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Abstract. We present a comparison of approaches to the representa-
tion and verification of non-structurally recursive algorithms in the type
theory CIC of the Coq proof assistant. We illustrate our ideas in the
context of reachability algorithms on (finite) graphs.

Our approach makes use of Sozeau’s Program machinery, a relatively re-
cent addition to Coq, which permits a very clean representation of func-
tional programs in CIC. We consider: a version of the algorithm which
only focuses on the termination argument, for which we then give a di-
rect proof of partial correctness; a definition and proof using Program ‘in
one go’; and a final variant, where we confine the use of Program to total
correctness, proving partial correctness via the graph of the function.
This leads to some observations for Coq users and implementors con-
cerning the traditional separation of concerns in program verification.

1 Introduction

This paper makes another contribution to the literature and culture of system-
atic formal reasoning in constructive type theory about non-structurally recur-
sive functions. We consider algorithms for the problem of reachability in finite
directed graphs, represented in the type theory CIC of the proof assistant CoQ.

1.1 The Problem

What does the application-oriented developer of proofs do to streamline the task
of checking or proving properties of algorithms, when these do not enjoy ‘natural’
representation in the (programming) language of their chosen proof assistant?
A recurring idea when proving programs correct is the separation of con-
cerns. We first want to define a program, then prove its partial correctness and
then prove that it terminates for all suitable arguments. When working in type
theory, this is not a problem when the function can be defined by structural
recursion, since termination is then a consequence of its definition. Definition by
non-structural recursion is more problematic, as we then cannot express it as a
function until we have proved it terminates. We typically might do this by well-
founded recursion, but that can lead to a term whose intensional computational
behaviour is at odds with the recursive specification we have in mind.
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Another problem, also a separation of concerns, is how to choose when to
specify the properties of the function we are defining. Using the propositions-as-
types paradigm we can specify the properties by an expressive X-type and then
reason about the function from the input-output properties so specified. But this
means that we need to anticipate the properties we need the function to have
all at once by giving it an expressive enough type. An alternative is to prove the
properties of the function as needed; but this means that we over and over again
need to do some kind of well-founded induction which is appropriately correlated
with the well-founded recursion defining the function; this seems unnecessarily
complicated, and can certainly become so in practice.

A canonical solution, and the one we elaborate upon here, is to define an
induction principle once and for all from the definition of the function. One
way to do this is to inductively define a relation, the extensional graph of the
function, corresponding to the recursive call structure of the function we are
defining. The induction principle derived from this relation is precisely the one
needed to prove any property about the function, since its definition captures
exactly the intermediate recursive calls arising from a given call to the function,
and hence the corresponding induction hypotheses.

Having separated the induction principle from the function we wish to define
we can prove the properties we want using the induction principle induced by
the graph without reference to the well-definedness or otherwise of the function.
We can then define the function using the Program command using the minimal
criteria to establish termination, namely inhabitation of the graph. Indeed, being
inductively defined, the graph encapsulates the minimal properties which any
call of the function, assumed to be well-defined, must satisfy; thus we may recover
(a version of) least fixed-point semantics in the context of a total type theory.

This paper shows a way to factor that development, in the case of a reachabil-
ity algorithm, into a termination argument (justifying the existence of a function)
and a separate partial correctness proof, which makes no commitment to the ex-
istence of the function. The key enabling device has already been alluded to: a
mechanism for obtaining the inductive hypotheses asserting the well-definedness
of intermediate recursive calls.

1.2 Related Work

Unsurprisingly, there is a great deal of related work; this touches on some of
the oldest problems and techniques in computer science, as well as the most
recent. Our original inspiration for considering the inductively-defined graph as-
sociated with a function comes from McCarthy’s seminal work on computational
(or recursion) induction[1]. Gérard Huet was another early influence, describing
inductively-defined families in type theory as “a kind of typed Prolog”. In unpub-
lished work][2] the first author (with Conor McBride) has explored its application
in the context of EPIGRAM function definitions; the graph is an example of their
version of Wadler’s idea of view [3].
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Sozeau’s recent PhD thesis work [4,5] introduced the impressive Program
suite of commands and tactical support to the CoQ system. We will explain its
behaviour and usage below.

Slind’s PhD thesis work [6] offers users of both HOL and Isabelle/HOL a
great deal of similar functionality with the TFP package, but a direct compar-
ison between the approaches seems difficult since CIC is by design a compu-
tational meta-theory, distinguishing intensional objects (algorithms/functions)
whose evaluation is part of the power of the theory, from their logical (exten-
sional) behaviour established by proof.

Working at Sophia-Antipolis with the CoQ system itself, Bertot and Balaa [7]
considered the problems associated with functions defined by well-founded recur-
sion. Their work draws attention to many of the problems arising from attempt-
ing to relate intensional behaviour of such functions to their extensional proper-
ties given by their fixed-point equation. Later, Barthe and his co-workers [8, 9]
developed the Function machinery for generating the inductively-defined graph
and its associated induction principle automatically from a CIC-definable func-
tion. Their work furthermore permitted a clean syntax for function definition
both by structural recursion and by well-founded recursion. It is unfortunate
that the current implementation of these ideas remains buggy, and does not
integrate well with the new Program infrastructure.

A companion approach to reasoning with graphs is the so-called ‘Bove-
Capretta’ method of working with inductively-defined domain predicates[10-12].
As the name implies, these predicates define the domain of definition of a func-
tion; they are used as a structure over which to do recursion in order to define
otherwise non-structurally recursive functions in type theory. Extensionally, they
may be seen as precisely the domains of the corresponding inductively-defined
graphs. Space forbids a detailed comparison between their approach and ours.

Work on algorithms on directed graphs (we crave the indulgence of the reader
over the clash in these two uses of the term ‘graph’) and their correctness
proofs [13, notably| goes back at least as far as McCarthy’s work, and a sur-
vey seems an impossible endeavour here. The classical literature presents such
things in imperative, not functional, style. As regards machine-checked develop-
ments in proof assistants, as much to our surprise as were Moore and Zhang’s
earlier observations about Dijkstra’s SSSP algorithm [14], there seem compar-
atively few examples of how to do this kind of thing without relatively heavy
machinery. A notable comparison point, is Hurd’s formalisation in HOL in the
context of a (much larger) development [15]. Tobias Nipkow drew our attention
to a very closely related, but entirely independent, development by Nishihara
and Minamide in Isabelle/HOL [16]; their approach involves a nested recursive
definition of depth-first search, with the associated complications in reasoning.

1.3 Contribution

In the context of hybrid systems verification in the the CoQ system, we needed
to check properties of various graph reachability algorithms. We isolated the
work of this paper from that much larger development.
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Our principal contribution is to compare various versions of how to define,
and prove the correctness of, the algorithm reachables explored in detail below.

prototype We recap the imperative iterative specification of the algorithm de-
fined in pseudocode, together with a sketch of its correctness proof.

simplest version We first define a ‘plain’ version of the algorithm, as a tail-
recursive ‘worker’ function reachables_worker, and a flat ‘wrapper’ func-
tion reachables. These operate on lists (representing subsets), so we need
to introduce non-duplication hypotheses for the representation to be valid.
We also define the ‘step’ function rstep, implementing the loop body in
the imperative prototype. The only non-trivial proof obligation in the use of
Program is that required to prove termination. This requires formalisation
of the termination invariant and the measure function.

version 0 Now, having successfully defined these functions, in order to prove
anything about them, one approach is to develop directly an induction princi-
ple ‘by hand’ for reachables_worker and reachables, which isolates their
logical properties from the particular method (by well-founded recursion)
which Program uses internally to build definitions. In fact, by a quirk of the
Program implementation, we need to tweak the functions slightly, yielding
reachables_workerO and reachables0O. The induction principle we derive
is moreover ‘polluted’ with the need to explicitly project lists out of the
Y-types used in our definitions. We use the induction principle to prove
soundness and completeness of our definitions; we refer back to a collection
of lemmas proved about the various predicates and invariants, especially
regarding how they interact with the step function rstep.

version 1 We next consider a direct proof of correctness, organised as a single
Program Fixpoint definition, of reachables_workerl and reachablesi.
This version yields a partial correctness and termination argument most
closely resembling the classical Dijkstra-Hoare point of view. Both the input
predicates and result types become entangled with information necessary
only for termination. Moreover, we need to use the hypotheses arising from
well-founded induction in order to reason inductively as if the function is
well-defined.

version 2 We then factorise the correctness proof, by introducing the relational
specification of the inductively-defined graph of reachables_worker (we ig-
nore the case of reachables, as it has no interesting inductive structure).
By induction on this relational specification we can prove the desired (par-
tial) correctness properties; the termination argument is as before, but now
the initial conditions are as in the first version, while the result type speci-
fies that the function witnesses the graph relation. The proof of this is very
nearly automatic, and could be made so, we believe, in a future version of
Program.

version ... All of the foregoing is, in fact abstract with respect to the proper-
ties of the step function rstep. Indeed, we could keep abstracting, based on
the graph relation idea, moreover in a compositional way. But for the sake
of this paper (and the reader!) we leave such extensions to future papers.
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1.4 Outline

We begin in Section 2 with the classical imperative specification and verification
of an abstract reachability algorithm. We then show in Section 2.1 how this gives
rise to a proto-definition in the Gallina specification language of CoOQ, remarking
on the limitations of the raw typechecker in attempting to check wellformedness
(in particular, termination) of such definitions.

We then sketch in Section 2.2 how Sozeau’s Program machinery can help us,
and in particular how it might be used to support the separation of concerns.

We then describe the various versions of our concrete (depth-first) functional
implementation of reachability, and show how the use of Program leads to a
less-or-more smooth organisation of the verifications which arise in each case.
We discuss the consequences each version has for the separation of concerns and
the pragmatics of working with CoqQ.

Finally, we conclude with some observations about the further abstraction
inherent in our development and the prospects for extensions and future work.

2 Specifying and verifying the algorithm

The graph reachability algorithm we formalise can be specified imperatively. Its
definition and correctness proof are routine, and included only for the sake of
completeness.

pseudocode prototype We assume given a finite directed graph G. The operators
+ and - denote set union and set difference, respectively, defined on subsets of
the set vertices of the vertices in G.

Algorithm reachables.

inputs: subset "start'" of vertices.
pre-condition:

output: subset "result" of vertices.
post-condition:
for all v, (v in result) <-> (v reachable from start).

begin
locals: subsets "visited" and "waiting".
visited:= {};

waiting:= start;
while (waiting <> {})
{

pick w in waiting;
visited:= visited + {w};
waiting:= (neighbours w) + waiting - visited;
+;
result:= visited;
end
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informal proof The partial correctness of algorithm reachables follows from
the following equivalent of the post-condition:

post-condition: for all v,
(v in (waiting + visited)) <-> (v reachable from start).

This is because on termination of the loop we have waiting = {} and hence
on termination of the algorithm, result = waiting + visited. The condition
trivially holds on loop entry, since then waiting + visited = start. Unfor-
tunately, the condition alone is not a loop invariant.

The subset of vertices R reachable from start may be characterised induc-
tively as the smallest subset S satisfying two properties:

— for all v, v in start -> v in S
— S is closed under neighbours

To show R contains result on termination (soundness) amounts to observing
that at each iteration, the subset waiting + visited grows only by the addition
of neighbours, and hence, inductively, by vertices reachable from start.

Similarly waiting + visited always satisfies the first property, that is to
say for all v, v in start -> v in (waiting + visited) is a loop invari-
ant. Hence on termination of the algorithm, result will contain R (complete-
ness) provided we can satisfy the second property.

So we are left with Dijkstra’s invariant which establishes this:

invariant: for all v,
(v in (neighbours(visited))) -> (v in (waiting + visited)).

On exit, similarly to above, the property reduces to
for all v, (v in (neighbours(result))) -> (v in result).

and hence result is closed under neighbours as required. It trivially holds
on loop entry, where neighbours(visited) = neighbours({}) = {}. Finally,
one proves that it is maintained on each iteration by inspection of the loop body.

Total correctness follows if we can show that a variant measure decreases
on each iteration: the size of vertices - visited is a suitable such measure,
provided we can show that on each iteration, a ‘new’ vertex is added to visited.
We remark without further comment that this can be secured with the additional
loop invariant stating that waiting and visited are disjoint.

2.1 Towards defining the algorithm in CoQ

We begin with an initial preamble loading list utilities and other library files (here
omitted; please see the full development for details), followed by an algebraic
structure for directed graphs, and reachability, characterised in the usual way as
the reflexive-transitive closure of a binary relation.
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Variables (State: Type) (trans: State -> State -> Prop).

Inductive reachable: State -> State -> Prop :=
| reachable_refl s: reachable s s
| reachable_next a b c: reachable a b ->
trans b ¢ -> reachable a c.

Record DiGraph: Type := Build
{ Vertex: Set
; Vertex_eq_dec: forall (v v’: Vertex), decision (v = v?)
; vertices: list Vertex
; vertices_exhaustive: forall v, In v vertices
; edges: Vertex -> list Vertex
edges_NoDup: forall v, NoDup (edges v)

we

.

We then define reachability in the graph from an initial set of vertices start;
this property is rather straightforwardly closed under the edge relation.

Variable G: DiGraph.
Let Edge (v w: Vertex G): Prop := In w (edges v).

Let SubsetV := list (Vertex G).
Let emptyV : SubsetV := []. Hint Unfold emptyV.
Let addV v vs : SubsetV := v :: vs. Hint Unfold addV.

Variable start: SubsetV.
Hypothesis NoDup_start: NoDup start.

Let reachable v: Prop := exists s,
In s start /\ reachability.reachable Edge s v.

Lemma reachable_start v: In v start -> reachable v.

As a pure functional program (CIC term), we factor the imperative control struc-
ture into a worker which expresses the result as a (tail-recursive) function of the
local variables, and a wrapper, which initialises them.

pseudo-Coq fragment The wrapper function (minus typing decoration) is very
straightforward.

Definition reachables
:= reachables_worker emptyV start.

The functional prototype of the worker function relies on a definition of a function
rstep implementing the assignments of the loop body. The pick operation is
modelled by pattern matching on the waiting list: when the list is empty, the
function terminates, returning a result list given definitionally by (the final
value of) visited.



8 James McKinna, Dan Synek, and Eelis van der Weegen

Fixpoint reachables_worker (visited waiting: SubsetV) :=
match waiting with
| nil => visited
| w :: ws => reachables_worker (addV w visited) (rstep visited w ws)
end.

where the step function rstep may be given directly in CoQ as follows:

Definition rstep vs w ws :=
(subtrV (edges w) ((addV w vs) ++ ws)) ++ ws.

Since the worker’s recursion is non-structural, we cannot give it as an ordinary
Fixpoint/match style definition in CoQ’s Gallina vernacular syntax. The match
construction makes ‘ML-style’ pattern matching available to the user (the real
story is much more powerful, but correspondingly more complicated, thanks to
the dependent types in CIC). The Fixpoint construction only supports the defi-
nition of structurally recursive functions, whose termination checking is handled
by a hard-wired syntactic check (‘guarded by destructors’) in the CoQ type-
checker. This makes prototyping the program, and its correctness proofs, fall at
the first hurdle, and has been seen as a long-standing disadvantage of working
in type theory for certified programming,.

2.2 What does Program do?

Sozeau’s Program extensions to this language give the programmer a much more
flexible range of action:

— the syntax is upwardly compatible (one writes Program Fixpoint etc.);

— termination may also be specified by a measure function into a well-founded
ordering;

— the input and output types of the function may be constrained by predicates
in a way which is transparent to the function body.

Rather than perform a yes/no syntactic check, the Program machinery then
generates proof obligations for the user, much in the style of PVS predicate
subtyping, induced by the structure of the program one is attempting to define.

The ‘definition’ is not accepted by the typechecker until each pending obli-
gation has been discharged: so in this sense, the typechecker cannot accept def-
initions which have not been proved terminating. However, the algorithm for
typechecking-modulo-predicate-subtyping which drives this machinery does al-
low the programmer:

— to write partial functions, if a suitable conservative domain predicate may be
specified; this leads to proof obligations on the application of such functions;

— to constrain the result type, which will lead to an obligation to prove that
property of the computed answer;

— to delay the obligation to show termination via the ordering.
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Further, the typechecking algorithm follows the Fixpoint /match structure given
by the programmer, so match will typically lead to proof obligations correspond-
ing to each case, and use of Fixpoint generates an inductive hypothesis (guar-
anteed by the well-founded recursion driving the termination proof) providing,
for suitably constrained inputs, the ezistence of recursive calls of the function.

Now, C0oQ users may specify functions, their termination measures, and their
input-output behaviour in advance of, or rather hand-in-hand with, ensuring the
well-definedness of such objects. However, in doing so, it is easy to lose sight of
the classical separation of concerns between termination and correctness: while
these are given to the user of Program as separate obligations to discharge,
nevertheless the ‘script’ object which defines such a function must be completed
before any other useful work may be done.

It seems that one must still prove total and partial correctness together. Not
only that, but an object successfully defined by Program is only extensionally
equivalent to the programmer’s recursive specification: necessarily so, as it is
given internally by appeal to recursors over well-founded orderings. To prove
anything about such a function after defining it leaves the user with the un-
comfortable task of exhuming from Program’s internals exactly those appeals to
well-founded recursion /induction needed to massage the definition into the right
form.

3 Using Program to define and verify the algorithm

3.1 Simplest Version
The worker function itself may be given in the extended syntax as follows.

Program Fixpoint reachables_worker (visited: SubsetV)
(waiting: { ws | Termination visited ws })
{measure measureV visited}: SubsetV :=
match waiting with
| nil => visited
| w :: ws => reachables_worker (addV w visited) (rstep visited w ws)
end.

The waiting argument is given a X-type, whose predicate Termination ex-
presses the invariant required to show decrease of the measure described earlier.

Definition Termination (vs ws: SubsetV): Prop :=
NoDup ws /\ Disjoint ws vs.

Definition measureV (vs: SubsetV): nat :=
length (subtrV (vertices G) vs).

This gives rise to the first of two generated obligations:

NoDup (w :: ws) /\ Disjoint (w :: ws) vs ->
measureV (w :: vs) < measureV vs.
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and without building in the termination invariant Termination this lemma
would not be provable. Additionally we see a second obligation generated, ex-
pressing that the invariant holds for the arguments passed in the recursive calls.
In other words, it must be shown that the invariant is preserved by rstep:

Lemma Termination_preserved vs w ws:
Termination vs (addV w ws) ->
Termination (addV w vs) (rstep vs w ws).

The proof of this obligation is similarly straightforward. After both have been
discharged, the constant reachables_worker is actually defined by Program. It
is defined in terms of Fix_measure_sub, which encapsulates the machinery used
for induction over a measure, using the accessibility predicate Acc.

The non-recursive wrapper is now definable, generating no proof obligations.

Program Definition reachables: SubsetV
:= Q@reachables_worker emptyV start.

Correctness Now that we have a working definition, it is time to start worrying
about correctness. For this algorithm, correctness can be split into soundness and
completeness. More specifically, we would like to establish the following X-type
for the reachables function:

Program Definition reachables: { rs | Specification rs }
:= Qreachables_worker emptyV start.

where Specification consists of two conjuncts:
Definition Specification rs : Prop := Sound rs /\ Complete rs.

Soundness specifies that everything computed is indeed reachable:

Definition Sound (ss : SubsetV): Prop := forall v, In v ss -> reachable v.

Completeness specifies that everything reachable is computed. We inductively
generalise this notion, and establish its relationship to the loop exit property:

Definition Complete (ss: SubsetV): Prop :=
forall v, reachable v -> In v ss.
Definition GComplete (vs ws rs: SubsetV): Prop :=

closed_under Edge rs /\ incl ws rs /\ incl vs rs.

(* termination lemma: when we finish, we have what we want x*)
Lemma gcomplete_complete vs: GComplete [] start vs -> Complete vs.
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3.2 Version 0: Correctness by separate induction

In a grossly simplified view of the problem, one typically proves properties of a
recursively defined function by induction on the argument on which the algo-
rithm structurally recurses. This way, in the case of a recursive call, the function
invocation naturally unfolds to some code applied to a simpler application, which
is (hopefully) precisely the subject of the induction hypothesis.

For functions defined by an ordinary Fixpoint, this strategy works “out of the
box”, without any additional machinery. However, the function reachables_worker
we defined is not an ordinary Fixpoint definition. As described above, it is ex-
pressed indirectly in terms of Fix_measure_sub which does some intricate recur-
sion on (proofs of ) the accessibility predicate Acc, using a constant corresponding
to the measure-decreasing obligation we proved above. But that’s not what the
user thinks of as the semantics of the recursive definition. Consequently, it is
most unnatural to try to appeal to the actual decreasing argument’s induction
principle (Wf_rec or something), since from a user’s perspective, the argument
to the recursive call is what gets “smaller”. Or rather: such a call is “earlier” in
the course of values computed on the way to the top-level call. So what we really
want is an induction principle saying;:

Lemma reachables_workerO_ind (P: forall (vs ws rs: SubsetV), Prop)
(Pbase: forall vs, P vs emptyV vs)
(Prec: forall vs w ws rs, P (addV w vs) (rstep vs w ws) rs ->
Pvs (w :: ws) rs):
forall vs ws, P vs (‘ws) (reachables_worker0O vs ws).

We can prove such an induction principle by unfolding the Wf_measure_sub
machinery and following the recursion over Acc. In fact, however, we do not find
ourselves in this ideal world, at least not at first. We derive automatically (but
with some pain) the following principle:

Lemma reachables_workerO_ind_aux
(P: forall (vs: SubsetV) (ws: {1 | Termination vs 1}), SubsetV -> Prop)
(Pbase: forall vs a, P vs (exist _ emptyV a) vs)
(Prec: forall vs w ws p rs,
P (w :: vs) (exist _ (rstep vs w ws) p) rs -> forall mp,
P vs (exist - (w::ws) mp) rs):
forall visited waiting, P visited waiting (@reachables_worker(O visited waiting).

from which we may, with further work, get the desired induction principle. One
sees in reachables_workerO_ind_aux the extra ‘junk’ in the form of existential
witnesses such as (exist _ (rstep vs w ws) p) for termination which are
only there because required by Program. In an ideal world, we would be able to
prove properties like soundness and completeness while oblivious to termination
concerns (and indeed, in section 3.4 below we will show a way to complete this
separation of concerns).

Nevertheless, using the derived induction principle, we can prove soundness
and completeness:
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Lemma sound vs ws: Sound vs ->
Sound (‘ws) -> Sound (reachables_worker0 vs ws).

Lemma complete vs ws: Invariant vs (‘ws) ->
GComplete vs (‘ws) (reachables_worker0 vs ws).

But notice now the wrinkle in the ointment: the lemmas speak about the
values (‘ws) which are first projections from the decorated X-types, and in
practice this kind of niggling detail, and its proliferation into other goals, can
overwhelm the non-expert user.

3.3 Version 1: Integrated correctness

A very palatable alternative to the last solution involving a custom induction
principle, and in harmony with forty or fifty years of thought in imperative
program verification, is to integrate the correctness statement into the original
definition. That is, instead of writing a Program Fixpoint which produces a bare
list, we have it produce a X-decorated list which bundles up the soundness and
completeness proofs. Just as with the classical informal sketch of the proof, this
forces us to add new invariants to the input argument types in order to make
the resulting extra proof obligation provable. The result looks like this:

Program Fixpoint reachables_workerl
(visited: { vs | Sound vs 1})
(waiting: { ws | Sound ws /\ Termination visited ws /\ Invariant visited ws})
{measure measureV visited}:
{ rs | Sound rs /\ GComplete visited waiting rs } :=
match waiting with
| nil => visited
| w :: ws => reachables_workerl (addV w visited) (rstep visited w ws)
end.

We now get the all-too-imaginable proof obligations, for example in the case
of an empty waiting list:

Next Obligation. (* the result in the nil case meets the spec *)
(* Sound visited /\ GComplete visited [] visited *)

In all, there are five outstanding proof obligations, namely to check:

— that the exit condition of the recursion does indeed yield a sound and com-
plete set of vertices;

— that the argument (addV w visited) to the recursive call is indeed sound;

— that the conjunction of the soundness, termination and Dijkstra invariants
is indeed preserved by rstep;

— that the termination measure does indeed decrease;

— that the Dijkstra invariant implies generalised completeness.
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It is good to know that none of them is surprising, and encouraging that Program
ensures we see only these obligations. Nevertheless, it takes a certain familiarity
with how it all works in order to untangle these goals, especially the last one.
So, while this approach may work, and indeed predictably so to someone
familiar with both the problem and the proof assistant, it remains a problem that
the termination and correctness invariants and arguments are now merged into
the same X-type decorations and proof obligations, respectively. Consequently,
it is hard to know for sure which invariant is required for which property, and
only by insisting on distinct names and distinct lemmas (used to prove the proof
obligation) can one approximate any kind of separation of concerns.
Furthermore, such an approach clearly does not scale: each time one is in-
terested in showing a new property, one has to hack the original definition (to
push more and more invariants into the X-types) and hack the proof obligations
(whose goal is now a bigger conjunction) to insert the proof of the new property.

3.4 Version 2: using the graph relation
The problems suffered by the above approaches arise from the following facts:

— that in this type theory, to reason about a function, that function must have
been already proved terminating;

— that the only “free” (primitive) induction principle to which one may appeal,
corresponds to the structurally decreasing argument, which for a function
defined with Program and measure is a mere implementation detail of the
termination proof;

— that even if one could obtain the desired induction principle, it would still be
polluted with X'-decoration only needed for termination; this is a necessary
consequence of defining the function’s type in this way.

But the inductively-defined graph suffers from none of these defects, as ob-
served by other authors before us. By shifting from intensional terms whose ter-
mination is internally guaranteed by the type theory, to a formal object that
represents a type of “evidence that the function is well-defined”, and whose
inhabitants must either be constructed (by the user or tactics, when proving
well-definedness), or else when available as hypotheses are a witness to well-
definedness, we get to “eat our cake and have it too”.

For our particular example, we obtain an “unpolluted” version of induction
for reachables_worker above, namely the canonical principle associated with:

Inductive Reachable_rel: forall (visited waiting result: SubsetV),
| reachable_empty vs: Reachable_rel vs nil vs
| reachable_cons vs w ws rs:

Reachable_rel (w :: vs) (rstep vs w ws) rs ->

Reachable_rel vs (w :: ws) rs.

We can now prove soundness and completeness for (input, output) related
by Reachable_rel:

Prop :
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Lemma sound2 vs ws rs: Reachable_rel vs ws rs ->
Sound vs -> Sound ws -> Sound rs.

Lemma complete2 vs ws rs: Reachable_rel vs ws rs ->
Invariant vs ws -> GComplete vs ws rs.

Next, we show that there actually is a function reachables_worker?2 that
computes outputs which are related to the inputs by the graph relation. For this,
we use Program Fixpoint for the final time on this problem:

Program Fixpoint reachables_worker2 (visited: SubsetV)
(waiting: { ws | Termination visited ws })
{measure measureV visited}: { rs | Reachable_rel visited waiting rs } :=
match waiting with
| nil => visited
| w :: ws => reachables_worker2 (addV w visited) (rstep visited w ws)
end.

This differs from the definition in 3.1 only in that the result type now ex-
presses that the result is related to the inputs by the graph relation. The proof
obligations generated are:

— measure decrease, proved as in 3.1;

— preservation of the Termination invariant, as in 3.1;

— a last obligation, which could be automated, which essentially observes that
the values of the function reachables_worker2 satisfy the properties ex-
pressed by constructors of the Reachable_rel relation, that is “it has the
recursive call structure as specified”.

It is now routine to define our final version reachables2 of the wrapper by

Program Definition reachables2: { rs | Specification rs }
:= Qreachables_worker2 emptyV start.

whose termination obligations are precisely those of soundness and completeness.
Now the partial correctness lemmas we proved via the graph come to the fore:

Next Obligation.
Proof with auto. unfold Specification.
destruct (@reachables_worker2 emptyV
(exist (fun 1 => Termination emptyV 1) start reachables2_obligation_1))...
simpl in *.
split.
apply (sound2 r)...
apply gcomplete_complete...
apply (complete2 r)...
Qed.
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4 Conclusion

We began with a traditional perspective on program verification and the short-
comings of conventional type-theoretic approaches to representing non-structurally
recursive programs. We then showed how to progressively refine an approach to
defining such functions in CIC using the Program machinery, concluding with a
development, which separates partial correctness out as a purely logical affair,
and restricts the use of Program to proving termination. This perhaps surprising
conclusion comes from paying attention to the separation of concerns, and leads,
we believe, to a more abstract, flexible and disciplined approach.

But this is not the last word, since the graph can be derived from the function
definition. We hope this paper will inspire the implementors of the Program
feature in CoQ to define this inductive relation automatically from the Program
construction. We would then not need to do the double work of first defining the
function and then its graph with the risk of mistakes such duplication implies.

4.1 Future work

We consider the following extensions to this research, in the definitions and
proofs of the algorithms, and in the specific COQ engineering of our strategy:

— we have only considered here a naive reachability algorithm; nevertheless,
by identifying the soundness and completeness lemmas, we are able to drop
in any other replacement step function rstep having these properties; in-
deed, one may make the definition of the graph relation compositional in the
abstract graph of such a step function; we intend to explore this in future
publications;

— the algorithm itself is presented here purely concretely in terms of lists, but
the correctness proof should be presented as factored through a finite set
representation;

— the definition of reachable we made is tail-recursive, following the iterative
prototype of its classical, imperative forebear; so a priori it must be run to
completion in order to spit out the first element of its result. But a modest
tweak to the definition can ensure that at each iteration, the new visited
node becomes visible in the output immediately, making the definition a
productive one. This opens the way to considering the problem of verifying
a co-inductive definition of reachable for infinite graphs;

— going beyond the hypothetical integration of Program with the graph ma-
chinery, as already envisaged by the first author [2], one could imagine
not only systematically synthesising and applying the canonical inductive
choice of graph induced by a function definition, but further still to con-
sider parametrising the machinery on a user-supplied such choice, with the
canonical choice as a default.

But such considerations must wait: for now, it is time to terminate the paper!
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A Coq source pearl.v

This appendix (generated with cogdoc) is provided for completeness and the con-
venience of reviewers. The full development, including the util.v,list_util.v,
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and fix_measure_utils.v utility files, may be obtained from the authors at
www.cs.ru.nl/~ james/2009-TPHOLS. We used the current (8.2) release of CoQ.
Require Import List.

Require Import util.

Require Import list_util.

Require fix_measure_utils.

Require Import Program.

Require Import Wi_nat.

Set Implicit Arguments.

Module REACHABILITY.
Section definitions.

Variables (State: Type) (trans: State — State — Prop).

Inductive reachable: State — State — Prop :=
| reachable_refl s: reachable s s
| reachable_next a b c: reachable a b —
trans b ¢ — reachable a c.

Lemma reachable_trans a b: reachable a b —
V ¢, reachable b ¢ — reachable a c.
Proof with auto.
induction 2...
apply reachable_next with b...
Qed.

End definitions.
End REACHABILITY.

Hint Constructors reachability.reachable.

Record DiGraph: Type := Build
{ Vertex: Set
; Vertex_eq_dec: V (v v”: Vertex), decision (v = v’)
; vertices: list Vertex
; vertices_exhaustive: V v, In v vertices
; edges: Vertex — list Vertex
; edges_NoDup: V v, NoDup (edges v)
1.

Hint Resolve edges_NoDup.

Hint Immediate edges_NoDup.

Hint Immediate vertices_exhaustive.

Implicit Arguments edges [d].

Section contents.
Variable G: DiGraph.
Let Edge (v w: Vertex G): Prop := In w (edges v).
Let ved := Vertex_eq_dec G. Let subtrV := subtr ved.
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Let SubsetV := list (Vertex G).
Let emptyV : SubsetV := [|. Hint Unfold emptyV.
Let addV v vs : SubsetV := v :: vs. Hint Unfold addV .

Variable start: SubsetV.
Hypothesis NoDup_start: NoDup start.

Let reachable v: Prop := 3 s,
In s start A reachability.reachable Edge s v.

Lemma reachable_start v: In v start — reachable v.
Proof. firstorder. Qed.

Hint Resolve reachable_start.

Lemma reachable_next v: reachable v — ¥V w, Edge v w — reachable w.
Proof with auto.

intros. repeat destruct H. 3 z. split...

apply reachability.reachable_next with v...
Qed.

Definition Sound (ss: SubsetV): Prop :=V v, In v ss — reachable v.
Hint Unfold Sound.

Lemma Sound_empty: Sound emptyV . repeat intro. elim H. Qed.
Hint Immediate Sound_empty.

Definition Complete (ss: SubsetV): Prop := V v, reachable v — In v ss.

Definition GComplete (vs ws rs: SubsetV): Prop :=
closed_under Edge rs A incl ws rs A incl vs rs.

Lemma gcomplete_complete vs: GComplete [| start vs — Complete wvs.
Proof. unfold Complete, GComplete.

intros vs [c [i j]] v [s [b d]]-

induction d; eauto.
Qed.

Definition Specification rs : Prop := Sound rs A Complete rs.

Definition rstep vs w ws :—
(subtrV (edges w) ((addV w vs) ++ ws)) ++ ws.

Lemma rstep_Sound_lemma vs w ws:
incl (rstep vs w ws) ((edges w) ++ ws).
Proof with auto. unfold rstep, subtrV.
repeat intro.

destruct (in_app-or - _ _ H)...
destruct (In_subtr _ _ _ _ HO0)...
Qed.

Lemma rstep_GComplete_lemma vs w ws: incl ws (rstep vs w ws).
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Proof with auto.
repeat intro.

apply in_or_app...
Qed.

Lemma rstep_Invariant_lemma vs w ws:

incl (subtrV (edges w) (addV w wvs)) (rstep vs w ws).

Proof with auto.
repeat intro.
simpl in H.
unfold rstep. simpl.
destruct (snd (In_remove _ _ _ _) H).
destruct (In_subtr - - _ _ HO0).
destruct (In_dec ved a ws)...
apply in_or_app.
left.
apply In_remove’...
apply subtr_In...
intro.
destruct (in_app_or _ _ _ H/)...
Qed.

Let neighbours := flat_map (Qedges G).

Definition Invariant vs ws: Prop := incl (neighbours vs) (ws ++ vs).

Lemma Invariant_empty [: Invariant emptyV [.
Proof. unfold Invariant. intuition. Qed.

Hint Immediate Invariant_empty.

Lemma Invariant_preserved vs w ws:
Invariant vs (addV w ws) —
Invariant (addV w wvs) (rstep vs w ws).
Proof with auto. unfold Invariant.
intros.
unfold neighbours in x. simpl.
apply incl_app.
repeat intro.
destruct (In_dec ved a (addV w vs))...
apply in_or_app.
left.
apply rstep_Invariant_lemma...
apply subtr_In...

apply incl_tran with ((addV w ws) ++ vs)...
apply incl_app.

apply incl_cons...

eapply incl_appr...

unfold addV ...

19
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apply incl_appl.

apply incl_appr...

apply incl_appr...

unfold addV ...

unfold incl. eauto.
Qed.

Lemma Invariant_closed rs: Invariant rs emptyV — closed_under Fdge rs.
Proof with auto.

intros. apply closed_by_flat_map_incl...
Qed.

Definition measureV (vs: SubsetV): nat := length (subtrV (vertices G) vs).

Lemma measureV _decrease ws w vs:

Disjoint (w :: ws) vs — measureV (w :: vs) < measureV vs.
Proof.

intros. unfold measureV . apply remove_length_lt.

eapply subtr_In. eauto. apply (fst (Disjoint_cons H)).
Qed.

Definition Termination (vs ws: SubsetV): Prop :=
NoDup ws A Disjoint ws vs.

Lemma Termination_start: Termination emptyV start.
Proof. split; auto. intro. intuition. Qed.
Hint Resolve Termination_start.

Lemma NoDup_rstep vs w ws:

NoDup (addV w ws) — NoDup (rstep vs w ws).
Proof with auto.

intros.

inversion_clear H.

apply NoDup-app...

apply NoDup_subtr...

repeat intro.

destruct (snd (In_remove ved _ _ _) H).
destruct (In_subtr ved - - _ H3)...
destruct (not_In_app - - - H6)...

Qed.

Lemma Disjoint_rstep vs w ws:
NoDup (addV w ws) — Disjoint (addV w ws) vs — Disjoint (rstep vs w

s) (addV w vs).

Proof with auto.
intros.
inversion_clear H.
destruct (Disjoint-cons H0).
unfold rstep, subtrV.
repeat intro.
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destruct (in_app_or _ _ _ H/)...
destruct (In_subtr _ _ _ _ H6)...
destruct H)5.
subst...
destruct (H3 z)...
Qed.

Lemma Termination_preserved vs w ws:
Termination vs (addV w ws) —
Termination (addV w wvs) (rstep vs w ws).

Proof with auto. unfold Termination.
intros.
destruct H.
split.

apply NoDup_rstep...
apply Disjoint_rstep...

Qed.

Program Fixpoint reachables_worker (visited: SubsetV)
(waiting: { ws | Termination visited ws })
{measure measureV wvisited}: SubsetV :=
match waiting with

| nil = wisited
| w ez ws = reachables_worker (addV w visited) (rstep wvisited w ws)
end.

Next Obligation.Proof with auto. destruct H. apply measureV _decrease
with ws... Qed.
Next Obligation.Proof with auto. apply Termination_preserved... Qed.

Program Definition reachables: SubsetV
:= @reachables_worker emptyV start.

Lemma rw_isEta: isEta _ reachables_worker. apply isEta_wit. Defined.
Definition reachables_worker(O :— unEta rw_isEta.

Implicit Arguments reachables_worker0 [].

Lemma isFix_measure_sub:

fix_measure_utils.isFix_measure_sub measureV _ reachables_worker0.
Proof.

unfold reachables_worker(). simpl.

apply fix_measure_utils.show_isFix_measure_sub.
Defined.

Lemma reachables_workerO_ind_aux
(P:V (vs: SubsetV) (ws: {I | Termination vs 1}), SubsetV — Prop)
(Pbase: ¥ vs a, P vs (exist - emptyV a) vs)
(Prec: ¥ vs w ws p 18,
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P (w :: vs) (exist _ (rstep vs w ws) p) rs — V mp,
P vs (exist _ (w::ws) mp) rs):
Y wisited waiting, P visited waiting (Qreachables_worker( visited waiting).
Proof with auto.
do 4 intro.
pattern visited, (reachables_workerQ visited).
apply (fix_measure_utils.rect isFix_measure_sub).
clear wvisited.
intros.
rename ¥ into visited.
destruct waiting.
rename z into wailing.
destruct waiting; simpl...
apply (Prec - - _ _ _ (X - _ (exist _ (rstep wisited v waiting) _))).
Qed.

Lemma reachables_workerO_ind (P:V (vs ws rs: SubsetV'), Prop)
(Pbase: ¥ vs, P vs emptyV vs)
(Prec: ¥ vs w ws rs, P (addV w vs) (rstep vs w ws) rs —
P vs (w :: ws) rs):
Y vs ws, P vs (‘ws) (reachables_worker0 vs ws).
Proof with auto.
do 5 intro. pattern vs, ws, (reachables_worker0 vs ws).
apply reachables_workerO_ind_aux...
simpl.
intros.
clear mp. apply Prec...
Qed.

Lemma sound vs ws: Sound vs —
Sound (‘ws) — Sound (reachables_worker(Q vs ws).
Proof with simpl; auto.
do 2 intro.
pattern vs, (‘ws), (reachables_worker0 vs ws).
apply reachables_workerO_ind; unfold Sound...

intros.
apply H... intuition.
intros.
destruct (in-—app-or - — - (rstep_Sound_lemma _ _ - _ H3))...
apply reachable_next with w...
Qed.

Lemma complete vs ws: Invariant vs (‘ws) —
GComplete vs (‘ws) (reachables_worker0 vs ws).
Proof with unfold emptyV, addV; simpl; auto.
do 2 intro.
pattern vs, (‘ws), (reachables_worker0 vs ws).
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apply reachables_worker(_ind; unfold GComplete; intros.

intuition.
apply Invariant_closed...
unfold emptyV ...
destruct H. apply Invariant_preserved...
unfold addV in H1; destruct HI.
intuition...
apply incl_cons...
apply incl_tran with (rstep vs0 w ws0)...
apply rstep-GComplete_lemma.
repeat intro...
Qed.

Program Definition reachablesO: { rs | Specification rs }
:= Q@reachables_workerQ emptyV start.

Next Obligation.
Proof with auto. unfold Specification.
split.
apply sound...
apply gcomplete_complete...
apply complete...
Qed.

Program Fixpoint reachables_workerl
(visited: { vs | Sound wvs })

23

(waiting: { ws | Sound ws A Termination visited ws A Invariant visited ws})

{measure measureV visited }:
{ rs | Sound rs A GComplete visited waiting rs } :=
match waiting with
| nil = wisited

| w ez ws = reachables_worker! (addV w visited) (rstep visited w ws)

end.
Next Obligation.

Proof with auto.
destruct H; destruct HI...
repeat split...
apply Invariant_closed...
Qed.

Next Obligation.

Proof. unfold Sound in X. simpl. intuition. subst. auto. Qed.

Next Obligation.
Proof. apply measureV _decrease with ws. firstorder. Qed.

Next Obligation.

Proof with simpl; auto.
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destruct H. destruct HI.

destruct (Termination_preserved HI).

destruct HI.

inversion_clear HI.

unfold Sound.

repeat split; intros...
destruct (in_app_or _ _ _ (rstep_Sound_lemma visited w ws _ HI))...
apply reachable_next with w...

apply Invariant_preserved...

Qed.

Next Obligation. Proof with auto.
match goal with
[ F context[reachables_worker1 ?a 7b] | =
destruct (reachables_workerl a b)
end.
simpl in X. clear reachables_workerl. subst.

unfold addV, GComplete, Invariant in X.
intuition...
apply incl_cons...
apply incl_tran with (rstep visited w ws)...
apply rstep_-GComplete_lemma.
repeat intro...
Qed.

Program Definition reachablesl: { rs | Specification rs }
:= @reachables_workerl emptyV start.

Obligation Tactic := idtac.

Next Obligation.
Proof with intuition; auto. unfold Specification.
match goal with
[ F context[reachables_workerl ?a ?b] | =
destruct (reachables_workerl a b)
end.
simpl in X.
split...
apply gcomplete_complete...
Qed.

Obligation Tactic :— program_simpl.

Inductive Reachable_rel: V (visited waiting result: SubsetV'), Prop :=
| reachable_empty vs: Reachable_rel vs nil vs
| reachable_cons vs w ws rs:
Reachable_rel (w :: vs) (rstep vs w ws) rs —
Reachable_rel vs (w :: ws) rs.

Hint Constructors Reachable_rel.
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Lemma sound2 vs ws rs: Reachable_rel vs ws rs —
Sound vs — Sound ws — Sound rs.

Proof with simpl in X; auto.
unfold Sound.
induction 1...
intros. apply IHReachable_rel...
intros. destruct HS3...
intros. destruct (in_app_or _ _ _ (rstep_Sound_lemma _ _ _ _ H3))...
apply reachable_next with w...
Qed.

Lemma complete2 vs ws rs: Reachable_rel vs ws rs —
Invariant vs ws — GComplete vs ws rs.
Proof with simpl in X; auto. unfold G Complete.
induction 1; intros.
split...
apply Invariant_closed...
destruct [HReachable_rel. apply Invariant_preserved...
intuition; repeat intro...
destruct H2. subst...
apply H3.
apply (rstep-GComplete_lemma vs w ws)...
Qed.

Program Fixpoint reachables_worker2
(visited: SubsetV)
(waiting: { ws | Termination visited ws })
{measure measureV wisited}: { rs | Reachable_rel visited waiting rs } :=
match waiting with

| nil = wvisited
| w:: ws = reachables_worker2 (addV w visited) (rstep visited w ws)
end.

Next Obligation.Proof with auto. destruct H. apply measureV _decrease
with ws... Qed.

Next Obligation.Proof with auto. apply Termination_preserved... Qed.

Next Obligation.Proof with auto. apply sig-self. subst... Qed.

Program Definition reachables2: { rs | Specification rs }
:= @reachables_worker2 emptyV start.

Next Obligation.
Proof with auto. unfold Specification.
destruct (@Qreachables_worker2 empty V'
(exist (fun | = Termination emptyV 1) start reachables2_obligation_1))...
simpl in X.
split.
apply (sound2 r)...
apply gcomplete_complete...
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apply (complete2 r)...
Qed.

Variable Rstep : V (visited : SubsetV)(w: Vertex G)(waiting step: SubsetV),
Prop.

Hypothesis Rstep_Sound : ¥ vs w ws S,V r: Rstep vs w ws S, incl S ((edges
w) ++ ws).

Hypothesis Rstep_GComplete : ¥ vs w ws S,V r: Rstep vs w ws S, incl ws
S.

Hypothesis Rstep_Invariant : ¥ vs w ws S,V (r: Rstep vs w ws S),

incl (neighbours (addV w wvs)) (S ++ (addV w vs)).
Hypothesis Rstep- Termination : ¥V vs w ws S,V (r: Rstep vs w ws §),
Termination vs (addV w ws) — Termination (addV w vs) S.

Inductive Reachable_abs
(Rstep : ¥ (visited: SubsetV)(w: Vertex G)(waiting step: SubsetV), Prop)
2V (visited waiting result: SubsetV'), Prop :=
| reachable_abs_empty vs: Reachable_abs Rstep vs nil vs
| reachable_abs_cons vs w ws ss rs : Rstep vs w ws $s —
Reachable_abs Rstep (w :: vs) ss rs —
Reachable_abs Rstep vs (w :: ws) rs.

Hint Constructors Reachable_ abs.

Lemma sound_abs vs ws rs: Reachable_abs Rstep vs ws rs —
Sound vs — Sound ws — Sound rs.

Proof with simpl in X; auto.
unfold Sound.
induction 1...
intros. apply IHReachable-abs...
intros. destruct H/...
intros. destruct (in_app-or - - - (QRstep_Sound - - - - H _ H}))...
apply reachable_next with w...
Qed.

Lemma complete_abs vs ws rs: Reachable_abs Rstep vs ws rs —
Invariant vs ws — GComplete vs ws rs.
Proof with simpl in X; auto. unfold Inwvariant, GComplete.
induction 1; intros.
split...
apply Invariant_closed...
destruct IHReachable_abs. apply (QRstep_Invariant - - _ _ H)...
destruct H3.
intuition; repeat intro...
destruct H5. subst...
eapply HS3... apply (Rstep- GComplete H)...
Qed.

End contents.



