If we construct the predecessor func-
tions locally to the injectivity theorem, we can simply use the hypothetical s;
itself. For inductive families, the dummy values required may vary in type, and
are frequently far from obvious. Hence injectivity theorems are only generated
for simple inductive datatypes.

As with inversion principles, type dependency between the arguments of a con-
structor may prevent injected equalities from typechecking. For example, if con-
structor ¢ has type IIn : nat. (vect n) — T, then ¢ mu = e n v gives rise to the
ill-typed injected equality v = v. At present, our implementation detects this
problem and does not attempt to prove injectivity for such constructors, issuing
a warning, but allowing the rest of the definition to go through.

4.5 checking

Given an equation z = t, substituting [z — ¢] without checking that = € FV(¢)
runs the risk of infinite regress. However, automating the proof of the checking
rule is far from easy. Qnify responds to such cases by warning the user, making
no substitution and deleting the offending equation from the problem.

The strict subterm ordering argument presented in the previous section would
require the automatic generation of much extra equipment for each inductive
datatype. Such facilities would be of benefit to users in a wide variety of applic-
ations, but the task is large and has not been done.

In the mean time, a more specific technique for automating the disproof of
¢ §[x] = x (arising from conversations with Andrew Adams) is to select one

occurrence of « within 5[] and construct the recursive function £ (given here in
ML style):

fun f ¢ §[z] = suc (f »)
£ _ = zero

Applying £ to both sides of the offending equation, we get
suc(fz)==fux

We need merely have proved in advance that ¥n.sucn # n and the result follows
at once.

This technique should be implementable easily in Coq, where pattern-matching
definition and fixpoint recursion are both supported [Cor96, Gim94], allowing
the function to be represented directly at the object level, whatever its depth of
recursion. LEGO provides only one-step elimination rules for its inductive data-
types, requiring £ to be ‘compiled’ into primitive recursive form. An experimental
implementation of this procedure is in progress at time of writing.

4.6 elimination

Given an equation # = ¢, and having checked that » € FV(¢), Qnify uses Qrepl
to substitute [z +— {].

Qnify does not check that ¢ is in constructor form. However, the occurrence
check is sufficient to guarantee termination.

5 Examples and Comparative Study

In this section, we consider three example inversion proofs which show the power
of our treatment and also help to justify some of the pragmatic choices made
in the implementation. We will also examine similar facilities in other theorem-
proving systems.

Our presentation follows the convention of labelling assumptions in the context
with identifiers and outstanding proof obligations with ? symbols.

5.1 Induction and Inversion for <

This simple example shows a proof by natural number induction and < inversion,
where perhaps one might have expected rule induction. We shall prove

7 Ve.suce<zr— L

As we have already remarked, rule induction on the < premise is not required.
Induction on # and inversion of < is sufficient.

For the case x = zero, inverting the hypothesis suczero < zero yields subgoals
which zero with a successor. Quify proves both of these:

7: Vn.suczero = zero — zero=n — L
7. ¥Ym.suczero=sucm — VYn.zero=sucn —m<n— L

Observe how the implementation has placed the equations as far left as their
dependencies permits. LEGO does not distinguish between ‘schematic variables’
like m and n here, and ‘premises’ like m < n. They are merely arguments to
a dependently typed constructor function. It seems desirable to position the
equations so that Qnify applies its substitutions as widely as possible, as we
shall see when establishing the inductive step:

xih: sucr<zx— L
?: suc(sucz) < suce — L

The interesting case of the inversion is then
?: Vm.suc(sucz) =sucm —Vn.suce =sucn —m<n— L

Quify applies injectivity and substitutes [m — suc z] and [n — z]. Note that
the positioning of the equations ensures that these apply to the m < n premise,
and that 1t is better to keep x, which occurs in the inductive hypothesis, than n
which is local to the inversion. The simplified subgoal follows immediately:

Tisuce<x— L

5.2 The Advantage of Unification

Coq’s inversion facilities (see [CT95]) prove specific inversion lemmas for specific
hypotheses. Where our generic lemma has a case for each inference rule, Coq

will simplify and possibly eliminate these cases from a given lemma by applying
constructor conflict and injectivity results. However, by performing substitution
steps within the equational problem, we capitalise on the power of unification
where Coq does not.

Consider the datatype of unlabelled binary trees:

s, :tree

leaf : tree node st : tree

The reflexive relation, refl, on this datatype can be represented as an induct-
ively defined relation with inference rule:

reflti

The corresponding inversion principle encapsulates the idea that the two ar-
guments of any inhabitant of this relation must unify. Our approach addresses
this question where mere appeals to constructor conflict and injectivity do not.
Similarly, repeated instances of the same schematic variable must correspond to
terms which unify.

The proof of the following goal shows how our facility addresses both of these
issues:

?: Ya.refl (node x leaf) (node (node leaf leaf)x) — L
Inverting the refl premise gives us

?: Vt. (node x leaf) =1 — (node (node leaf leaf)z) =t — L
Qnify applies elimination

(node (node leaf leaf) #) = (node x leaf) — L
then injectivity,

(node leaf leaf) = — x = leaf — |
then elimination,

(node leaf leaf) = leaf — |

and finally proves the goal by conflict.

At present, the ‘Inversion’ tactic in Coq does not attempt to unify the two
instantiations of x, and hence stops short of proving this goal. The extra steps
could easily be done by hand or by a user-supplied tactic. It should not be difficult
to adapt Coq’s inversion package to the same range of problems addressed by
Qnify.

5.3 Proving an Operational Semantics Deterministic

In this example, we sketch the proof that the operational semantics for a simple
‘while’ language is deterministic. This example is partly motivated by the similar
example given by Camilleri and Melham for their inductive relation package in

the HOL system [HOL, CM92].

A command C executed in state s yields state ¢ (denoted s < C' >) according
to the inductive definition given in figure 3

s < skip > s

s<V:i=E>([V:=FE]s)

s<C>t t<C >u

s<C;C" >u

s<C' >t
B s=false

s < if BthenCelse (' >t

s<C >t
B s = true

s < if BthenCelse (' >t

B s = false

s <while BdoC >t

s<C>t t <while BdoC > u
B s =true

s < whileBdoC > u

Fig. 3. Evaluation Relation for a Simple Imperative Language

Our goal is to show this semantics deterministic, ie:

?:VC. Vs, t.VYH :s < C >t Vu.VH :s<C>ut=u

The proof proceeds by induction on H and inversion of H'. We may use the new
features of LEGO to express this plan as a composite tactic, also adding hints
to dispose of the trivial cases:

Lego> Induction H Then intros Then Invert H’ Then Qnify
Then (Refine Eq.refl Else Immed);

Qnify eliminates the bulk of the uninteresting cases by conflict—those where H
and H' take different values of C'. Reflexivity of equality is enough for both skip
and :=, whilst the Immed catches the trivial inductions—again, the pragmatic
positioning of equalities in the inversion lemma and the substitution of older
variables for newer ones reduces a number of cases directly to their inductive
hypotheses.

The only cases which require user intervention are:

— sequential composition and while with B s = true

These both have two inductive hypotheses, corresponding to two phases of
execution. Using the first inductive hypothesis, the intermediate states res-
ulting from the two executions of C' are shown to be the same. Having made
this substitution explicitly, the second inductive hypothesis then completes
the result.

— if and while with B s = true = false

Bs cannot be true in H and false in H' or vice versa. However, Bs is not in
constructor form, so the user must assist in these four cases. A substitution
gives true = false, and Qnify finishes the conflict proof.

Camilleri and Melham give the full HOL90 source for their treatment of this
operational semantics at

http://wuw.dcs.glasgow.ac.uk/ tfm/ftp2.html

Their package, as detailed in [CM92], enables the definition of the evaluation and
the automatic derivation of theorems corresponding to the induction and inver-
sion principles generated by LEGO. Other tactics automatically prove conflict
and injectivity properties for the constructors of the language syntax.

However, they provide nothing akin to Qnify which simplifies inversion subgoals
by attacking the unification problems they contain. Progress from the inversion

is largely ad hoc, although HOL users have at their disposal a large library of
rewriting tactics and the full power of ML for programming with them.

The proof of determinacy 1s built from the bottom up. Firstly, the inversion
principle ‘ecases’, the conflict theorems ‘distinct’ and the injectivity theorems
‘const1l’ are combined into a tactic similar to the unification-free inversion
tactic in Coq.

val SIMPLIFY = REWRITE_RULE (distinct :: constll);

val CASE_TAC = DISCH_THEN
(STRIP_ASSUME_TAC o
SIMPLIFY o
ONCE_REWRITE_RULE[ecases]);

Next, CASE_TAC is used to build a specific inversion lemma for each inference
rule of the evaluation relation. Here is the derivation for skip:

val SKIP_THM = store_thm("SKIP_THM",
(——“!'s1 s2. EVAL skip sl s2 = (s1 = s2)‘--),
REPEAT GEN_TAC THEN EQ_TAC THENL
[CASE_TAC THEN ASM_REWRITE_TAC [],
DISCH_THEN SUBST1_TAC THEN MAP_FIRST RULE_TAC rules]);

Finally, these lemmas are used in the induction itself:

val DETERMINISTIC = store_thm ("DETERMINISTIC",
(--“1C st1 st2. EVAL C stl st2 ==>
'st3. EVAL C st1 st3 ==> (st2 = st3)‘--),
RULE_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[REWRITE_TAC [SKIP_THM],
REWRITE_TAC [ASSIGN_THM],
PURE_ONCE_REWRITE_TAC [SEQ_THM] THEN STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC [1,
IMP_RES_TAC IF_T_THM THEN ASM_REWRITE_TAC [],
IMP_RES_TAC IF_F_THM THEN ASM_REWRITE_TAC [],
IMP_RES_TAC WHILE_F_THM THEN ASM_REWRITE_TAC [1,
IMP_RES_THEN
(fn th => PURE_ONCE_REWRITE_TAC [th]) WHILE_T_THM THEN
STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC [11);

Although it is perhaps a little unfair to compare the raw ML of HOL with the
cleaner interfaces of LEGO or Coq, it seems clear from this example that the
unification and rewriting preformed by the single LEGO tactic Qnify captures
a wide variety of cases which must be addressed individually and by hand in

HOL.

6 Conclusions and Further Work

This work owes a considerable debt to that of Cornes and Terrasse in Cogq
([CT95]). Our formulation and proof of generic inversion principles follow theirs,
as do our constructor conflict and injectivity results.

However, the insight
. L . . C
inversion = predecessor premises + equational constraints

has led us to a treatment which is intuitive, easy to implement and highly effect-
ive in practice. We analyse the equational information separately via the uni-
fication algorithm described in this paper. Its specification is clear, it is sound
and complete with respect to constructor forms and the tactic Qnify, to which
it gives rise, has proved independently useful.

For example, recent work extends the inversion facility to cover full induction
on the derivation of a relation. A goal of form

7. Vi RUE] — @
1s first rewritten
7.V Ry — VI §=1f] — &

so that the induction principle generated for R is applicable. The equations
introduced are ripe for simplification with Qnify.

This new Induction tactic deals with the problem of type dependency within
parameters yielding ill-typed equations by packaging the related parameters in
tuples which share the same X-type. A similar repair could be made to both
inversion and injectivity theorems, extending the class of definition for which
they can be generated.

It would seem both worthwhile and tractable to extend all of these new facilities
to encompass mutual inductive definitions. This work may be carried out in the
near future.

At present, work is in progress implementing checking proofs. The compilation
of the necessary functions does appear both systematic and tractable, without
recourse to fixpoints.

All the new facilities described in this paper, together with documentation de-
scribing their usage is available on the web at

http://www.dcs.ed.ac.uk/home/lego/html/alpha/

Acknowledgements The author would like to thank Cristina Cornes for providing
the model for this work and much useful advice. Much gratitude is due also to
Rod Burstall, James McKinna and Alan Smaill for their patience, guidance and
support.

References

[Bur96] R. M. Burstall. Inductively Defined Relations: A Brief Tutorial. Extended
Abstract. In Haveraan, M., and Owe, O., and Dahl, O.-J., editors, Recent
Trends in Data Types Specification. Springer LNCS 1130, pp14-17. 1996.

[CM92] J.Camilleri and T. Melham. Reasoning with Inductively Defined Relations in
the HOL Theorem Prover. Technical Report No. 265 University of Cambridge
Computer Laboratory. 1992.

[Cla78] K. Clark. Negation as Failure. pp293-322 of Logic and Data Bases, edited
by H. Gallaire and J. Minker. Plenum Press. 1978.

[Coq] C. Cornes, J. Courant, J.F. Fillaitre, G. Huet, C. Murthy, C. Parent, C.
Paulin, B. Werner. The Coq Proof Assistant Reference Manual, Version 5.10.
Projet Coq, Inria-Rocquencourt and CNRS-ENS Lyon, France.

[Cor96] C. Cornes Compilation du Filtrage avec Types Dépendants dans le Systéme
Coq. Actes de la réunion du poéle Spécification et Preuves du GDR Program-
mation. Orleans, Novembre 1996.

[CT95] C. Cornes, D. Terrasse. Automating Inversion of Inductive Predicates in Cogq.
In BRA Workshop on Types for Proofs and Programs, Turin, June 1995. To
appear in LNCS series.

[Eri91] L.-H. Eriksson. A finitary version of the calculus of partial inductive defin-
itions. In: L.-H. Eriksson, L. Hallnds & P. Schroeder-Heister (editors), Ex-
tensions of Logic Programming. Second International Workshop, ELP-91,
Stockholm. Springer LNCS 596, pp89-134. 1992.

[Dyb91] P. Dybjer. Inductive Sets and Families in Martin-Lof’s Type Theory. pp280-
306 of Logical Frameworks, edited by G. Huet and G. Plotkin. CUP 1991.

[Gim94] E. Giminez. Codifying guarded definitions with recursive schemes. Proceed-
ings of Types 94, pp39-59.

[Hal91] L. Hallnas. Partial Inductive Definitions. Theoretical Computer Science. Vol.
87. ppl15-142. 1991.

[HOL] Introduction to HOL; A theorem proving environment for higher order logic.
Edited by M.J.C. Gordon and T.F. Melham. CUP 1993.

[TK91]

[Luo94]
[LEGO]
[Mag95]
[Paus7]

[Pol94]
[Pra65]

[TS84]

Jean-Pierre Jouannaud and Claude Kirchner. Solving Equations in Abstract
Algebras: A Rule-Based Survey of Unification. pp257-321 of Computational
Logic: Essays in Honor of Alan Robinson, edited by Jean-Louis Lassez and
Gordon Plotkin, MIT Press, 1991.

Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer
Science. OUP 1994.

Zhaohui Luo, Randy Pollack. LEGO Proof Development System: User
Manual. Technical Note, 1992.

Lena Magnusson. The Implementation of ALF. PhD Thesis. Chalmers Uni-
versity of Technology and University of Goteborg, Sweden. January 1995.
L. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge Tracts in Theoretical Computer Science 2. CUP 1987.

Randy Pollack. Incremental Changes in LEGO: Technical Note, 1994.
Prawitz, D. Natural Deduction: A Proof-Theoretical Study. Almqvist &
Wiksell. Stockholm, 1965.

H. Tamaki, T. Sato. Unfold/Fold Transformation of Logic Programs. Pro-
ceedings of Second International Logic Programming Conference. pp127-138.
Uppsala, 1984.

This article was processed using the INTpX macro package with LLNCS style

