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Kinna, Dan Synek, and Eelis van der WeegenInstitute for Computing and Information S
ien
esRadboud University NijmegenHeijendaalseweg 135, 6525 AJ Nijmegen, The NetherlandsAbstra
t. We present a 
omparison of approa
hes to the representa-tion and veri�
ation of non-stru
turally re
ursive algorithms in the typetheory CIC of the Coq proof assistant. We illustrate our ideas in the
ontext of rea
hability algorithms on (�nite) graphs.Our approa
h makes use of Sozeau's Program ma
hinery, a relatively re-
ent addition to Coq, whi
h permits a very 
lean representation of fun
-tional programs in CIC. We 
onsider: a version of the algorithm whi
honly fo
uses on the termination argument, for whi
h we then give a di-re
t proof of partial 
orre
tness; a de�nition and proof using Program `inone go'; and a �nal variant, where we 
on�ne the use of Program to total
orre
tness, proving partial 
orre
tness via the graph of the fun
tion.This leads to some observations for Coq users and implementors 
on-
erning the traditional separation of 
on
erns in program veri�
ation.1 Introdu
tionThis paper makes another 
ontribution to the literature and 
ulture of system-ati
 formal reasoning in 
onstru
tive type theory about non-stru
turally re
ur-sive fun
tions. We 
onsider algorithms for the problem of rea
hability in �nitedire
ted graphs, represented in the type theory CIC of the proof assistant Coq.1.1 The ProblemWhat does the appli
ation-oriented developer of proofs do to streamline the taskof 
he
king or proving properties of algorithms, when these do not enjoy `natural'representation in the (programming) language of their 
hosen proof assistant?A re
urring idea when proving programs 
orre
t is the separation of 
on-
erns. We �rst want to de�ne a program, then prove its partial 
orre
tness andthen prove that it terminates for all suitable arguments. When working in typetheory, this is not a problem when the fun
tion 
an be de�ned by stru
turalre
ursion, sin
e termination is then a 
onsequen
e of its de�nition. De�nition bynon-stru
tural re
ursion is more problemati
, as we then 
annot express it as afun
tion until we have proved it terminates. We typi
ally might do this by well-founded re
ursion, but that 
an lead to a term whose intensional 
omputationalbehaviour is at odds with the re
ursive spe
i�
ation we have in mind.



2 James M
Kinna, Dan Synek, and Eelis van der WeegenAnother problem, also a separation of 
on
erns, is how to 
hoose when tospe
ify the properties of the fun
tion we are de�ning. Using the propositions-as-types paradigm we 
an spe
ify the properties by an expressive Σ-type and thenreason about the fun
tion from the input-output properties so spe
i�ed. But thismeans that we need to anti
ipate the properties we need the fun
tion to haveall at on
e by giving it an expressive enough type. An alternative is to prove theproperties of the fun
tion as needed; but this means that we over and over againneed to do some kind of well-founded indu
tion whi
h is appropriately 
orrelatedwith the well-founded re
ursion de�ning the fun
tion; this seems unne
essarily
ompli
ated, and 
an 
ertainly be
ome so in pra
ti
e.A 
anoni
al solution, and the one we elaborate upon here, is to de�ne anindu
tion prin
iple on
e and for all from the de�nition of the fun
tion. Oneway to do this is to indu
tively de�ne a relation, the extensional graph of thefun
tion, 
orresponding to the re
ursive 
all stru
ture of the fun
tion we arede�ning. The indu
tion prin
iple derived from this relation is pre
isely the oneneeded to prove any property about the fun
tion, sin
e its de�nition 
apturesexa
tly the intermediate re
ursive 
alls arising from a given 
all to the fun
tion,and hen
e the 
orresponding indu
tion hypotheses.Having separated the indu
tion prin
iple from the fun
tion we wish to de�newe 
an prove the properties we want using the indu
tion prin
iple indu
ed bythe graph without referen
e to the well-de�nedness or otherwise of the fun
tion.We 
an then de�ne the fun
tion using the Program 
ommand using the minimal
riteria to establish termination, namely inhabitation of the graph. Indeed, beingindu
tively de�ned, the graph en
apsulates the minimal properties whi
h any
all of the fun
tion, assumed to be well-de�ned, must satisfy; thus we may re
over(a version of) least �xed-point semanti
s in the 
ontext of a total type theory.This paper shows a way to fa
tor that development, in the 
ase of a rea
habil-ity algorithm, into a termination argument (justifying the existen
e of a fun
tion)and a separate partial 
orre
tness proof, whi
h makes no 
ommitment to the ex-isten
e of the fun
tion. The key enabling devi
e has already been alluded to: ame
hanism for obtaining the indu
tive hypotheses asserting the well-de�nednessof intermediate re
ursive 
alls.1.2 Related WorkUnsurprisingly, there is a great deal of related work; this tou
hes on some ofthe oldest problems and te
hniques in 
omputer s
ien
e, as well as the mostre
ent. Our original inspiration for 
onsidering the indu
tively-de�ned graph as-so
iated with a fun
tion 
omes from M
Carthy's seminal work on 
omputational(or re
ursion) indu
tion[1℄. Gérard Huet was another early in�uen
e, des
ribingindu
tively-de�ned families in type theory as �a kind of typed Prolog�. In unpub-lished work[2℄ the �rst author (with Conor M
Bride) has explored its appli
ationin the 
ontext of Epigram fun
tion de�nitions; the graph is an example of theirversion of Wadler's idea of view [3℄.



Proof Pearl: Program-ming rea
hability algorithms in Coq 3Sozeau's re
ent PhD thesis work [4, 5℄ introdu
ed the impressive Programsuite of 
ommands and ta
ti
al support to the Coq system. We will explain itsbehaviour and usage below.Slind's PhD thesis work [6℄ o�ers users of both HOL and Isabelle/HOL agreat deal of similar fun
tionality with the TFP pa
kage, but a dire
t 
ompar-ison between the approa
hes seems di�
ult sin
e CIC is by design a 
ompu-tational meta-theory, distinguishing intensional obje
ts (algorithms/fun
tions)whose evaluation is part of the power of the theory, from their logi
al (exten-sional) behaviour established by proof.Working at Sophia-Antipolis with the Coq system itself, Bertot and Balaa [7℄
onsidered the problems asso
iated with fun
tions de�ned by well-founded re
ur-sion. Their work draws attention to many of the problems arising from attempt-ing to relate intensional behaviour of su
h fun
tions to their extensional proper-ties given by their �xed-point equation. Later, Barthe and his 
o-workers [8, 9℄developed the Fun
tion ma
hinery for generating the indu
tively-de�ned graphand its asso
iated indu
tion prin
iple automati
ally from a CIC-de�nable fun
-tion. Their work furthermore permitted a 
lean syntax for fun
tion de�nitionboth by stru
tural re
ursion and by well-founded re
ursion. It is unfortunatethat the 
urrent implementation of these ideas remains buggy, and does notintegrate well with the new Program infrastru
ture.A 
ompanion approa
h to reasoning with graphs is the so-
alled `Bove-Capretta' method of working with indu
tively-de�ned domain predi
ates [10�12℄.As the name implies, these predi
ates de�ne the domain of de�nition of a fun
-tion; they are used as a stru
ture over whi
h to do re
ursion in order to de�neotherwise non-stru
turally re
ursive fun
tions in type theory. Extensionally, theymay be seen as pre
isely the domains of the 
orresponding indu
tively-de�nedgraphs. Spa
e forbids a detailed 
omparison between their approa
h and ours.Work on algorithms on dire
ted graphs (we 
rave the indulgen
e of the readerover the 
lash in these two uses of the term `graph') and their 
orre
tnessproofs [13, notably℄ goes ba
k at least as far as M
Carthy's work, and a sur-vey seems an impossible endeavour here. The 
lassi
al literature presents su
hthings in imperative, not fun
tional, style. As regards ma
hine-
he
ked develop-ments in proof assistants, as mu
h to our surprise as were Moore and Zhang'searlier observations about Dijkstra's SSSP algorithm [14℄, there seem 
ompar-atively few examples of how to do this kind of thing without relatively heavyma
hinery. A notable 
omparison point is Hurd's formalisation in HOL in the
ontext of a (mu
h larger) development [15℄. Tobias Nipkow drew our attentionto a very 
losely related, but entirely independent, development by Nishiharaand Minamide in Isabelle/HOL [16℄; their approa
h involves a nested re
ursivede�nition of depth-�rst sear
h, with the asso
iated 
ompli
ations in reasoning.1.3 ContributionIn the 
ontext of hybrid systems veri�
ation in the the Coq system, we neededto 
he
k properties of various graph rea
hability algorithms. We isolated thework of this paper from that mu
h larger development.
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Kinna, Dan Synek, and Eelis van der WeegenOur prin
ipal 
ontribution is to 
ompare various versions of how to de�ne,and prove the 
orre
tness of, the algorithm rea
hables explored in detail below.prototype We re
ap the imperative iterative spe
i�
ation of the algorithm de-�ned in pseudo
ode, together with a sket
h of its 
orre
tness proof.simplest version We �rst de�ne a `plain' version of the algorithm, as a tail-re
ursive `worker' fun
tion rea
hables worker, and a �at `wrapper' fun
-tion rea
hables. These operate on lists (representing subsets), so we needto introdu
e non-dupli
ation hypotheses for the representation to be valid.We also de�ne the `step' fun
tion rstep, implementing the loop body inthe imperative prototype. The only non-trivial proof obligation in the use ofProgram is that required to prove termination. This requires formalisationof the termination invariant and the measure fun
tion.version 0 Now, having su

essfully de�ned these fun
tions, in order to proveanything about them, one approa
h is to develop dire
tly an indu
tion prin
i-ple `by hand' for rea
hables worker and rea
hables, whi
h isolates theirlogi
al properties from the parti
ular method (by well-founded re
ursion)whi
h Program uses internally to build de�nitions. In fa
t, by a quirk of theProgram implementation, we need to tweak the fun
tions slightly, yieldingrea
hables worker0 and rea
hables0. The indu
tion prin
iple we deriveis moreover `polluted' with the need to expli
itly proje
t lists out of the
Σ-types used in our de�nitions. We use the indu
tion prin
iple to provesoundness and 
ompleteness of our de�nitions; we refer ba
k to a 
olle
tionof lemmas proved about the various predi
ates and invariants, espe
iallyregarding how they intera
t with the step fun
tion rstep.version 1 We next 
onsider a dire
t proof of 
orre
tness, organised as a singleProgram Fixpoint de�nition, of rea
hables worker1 and rea
hables1.This version yields a partial 
orre
tness and termination argument most
losely resembling the 
lassi
al Dijkstra-Hoare point of view. Both the inputpredi
ates and result types be
ome entangled with information ne
essaryonly for termination. Moreover, we need to use the hypotheses arising fromwell-founded indu
tion in order to reason indu
tively as if the fun
tion iswell-de�ned.version 2 We then fa
torise the 
orre
tness proof, by introdu
ing the relationalspe
i�
ation of the indu
tively-de�ned graph of rea
hables worker (we ig-nore the 
ase of rea
hables, as it has no interesting indu
tive stru
ture).By indu
tion on this relational spe
i�
ation we 
an prove the desired (par-tial) 
orre
tness properties; the termination argument is as before, but nowthe initial 
onditions are as in the �rst version, while the result type spe
i-�es that the fun
tion witnesses the graph relation. The proof of this is verynearly automati
, and 
ould be made so, we believe, in a future version ofProgram.version . . . All of the foregoing is, in fa
t abstra
t with respe
t to the proper-ties of the step fun
tion rstep. Indeed, we 
ould keep abstra
ting, based onthe graph relation idea, moreover in a 
ompositional way. But for the sakeof this paper (and the reader!) we leave su
h extensions to future papers.
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hability algorithms in Coq 51.4 OutlineWe begin in Se
tion 2 with the 
lassi
al imperative spe
i�
ation and veri�
ationof an abstra
t rea
hability algorithm. We then show in Se
tion 2.1 how this givesrise to a proto-de�nition in the Gallina spe
i�
ation language of Coq, remarkingon the limitations of the raw type
he
ker in attempting to 
he
k wellformedness(in parti
ular, termination) of su
h de�nitions.We then sket
h in Se
tion 2.2 how Sozeau's Program ma
hinery 
an help us,and in parti
ular how it might be used to support the separation of 
on
erns.We then des
ribe the various versions of our 
on
rete (depth-�rst) fun
tionalimplementation of rea
hability, and show how the use of Program leads to aless-or-more smooth organisation of the veri�
ations whi
h arise in ea
h 
ase.We dis
uss the 
onsequen
es ea
h version has for the separation of 
on
erns andthe pragmati
s of working with Coq.Finally, we 
on
lude with some observations about the further abstra
tioninherent in our development and the prospe
ts for extensions and future work.2 Spe
ifying and verifying the algorithmThe graph rea
hability algorithm we formalise 
an be spe
i�ed imperatively. Itsde�nition and 
orre
tness proof are routine, and in
luded only for the sake of
ompleteness.pseudo
ode prototype We assume given a �nite dire
ted graph G. The operators+ and - denote set union and set di�eren
e, respe
tively, de�ned on subsets ofthe set verti
es of the verti
es in G.Algorithm rea
hables.inputs: subset "start" of verti
es.pre-
ondition:output: subset "result" of verti
es.post-
ondition:for all v, (v in result) <�> (v rea
hable from start).beginlo
als: subsets "visited" and "waiting".visited:= {};waiting:= start;while (waiting <> {}){pi
k w in waiting;visited:= visited + {w};waiting:= (neighbours w) + waiting - visited;};result:= visited;end
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Kinna, Dan Synek, and Eelis van der Weegeninformal proof The partial 
orre
tness of algorithm rea
hables follows fromthe following equivalent of the post-
ondition:post-
ondition: for all v,(v in (waiting + visited)) <�> (v rea
hable from start).This is be
ause on termination of the loop we have waiting = {} and hen
eon termination of the algorithm, result = waiting + visited . The 
onditiontrivially holds on loop entry, sin
e then waiting + visited = start . Unfor-tunately, the 
ondition alone is not a loop invariant.The subset of verti
es R rea
hable from start may be 
hara
terised indu
-tively as the smallest subset S satisfying two properties:� for all v, v in start -> v in S� S is 
losed under neighboursTo show R 
ontains result on termination (soundness) amounts to observingthat at ea
h iteration, the subset waiting + visited grows only by the additionof neighbours, and hen
e, indu
tively, by verti
es rea
hable from start .Similarly waiting + visited always satis�es the �rst property, that is tosay for all v, v in start -> v in (waiting + visited) is a loop invari-ant. Hen
e on termination of the algorithm, result will 
ontain R (
omplete-ness) provided we 
an satisfy the se
ond property.So we are left with Dijkstra's invariant whi
h establishes this:invariant: for all v,(v in (neighbours(visited))) -> (v in (waiting + visited)).On exit, similarly to above, the property redu
es tofor all v, (v in (neighbours(result))) -> (v in result).and hen
e result is 
losed under neighbours as required. It trivially holdson loop entry, where neighbours(visited) = neighbours({}) = {} . Finally,one proves that it is maintained on ea
h iteration by inspe
tion of the loop body.Total 
orre
tness follows if we 
an show that a variant measure de
reaseson ea
h iteration: the size of verti
es - visited is a suitable su
h measure,provided we 
an show that on ea
h iteration, a `new' vertex is added to visited .We remark without further 
omment that this 
an be se
ured with the additionalloop invariant stating that waiting and visited are disjoint.2.1 Towards de�ning the algorithm in CoqWe begin with an initial preamble loading list utilities and other library �les (hereomitted; please see the full development for details), followed by an algebrai
stru
ture for dire
ted graphs, and rea
hability, 
hara
terised in the usual way asthe re�exive-transitive 
losure of a binary relation.



Proof Pearl: Program-ming rea
hability algorithms in Coq 7Variables (State: Type) (trans: State -> State -> Prop).Indu
tive rea
hable: State -> State -> Prop :=| rea
hable refl s: rea
hable s s| rea
hable next a b 
: rea
hable a b ->trans b 
 -> rea
hable a 
.Re
ord DiGraph: Type := Build{ Vertex: Set; Vertex eq de
: forall (v v': Vertex), de
ision (v = v'); verti
es: list Vertex; verti
es exhaustive: forall v, In v verti
es; edges: Vertex -> list Vertex; edges NoDup: forall v, NoDup (edges v)}.We then de�ne rea
hability in the graph from an initial set of verti
es start;this property is rather straightforwardly 
losed under the edge relation.Variable G: DiGraph.Let Edge (v w: Vertex G): Prop := In w (edges v).Let SubsetV := list (Vertex G).Let emptyV : SubsetV := [℄. Hint Unfold emptyV.Let addV v vs : SubsetV := v :: vs. Hint Unfold addV.Variable start: SubsetV.Hypothesis NoDup start: NoDup start.Let rea
hable v: Prop := exists s,In s start /\ rea
hability.rea
hable Edge s v.Lemma rea
hable start v: In v start -> rea
hable v.As a pure fun
tional program (CIC term), we fa
tor the imperative 
ontrol stru
-ture into a worker whi
h expresses the result as a (tail-re
ursive) fun
tion of thelo
al variables, and a wrapper, whi
h initialises them.pseudo-Coq fragment The wrapper fun
tion (minus typing de
oration) is verystraightforward.Definition rea
hables:= rea
hables worker emptyV start.The fun
tional prototype of the worker fun
tion relies on a de�nition of a fun
tionrstep implementing the assignments of the loop body. The pi
k operation ismodelled by pattern mat
hing on the waiting list: when the list is empty, thefun
tion terminates, returning a result list given de�nitionally by (the �nalvalue of) visited .
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Kinna, Dan Synek, and Eelis van der WeegenFixpoint rea
hables worker (visited waiting: SubsetV) :=mat
h waiting with| nil => visited| w :: ws => rea
hables worker (addV w visited) (rstep visited w ws)end.where the step fun
tion rstep may be given dire
tly in Coq as follows:Definition rstep vs w ws :=(subtrV (edges w) ((addV w vs) ++ ws)) ++ ws.Sin
e the worker's re
ursion is non-stru
tural, we 
annot give it as an ordinaryFixpoint/mat
h style de�nition in Coq's Gallina verna
ular syntax. The mat
h
onstru
tion makes `ML-style' pattern mat
hing available to the user (the realstory is mu
h more powerful, but 
orrespondingly more 
ompli
ated, thanks tothe dependent types in CIC). The Fixpoint 
onstru
tion only supports the de�-nition of stru
turally re
ursive fun
tions, whose termination 
he
king is handledby a hard-wired synta
ti
 
he
k (`guarded by destru
tors') in the Coq type-
he
ker. This makes prototyping the program, and its 
orre
tness proofs, fall atthe �rst hurdle, and has been seen as a long-standing disadvantage of workingin type theory for 
erti�ed programming.2.2 What does Program do?Sozeau's Program extensions to this language give the programmer a mu
h more�exible range of a
tion:� the syntax is upwardly 
ompatible (one writes Program Fixpoint et
.);� termination may also be spe
i�ed by a measure fun
tion into a well-foundedordering;� the input and output types of the fun
tion may be 
onstrained by predi
atesin a way whi
h is transparent to the fun
tion body.Rather than perform a yes/no synta
ti
 
he
k, the Program ma
hinery thengenerates proof obligations for the user, mu
h in the style of PVS predi
atesubtyping, indu
ed by the stru
ture of the program one is attempting to de�ne.The `de�nition' is not a

epted by the type
he
ker until ea
h pending obli-gation has been dis
harged: so in this sense, the type
he
ker 
annot a

ept def-initions whi
h have not been proved terminating. However, the algorithm fortype
he
king-modulo-predi
ate-subtyping whi
h drives this ma
hinery does al-low the programmer:� to write partial fun
tions, if a suitable 
onservative domain predi
ate may bespe
i�ed; this leads to proof obligations on the appli
ation of su
h fun
tions;� to 
onstrain the result type, whi
h will lead to an obligation to prove thatproperty of the 
omputed answer;� to delay the obligation to show termination via the ordering.
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hability algorithms in Coq 9Further, the type
he
king algorithm follows the Fixpoint/mat
h stru
ture givenby the programmer, so mat
h will typi
ally lead to proof obligations 
orrespond-ing to ea
h 
ase, and use of Fixpoint generates an indu
tive hypothesis (guar-anteed by the well-founded re
ursion driving the termination proof) providing,for suitably 
onstrained inputs, the existen
e of re
ursive 
alls of the fun
tion.Now, Coq users may spe
ify fun
tions, their termination measures, and theirinput-output behaviour in advan
e of, or rather hand-in-hand with, ensuring thewell-de�nedness of su
h obje
ts. However, in doing so, it is easy to lose sight ofthe 
lassi
al separation of 
on
erns between termination and 
orre
tness: whilethese are given to the user of Program as separate obligations to dis
harge,nevertheless the `s
ript' obje
t whi
h de�nes su
h a fun
tion must be 
ompletedbefore any other useful work may be done.It seems that one must still prove total and partial 
orre
tness together. Notonly that, but an obje
t su

essfully de�ned by Program is only extensionallyequivalent to the programmer's re
ursive spe
i�
ation: ne
essarily so, as it isgiven internally by appeal to re
ursors over well-founded orderings. To proveanything about su
h a fun
tion after de�ning it leaves the user with the un-
omfortable task of exhuming from Program's internals exa
tly those appeals towell-founded re
ursion/indu
tion needed to massage the de�nition into the rightform.3 Using Program to de�ne and verify the algorithm3.1 Simplest VersionThe worker fun
tion itself may be given in the extended syntax as follows.Program Fixpoint rea
hables worker (visited: SubsetV)(waiting: { ws | Termination visited ws }){measure measureV visited}: SubsetV :=mat
h waiting with| nil => visited| w :: ws => rea
hables worker (addV w visited) (rstep visited w ws)end.The waiting argument is given a Σ-type, whose predi
ate Termination ex-presses the invariant required to show de
rease of the measure des
ribed earlier.Definition Termination (vs ws: SubsetV): Prop :=NoDup ws /\ Disjoint ws vs.Definition measureV (vs: SubsetV): nat :=length (subtrV (verti
es G) vs).This gives rise to the �rst of two generated obligations:NoDup (w :: ws) /\ Disjoint (w :: ws) vs ->measureV (w :: vs) < measureV vs.
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Kinna, Dan Synek, and Eelis van der Weegenand without building in the termination invariant Termination this lemmawould not be provable. Additionally we see a se
ond obligation generated, ex-pressing that the invariant holds for the arguments passed in the re
ursive 
alls.In other words, it must be shown that the invariant is preserved by rstep:Lemma Termination preserved vs w ws:Termination vs (addV w ws) ->Termination (addV w vs) (rstep vs w ws).The proof of this obligation is similarly straightforward. After both have beendis
harged, the 
onstant rea
hables worker is a
tually de�ned by Program. Itis de�ned in terms of Fix measure sub, whi
h en
apsulates the ma
hinery usedfor indu
tion over a measure, using the a

essibility predi
ate A

.The non-re
ursive wrapper is now de�nable, generating no proof obligations.Program Definition rea
hables: SubsetV:= �rea
hables worker emptyV start.Corre
tness Now that we have a working de�nition, it is time to start worryingabout 
orre
tness. For this algorithm, 
orre
tness 
an be split into soundness and
ompleteness. More spe
i�
ally, we would like to establish the following Σ-typefor the rea
hables fun
tion:Program Definition rea
hables: { rs | Spe
ifi
ation rs }:= �rea
hables worker emptyV start.where Spe
ifi
ation 
onsists of two 
onjun
ts:Definition Spe
ifi
ation rs : Prop := Sound rs /\ Complete rs.Soundness spe
i�es that everything 
omputed is indeed rea
hable:Definition Sound (ss : SubsetV): Prop := forall v, In v ss -> rea
hable v.Completeness spe
i�es that everything rea
hable is 
omputed. We indu
tivelygeneralise this notion, and establish its relationship to the loop exit property:Definition Complete (ss: SubsetV): Prop :=forall v, rea
hable v -> In v ss.Definition GComplete (vs ws rs: SubsetV): Prop :=
losed under Edge rs /\ in
l ws rs /\ in
l vs rs.(* termination lemma: when we finish, we have what we want *)Lemma g
omplete 
omplete vs: GComplete [℄ start vs -> Complete vs.
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hability algorithms in Coq 113.2 Version 0: Corre
tness by separate indu
tionIn a grossly simpli�ed view of the problem, one typi
ally proves properties of are
ursively de�ned fun
tion by indu
tion on the argument on whi
h the algo-rithm stru
turally re
urses. This way, in the 
ase of a re
ursive 
all, the fun
tioninvo
ation naturally unfolds to some 
ode applied to a simpler appli
ation, whi
his (hopefully) pre
isely the subje
t of the indu
tion hypothesis.For fun
tions de�ned by an ordinary Fixpoint, this strategy works �out of thebox�, without any additional ma
hinery. However, the fun
tion rea
hables workerwe de�ned is not an ordinary Fixpoint de�nition. As des
ribed above, it is ex-pressed indire
tly in terms of Fix measure sub whi
h does some intri
ate re
ur-sion on (proofs of) the a

essibility predi
ate A

, using a 
onstant 
orrespondingto the measure-de
reasing obligation we proved above. But that's not what theuser thinks of as the semanti
s of the re
ursive de�nition. Consequently, it ismost unnatural to try to appeal to the a
tual de
reasing argument's indu
tionprin
iple (Wf re
 or something), sin
e from a user's perspe
tive, the argumentto the re
ursive 
all is what gets �smaller�. Or rather: su
h a 
all is �earlier� inthe 
ourse of values 
omputed on the way to the top-level 
all. So what we reallywant is an indu
tion prin
iple saying:Lemma rea
hables worker0 ind (P: forall (vs ws rs: SubsetV), Prop)(Pbase: forall vs, P vs emptyV vs)(Pre
: forall vs w ws rs, P (addV w vs) (rstep vs w ws) rs ->P vs (w :: ws) rs):forall vs ws, P vs (`ws) (rea
hables worker0 vs ws).We 
an prove su
h an indu
tion prin
iple by unfolding the Wf measure subma
hinery and following the re
ursion over A

. In fa
t, however, we do not �ndourselves in this ideal world, at least not at �rst. We derive automati
ally (butwith some pain) the following prin
iple:Lemma rea
hables worker0 ind aux(P: forall (vs: SubsetV) (ws: {l | Termination vs l}), SubsetV -> Prop)(Pbase: forall vs a, P vs (exist emptyV a) vs)(Pre
: forall vs w ws p rs,P (w :: vs) (exist (rstep vs w ws) p) rs -> forall mp,P vs (exist (w::ws) mp) rs):forall visited waiting, P visited waiting (�rea
hables worker0 visited waiting).from whi
h we may, with further work, get the desired indu
tion prin
iple. Onesees in rea
hables worker0 ind aux the extra `junk' in the form of existentialwitnesses su
h as (exist (rstep vs w ws) p) for termination whi
h areonly there be
ause required by Program. In an ideal world, we would be able toprove properties like soundness and 
ompleteness while oblivious to termination
on
erns (and indeed, in se
tion 3.4 below we will show a way to 
omplete thisseparation of 
on
erns).Nevertheless, using the derived indu
tion prin
iple, we 
an prove soundnessand 
ompleteness:



12 James M
Kinna, Dan Synek, and Eelis van der WeegenLemma sound vs ws: Sound vs ->Sound (`ws) -> Sound (rea
hables worker0 vs ws).Lemma 
omplete vs ws: Invariant vs (`ws) ->GComplete vs (`ws) (rea
hables worker0 vs ws).But noti
e now the wrinkle in the ointment: the lemmas speak about thevalues (`ws) whi
h are �rst proje
tions from the de
orated Σ-types, and inpra
ti
e this kind of niggling detail, and its proliferation into other goals, 
anoverwhelm the non-expert user.3.3 Version 1: Integrated 
orre
tnessA very palatable alternative to the last solution involving a 
ustom indu
tionprin
iple, and in harmony with forty or �fty years of thought in imperativeprogram veri�
ation, is to integrate the 
orre
tness statement into the originalde�nition. That is, instead of writing a Program Fixpointwhi
h produ
es a barelist, we have it produ
e a Σ-de
orated list whi
h bundles up the soundness and
ompleteness proofs. Just as with the 
lassi
al informal sket
h of the proof, thisfor
es us to add new invariants to the input argument types in order to makethe resulting extra proof obligation provable. The result looks like this:Program Fixpoint rea
hables worker1(visited: { vs | Sound vs })(waiting: { ws | Sound ws /\ Termination visited ws /\ Invariant visited ws}){measure measureV visited}:{ rs | Sound rs /\ GComplete visited waiting rs } :=mat
h waiting with| nil => visited| w :: ws => rea
hables worker1 (addV w visited) (rstep visited w ws)end.We now get the all-too-imaginable proof obligations, for example in the 
aseof an empty waiting list:Next Obligation. (* the result in the nil 
ase meets the spe
 *)(* Sound visited /\ GComplete visited [℄ visited *)In all, there are �ve outstanding proof obligations, namely to 
he
k:� that the exit 
ondition of the re
ursion does indeed yield a sound and 
om-plete set of verti
es;� that the argument (addV w visited) to the re
ursive 
all is indeed sound;� that the 
onjun
tion of the soundness, termination and Dijkstra invariantsis indeed preserved by rstep;� that the termination measure does indeed de
rease;� that the Dijkstra invariant implies generalised 
ompleteness.



Proof Pearl: Program-ming rea
hability algorithms in Coq 13It is good to know that none of them is surprising, and en
ouraging that Programensures we see only these obligations. Nevertheless, it takes a 
ertain familiaritywith how it all works in order to untangle these goals, espe
ially the last one.So, while this approa
h may work, and indeed predi
tably so to someonefamiliar with both the problem and the proof assistant, it remains a problem thatthe termination and 
orre
tness invariants and arguments are now merged intothe same Σ-type de
orations and proof obligations, respe
tively. Consequently,it is hard to know for sure whi
h invariant is required for whi
h property, andonly by insisting on distin
t names and distin
t lemmas (used to prove the proofobligation) 
an one approximate any kind of separation of 
on
erns.Furthermore, su
h an approa
h 
learly does not s
ale: ea
h time one is in-terested in showing a new property, one has to ha
k the original de�nition (topush more and more invariants into the Σ-types) and ha
k the proof obligations(whose goal is now a bigger 
onjun
tion) to insert the proof of the new property.3.4 Version 2: using the graph relationThe problems su�ered by the above approa
hes arise from the following fa
ts:� that in this type theory, to reason about a fun
tion, that fun
tion must havebeen already proved terminating;� that the only �free� (primitive) indu
tion prin
iple to whi
h one may appeal,
orresponds to the stru
turally de
reasing argument, whi
h for a fun
tionde�ned with Program and measure is a mere implementation detail of thetermination proof;� that even if one 
ould obtain the desired indu
tion prin
iple, it would still bepolluted with Σ-de
oration only needed for termination; this is a ne
essary
onsequen
e of de�ning the fun
tion's type in this way.But the indu
tively-de�ned graph su�ers from none of these defe
ts, as ob-served by other authors before us. By shifting from intensional terms whose ter-mination is internally guaranteed by the type theory, to a formal obje
t thatrepresents a type of �eviden
e that the fun
tion is well-de�ned�, and whoseinhabitants must either be 
onstru
ted (by the user or ta
ti
s, when provingwell-de�nedness), or else when available as hypotheses are a witness to well-de�nedness, we get to �eat our 
ake and have it too�.For our parti
ular example, we obtain an �unpolluted� version of indu
tionfor rea
hables worker above, namely the 
anoni
al prin
iple asso
iated with:Indu
tive Rea
hable rel: forall (visited waiting result: SubsetV), Prop :=| rea
hable empty vs: Rea
hable rel vs nil vs| rea
hable 
ons vs w ws rs:Rea
hable rel (w :: vs) (rstep vs w ws) rs ->Rea
hable rel vs (w :: ws) rs.We 
an now prove soundness and 
ompleteness for (input, output) relatedby Rea
hable rel:



14 James M
Kinna, Dan Synek, and Eelis van der WeegenLemma sound2 vs ws rs: Rea
hable rel vs ws rs ->Sound vs -> Sound ws -> Sound rs.Lemma 
omplete2 vs ws rs: Rea
hable rel vs ws rs ->Invariant vs ws -> GComplete vs ws rs.Next, we show that there a
tually is a fun
tion rea
hables worker2 that
omputes outputs whi
h are related to the inputs by the graph relation. For this,we use Program Fixpoint for the �nal time on this problem:Program Fixpoint rea
hables worker2 (visited: SubsetV)(waiting: { ws | Termination visited ws }){measure measureV visited}: { rs | Rea
hable rel visited waiting rs } :=mat
h waiting with| nil => visited| w :: ws => rea
hables worker2 (addV w visited) (rstep visited w ws)end.This di�ers from the de�nition in 3.1 only in that the result type now ex-presses that the result is related to the inputs by the graph relation. The proofobligations generated are:� measure de
rease, proved as in 3.1;� preservation of the Termination invariant, as in 3.1;� a last obligation, whi
h 
ould be automated, whi
h essentially observes thatthe values of the fun
tion rea
hables worker2 satisfy the properties ex-pressed by 
onstru
tors of the Rea
hable rel relation, that is �it has there
ursive 
all stru
ture as spe
i�ed�.It is now routine to de�ne our �nal version rea
hables2 of the wrapper byProgram Definition rea
hables2: { rs | Spe
ifi
ation rs }:= �rea
hables worker2 emptyV start.whose termination obligations are pre
isely those of soundness and 
ompleteness.Now the partial 
orre
tness lemmas we proved via the graph 
ome to the fore:Next Obligation.Proof with auto. unfold Spe
ifi
ation.destru
t (�rea
hables worker2 emptyV(exist (fun l => Termination emptyV l) start rea
hables2 obligation 1))...simpl in *.split.apply (sound2 r)...apply g
omplete 
omplete...apply (
omplete2 r)...Qed.



Proof Pearl: Program-ming rea
hability algorithms in Coq 154 Con
lusionWe began with a traditional perspe
tive on program veri�
ation and the short-
omings of 
onventional type-theoreti
 approa
hes to representing non-stru
turallyre
ursive programs. We then showed how to progressively re�ne an approa
h tode�ning su
h fun
tions in CIC using the Program ma
hinery, 
on
luding with adevelopment whi
h separates partial 
orre
tness out as a purely logi
al a�air,and restri
ts the use of Program to proving termination. This perhaps surprising
on
lusion 
omes from paying attention to the separation of 
on
erns, and leads,we believe, to a more abstra
t, �exible and dis
iplined approa
h.But this is not the last word, sin
e the graph 
an be derived from the fun
tionde�nition. We hope this paper will inspire the implementors of the Programfeature in Coq to de�ne this indu
tive relation automati
ally from the Program
onstru
tion. We would then not need to do the double work of �rst de�ning thefun
tion and then its graph with the risk of mistakes su
h dupli
ation implies.4.1 Future workWe 
onsider the following extensions to this resear
h, in the de�nitions andproofs of the algorithms, and in the spe
i�
 Coq engineering of our strategy:� we have only 
onsidered here a naïve rea
hability algorithm; nevertheless,by identifying the soundness and 
ompleteness lemmas, we are able to dropin any other repla
ement step fun
tion rstep having these properties; in-deed, one may make the de�nition of the graph relation 
ompositional in theabstra
t graph of su
h a step fun
tion; we intend to explore this in futurepubli
ations;� the algorithm itself is presented here purely 
on
retely in terms of lists, butthe 
orre
tness proof should be presented as fa
tored through a �nite setrepresentation;� the de�nition of rea
hable we made is tail-re
ursive, following the iterativeprototype of its 
lassi
al, imperative forebear; so a priori it must be run to
ompletion in order to spit out the �rst element of its result. But a modesttweak to the de�nition 
an ensure that at ea
h iteration, the new visitednode be
omes visible in the output immediately, making the de�nition aprodu
tive one. This opens the way to 
onsidering the problem of verifyinga 
o-indu
tive de�nition of rea
hable for in�nite graphs;� going beyond the hypotheti
al integration of Program with the graph ma-
hinery, as already envisaged by the �rst author [2℄, one 
ould imaginenot only systemati
ally synthesising and applying the 
anoni
al indu
tive
hoi
e of graph indu
ed by a fun
tion de�nition, but further still to 
on-sider parametrising the ma
hinery on a user-supplied su
h 
hoi
e, with the
anoni
al 
hoi
e as a default.But su
h 
onsiderations must wait: for now, it is time to terminate the paper!



16 James M
Kinna, Dan Synek, and Eelis van der WeegenA
knowledgments The work is partially supported by NWO/BRICKS proje
t�ARPA: Advan
ing the Real use of Proof Assistants�. The �rst author gratefullya
knowledges support of the NWO-funded 
luster �DIAMANT�.Referen
es1. M
Carthy, J.: A basis for a mathemati
al theory of 
omputation. In Bra�ort, P.,Hirs
hberg, D., eds.: Computer Programming and Formal Systems, North-Holland(1963)2. M
Kinna, J.: M
Carthy-Painter Indu
tion in Epigram. Talk given at the S
ottishTheorem Proving (STP) Seminar (July 2003) http://www.
s.ru.nl/�james/stp.pdf.3. M
Bride, C., M
Kinna, J.: The View from the Left. Journal of Fun
tional Pro-gramming 14(1) (2004)4. Sozeau, M.: Program-ing Finger Trees in Coq. In: Pro
. ICFP'07, ACM (2007)5. Sozeau, M.: Un environnement pour la programmation ave
 types dépendants.PhD thesis, LRI/Paris XI Orsay (2008)6. Slind, K.: Reasoning about Terminating Fun
tional Programs. PhD thesis, TUMuni
h (1999)7. Balaa, A., Bertot, Y.: Fix-Point Equations for Well-Founded Re
ursion in TypeTheory. In: Pro
. TPHOLs'00. Volume 1869 of LNCS., Springer (2000)8. Barthe, G., Courtieu, P.: E�
ient Reasoning about Exe
utable Spe
i�
ations inCoq. In V. A. Carreno, C. Muñoz and S. Tahar, ed.: Pro
. TPHOLs'02. Volume2410 of LNCS., Springer (2002)9. Barthe, G., Forest, J., Pi
hardie, D., Rusu, V.: De�ning and Reasoning AboutRe
ursive Fun
tions: A Pra
ti
al Tool for the Coq Proof Assistant. In Hagiya, M.,Wadler, P., eds.: Pro
. FLOPS 2006. Volume 3945 of LNCS., Springer (2006)10. Bove, A.: Programming in Martin-Löf type theory: Uni�
ation - A non-trivialexample (November 1999) Li
entiate Thesis, Chalmers University of Te
hnology.11. Bove, A., Capretta, V.: Nested General Re
ursion and Partiality in Type Theory.In Boulton, R.J., Ja
kson, P.B., eds.: Pro
. TPHOLs'01. Volume 2152 of LNCS.,Springer (2001)12. Bove, A.: General Re
ursion in Type Theory. PhD thesis, Department of Com-puting S
ien
e, Chalmers University of Te
hnology (2002)13. Dijkstra, E.W.: A note on two problems in 
onnexion with graphs. Numeris
heMathematik 1 (1959) 269�27114. Moore, J.S., Zhang, Q.: Proof Pearl: Dijkstra's Shortest Path Algorithm Veri�edwith ACL2. In Hurd, J., Melham, T.F., eds.: Pro
. TPHOLs'05. Volume 3603 ofLNCS., Springer (2005)15. Gordon, M.J.C., Hurd, J., Slind, K.: Exe
uting the Formal Semanti
s of the A
-
ellera Property Spe
i�
ation Language by Me
hanised Theorem Proving. In Geist,D., Tron
i, E., eds.: Pro
. CHARME'03. Volume 2860 of LNCS., Springer (2003)16. Nishihara, T., Minamide, Y.: Depth-�rst sear
h. JAR Ar
hive of Formal Proofs(June 2008) http://afp.sour
eforge.net/entries/Depth-First-Sear
h.shtml.A Coq sour
e pearl.vThis appendix (generated with 
oqdo
) is provided for 
ompleteness and the 
on-venien
e of reviewers. The full development, in
luding the util.v, list util.v,



Proof Pearl: Program-ming rea
hability algorithms in Coq 17and fix measure utils.v utility �les, may be obtained from the authors atwww.
s.ru.nl/�james/2009-TPHOLS.We used the 
urrent (8.2) release of Coq.Require Import List.Require Import util.Require Import list util.Require �x measure utils.Require Import Program.Require Import Wf nat.Set Impli
it Arguments .Module rea
hability.Se
tion de�nitions.Variables (State: Type) (trans : State → State → Prop).Indu
tive rea
hable: State → State → Prop :=
| rea
hable re� s : rea
hable s s
| rea
hable next a b 
: rea
hable a b →trans b 
 → rea
hable a 
.Lemma rea
hable trans a b: rea
hable a b →
∀ 
, rea
hable b 
 → rea
hable a 
.Proof with auto.indu
tion 2...apply rea
hable next with b...Qed.End de�nitions.End rea
hability.Hint Constru
tors rea
hability.rea
hable.Re
ord DiGraph: Type := Build{ Vertex: Set; Vertex eq de
: ∀ (v v' : Vertex), de
ision (v = v' ); verti
es: list Vertex; verti
es exhaustive: ∀ v , In v verti
es; edges: Vertex → list Vertex; edges NoDup: ∀ v , NoDup (edges v)}.Hint Resolve edges NoDup.Hint Immediate edges NoDup.Hint Immediate verti
es exhaustive.Impli
it Arguments edges [d ℄.Se
tion 
ontents.Variable G : DiGraph.Let Edge (v w : Vertex G): Prop := In w (edges v).Let ved := Vertex eq de
 G . Let subtrV := subtr ved .



18 James M
Kinna, Dan Synek, and Eelis van der WeegenLet SubsetV := list (Vertex G).Let emptyV : SubsetV := [℄. Hint Unfold emptyV .Let addV v vs : SubsetV := v :: vs . Hint Unfold addV .Variable start : SubsetV .Hypothesis NoDup start : NoDup start .Let rea
hable v : Prop := ∃ s ,In s start ∧ rea
hability.rea
hable Edge s v .Lemma rea
hable start v : In v start → rea
hable v .Proof. firstorder. Qed.Hint Resolve rea
hable start.Lemma rea
hable next v : rea
hable v → ∀ w , Edge v w → rea
hable w .Proof with auto.intros. repeat destru
t H . ∃ x . split...apply rea
hability.rea
hable next with v ...Qed.Definition Sound (ss : SubsetV ): Prop := ∀ v , In v ss → rea
hable v .Hint Unfold Sound.Lemma Sound empty: Sound emptyV . repeat intro. elim H . Qed.Hint Immediate Sound empty.Definition Complete (ss : SubsetV ): Prop := ∀ v , rea
hable v → In v ss .Definition GComplete (vs ws rs : SubsetV ): Prop :=
losed under Edge rs ∧ in
l ws rs ∧ in
l vs rs .Lemma g
omplete 
omplete vs : GComplete [℄ start vs → Complete vs .Proof. unfold Complete, GComplete.intros vs [
 [i j ℄℄ v [s [b d ℄℄.indu
tion d ; eauto.Qed.Definition Spe
i�
ation rs : Prop := Sound rs ∧ Complete rs .Definition rstep vs w ws :=(subtrV (edges w) ((addV w vs) ++ ws)) ++ ws .Lemma rstep Sound lemma vs w ws :in
l (rstep vs w ws) ((edges w) ++ ws).Proof with auto. unfold rstep, subtrV .repeat intro.destru
t (in app or H )...destru
t (In subtr H0 )...Qed.Lemma rstep GComplete lemma vs w ws : in
l ws (rstep vs w ws).



Proof Pearl: Program-ming rea
hability algorithms in Coq 19Proof with auto.repeat intro.apply in or app...Qed.Lemma rstep Invariant lemma vs w ws :in
l (subtrV (edges w) (addV w vs)) (rstep vs w ws).Proof with auto.repeat intro.simpl in H .unfold rstep. simpl.destru
t (snd (In remove ) H ).destru
t (In subtr H0 ).destru
t (In de
 ved a ws)...apply in or app.left .apply In remove'...apply subtr In...intro.destru
t (in app or H4 )...Qed.Let neighbours := �at map (�edges G).Definition Invariant vs ws : Prop := in
l (neighbours vs) (ws ++ vs).Lemma Invariant empty l : Invariant emptyV l .Proof. unfold Invariant . intuition. Qed.Hint Immediate Invariant empty.Lemma Invariant preserved vs w ws :Invariant vs (addV w ws) →Invariant (addV w vs) (rstep vs w ws).Proof with auto. unfold Invariant .intros.unfold neighbours in ×. simpl.apply in
l app.repeat intro.destru
t (In de
 ved a (addV w vs))...apply in or app.left .apply rstep Invariant lemma...apply subtr In...apply in
l tran with ((addV w ws) ++ vs)...apply in
l app.apply in
l 
ons...eapply in
l appr...unfold addV ...



20 James M
Kinna, Dan Synek, and Eelis van der Weegenapply in
l appl.apply in
l appr...apply in
l appr...unfold addV ...unfold in
l . eauto.Qed.Lemma Invariant 
losed rs : Invariant rs emptyV → 
losed under Edge rs .Proof with auto.intros. apply 
losed by �at map in
l...Qed.Definition measureV (vs : SubsetV ): nat := length (subtrV (verti
es G) vs).Lemma measureV de
rease ws w vs :Disjoint (w :: ws) vs → measureV (w :: vs) < measureV vs .Proof.intros. unfold measureV . apply remove length lt.eapply subtr In. eauto. apply (fst (Disjoint 
ons H )).Qed.Definition Termination (vs ws : SubsetV ): Prop :=NoDup ws ∧ Disjoint ws vs .Lemma Termination start: Termination emptyV start .Proof. split; auto. intro. intuition. Qed.Hint Resolve Termination start.Lemma NoDup rstep vs w ws :NoDup (addV w ws) → NoDup (rstep vs w ws).Proof with auto.intros.inversion 
lear H .apply NoDup app...apply NoDup subtr...repeat intro.destru
t (snd (In remove ved ) H ).destru
t (In subtr ved H3 )...destru
t (not In app H6 )...Qed.Lemma Disjoint rstep vs w ws :NoDup (addV w ws) → Disjoint (addV w ws) vs → Disjoint (rstep vs wws) (addV w vs).Proof with auto.intros.inversion 
lear H .destru
t (Disjoint 
ons H0 ).unfold rstep, subtrV .repeat intro.



Proof Pearl: Program-ming rea
hability algorithms in Coq 21destru
t (in app or H4 )...destru
t (In subtr H6 )...destru
t H5 .subst...destru
t (H3 x )...Qed.Lemma Termination preserved vs w ws :Termination vs (addV w ws) →Termination (addV w vs) (rstep vs w ws).Proof with auto. unfold Termination.intros.destru
t H .split.apply NoDup rstep...apply Disjoint rstep...Qed.Program Fixpoint rea
hables worker (visited : SubsetV )(waiting : { ws | Termination visited ws }){measure measureV visited}: SubsetV :=mat
h waiting with
| nil ⇒ visited
| w :: ws ⇒ rea
hables worker (addV w visited) (rstep visited w ws)end.Next Obligation. Proof with auto. destru
t H . apply measureV de
reasewith ws ... Qed.Next Obligation. Proof with auto. apply Termination preserved... Qed.Program Definition rea
hables: SubsetV:= �rea
hables worker emptyV start .Lemma rw isEta: isEta rea
hables worker. apply isEta wit. Defined.Definition rea
hables worker0 := unEta rw isEta.Impli
it Arguments rea
hables worker0 [℄.Lemma isFix measure sub:�x measure utils.isFix measure sub measureV rea
hables worker0.Proof.unfold rea
hables worker0 . simpl.apply �x measure utils.show isFix measure sub.Defined.Lemma rea
hables worker0 ind aux(P : ∀ (vs : SubsetV ) (ws : {l | Termination vs l}), SubsetV → Prop)(Pbase: ∀ vs a, P vs (exist emptyV a) vs)(Pre
: ∀ vs w ws p rs ,



22 James M
Kinna, Dan Synek, and Eelis van der WeegenP (w :: vs) (exist (rstep vs w ws) p) rs → ∀ mp,P vs (exist (w ::ws) mp) rs):
∀ visited waiting , P visited waiting (�rea
hables worker0 visited waiting).Proof with auto.do 4 intro.pattern visited , (rea
hables worker0 visited).apply (�x measure utils.re
t isFix measure sub).
lear visited .intros.rename x into visited .destru
t waiting .rename x into waiting .destru
t waiting ; simpl...apply (Pre
 (X (exist (rstep visited v waiting) ))).Qed.Lemma rea
hables worker0 ind (P : ∀ (vs ws rs : SubsetV ), Prop)(Pbase: ∀ vs , P vs emptyV vs)(Pre
: ∀ vs w ws rs , P (addV w vs) (rstep vs w ws) rs →P vs (w :: ws) rs):
∀ vs ws , P vs (`ws) (rea
hables worker0 vs ws).Proof with auto.do 5 intro. pattern vs , ws , (rea
hables worker0 vs ws).apply rea
hables worker0 ind aux...simpl.intros.
lear mp. apply Pre
...Qed.Lemma sound vs ws : Sound vs →Sound (`ws) → Sound (rea
hables worker0 vs ws).Proof with simpl; auto.do 2 intro.pattern vs , (`ws), (rea
hables worker0 vs ws).apply rea
hables worker0 ind; unfold Sound ...intros.apply H ... intuition.intros.destru
t (in app or (rstep Sound lemma H3 ))...apply rea
hable next with w ...Qed.Lemma 
omplete vs ws : Invariant vs (`ws) →GComplete vs (`ws) (rea
hables worker0 vs ws).Proof with unfold emptyV , addV ; simpl; auto.do 2 intro.pattern vs , (`ws), (rea
hables worker0 vs ws).



Proof Pearl: Program-ming rea
hability algorithms in Coq 23apply rea
hables worker0 ind; unfold GComplete; intros.intuition.apply Invariant 
losed...unfold emptyV ...destru
t H . apply Invariant preserved...unfold addV in H1 ; destru
t H1 .intuition...apply in
l 
ons...apply in
l tran with (rstep vs0 w ws0 )...apply rstep GComplete lemma.repeat intro...Qed.Program Definition rea
hables0: { rs | Spe
i�
ation rs }:= �rea
hables worker0 emptyV start .Next Obligation.Proof with auto. unfold Spe
i�
ation.split.apply sound...apply g
omplete 
omplete...apply 
omplete...Qed.Program Fixpoint rea
hables worker1(visited : { vs | Sound vs })(waiting : { ws | Sound ws ∧ Termination visited ws ∧ Invariant visited ws}){measure measureV visited}:{ rs | Sound rs ∧ GComplete visited waiting rs } :=mat
h waiting with
| nil ⇒ visited
| w :: ws ⇒ rea
hables worker1 (addV w visited) (rstep visited w ws)end.Next Obligation.Proof with auto.destru
t H ; destru
t H1 ...repeat split...apply Invariant 
losed...Qed.Next Obligation.Proof. unfold Sound in ×. simpl. intuition. subst. auto. Qed.Next Obligation.Proof. apply measureV de
rease with ws . firstorder. Qed.Next Obligation.Proof with simpl; auto.
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t H . destru
t H1 .destru
t (Termination preserved H1 ).destru
t H1 .inversion 
lear H1 .unfold Sound .repeat split; intros...destru
t (in app or (rstep Sound lemma visited w ws H1 ))...apply rea
hable next with w ...apply Invariant preserved...Qed.Next Obligation. Proof with auto.mat
h goal with[ ⊢ 
ontext [rea
hables worker1 ?a ?b℄ ℄ ⇒destru
t (rea
hables worker1 a b)end.simpl in ×. 
lear rea
hables worker1 . subst.unfold addV , GComplete, Invariant in ×.intuition...apply in
l 
ons...apply in
l tran with (rstep visited w ws)...apply rstep GComplete lemma.repeat intro...Qed.Program Definition rea
hables1: { rs | Spe
i�
ation rs }:= �rea
hables worker1 emptyV start .Obligation Ta
ti
 := idta
.Next Obligation.Proof with intuition; auto. unfold Spe
i�
ation.mat
h goal with[ ⊢ 
ontext [rea
hables worker1 ?a ?b℄ ℄ ⇒destru
t (rea
hables worker1 a b)end.simpl in ×.split...apply g
omplete 
omplete...Qed.Obligation Ta
ti
 := program simpl.Indu
tive Rea
hable rel: ∀ (visited waiting result : SubsetV ), Prop :=
| rea
hable empty vs : Rea
hable rel vs nil vs
| rea
hable 
ons vs w ws rs :Rea
hable rel (w :: vs) (rstep vs w ws) rs →Rea
hable rel vs (w :: ws) rs .Hint Constru
tors Rea
hable rel .



Proof Pearl: Program-ming rea
hability algorithms in Coq 25Lemma sound2 vs ws rs : Rea
hable rel vs ws rs →Sound vs → Sound ws → Sound rs .Proof with simpl in ×; auto.unfold Sound .indu
tion 1...intros. apply IHRea
hable rel ...intros. destru
t H3 ...intros. destru
t (in app or (rstep Sound lemma H3 ))...apply rea
hable next with w ...Qed.Lemma 
omplete2 vs ws rs : Rea
hable rel vs ws rs →Invariant vs ws → GComplete vs ws rs .Proof with simpl in ×; auto. unfold GComplete.indu
tion 1; intros.split...apply Invariant 
losed...destru
t IHRea
hable rel . apply Invariant preserved...intuition; repeat intro...destru
t H2 . subst...apply H3 .apply (rstep GComplete lemma vs w ws)...Qed.Program Fixpoint rea
hables worker2(visited : SubsetV )(waiting : { ws | Termination visited ws }){measure measureV visited}: { rs | Rea
hable rel visited waiting rs } :=mat
h waiting with
| nil ⇒ visited
| w :: ws ⇒ rea
hables worker2 (addV w visited) (rstep visited w ws)end.Next Obligation. Proof with auto. destru
t H . apply measureV de
reasewith ws ... Qed.Next Obligation. Proof with auto. apply Termination preserved... Qed.Next Obligation. Proof with auto. apply sig self. subst... Qed.Program Definition rea
hables2: { rs | Spe
i�
ation rs }:= �rea
hables worker2 emptyV start .Next Obligation.Proof with auto. unfold Spe
i�
ation.destru
t (�rea
hables worker2 emptyV(exist (fun l ⇒Termination emptyV l) start rea
hables2 obligation 1))...simpl in ×.split.apply (sound2 r)...apply g
omplete 
omplete...



26 James M
Kinna, Dan Synek, and Eelis van der Weegenapply (
omplete2 r)...Qed.Variable Rstep : ∀ (visited : SubsetV )(w : Vertex G)(waiting step: SubsetV ),Prop.Hypothesis Rstep Sound : ∀ vs w ws S , ∀ r : Rstep vs w ws S , in
l S ((edgesw) ++ ws).Hypothesis Rstep GComplete : ∀ vs w ws S , ∀ r : Rstep vs w ws S , in
l wsS .Hypothesis Rstep Invariant : ∀ vs w ws S , ∀ (r : Rstep vs w ws S ),in
l (neighbours (addV w vs)) (S ++ (addV w vs)).Hypothesis Rstep Termination : ∀ vs w ws S , ∀ (r : Rstep vs w ws S ),Termination vs (addV w ws) → Termination (addV w vs) S .Indu
tive Rea
hable abs(Rstep : ∀ (visited : SubsetV )(w : Vertex G)(waiting step: SubsetV ), Prop): ∀ (visited waiting result : SubsetV ), Prop :=
| rea
hable abs empty vs : Rea
hable abs Rstep vs nil vs
| rea
hable abs 
ons vs w ws ss rs : Rstep vs w ws ss →Rea
hable abs Rstep (w :: vs) ss rs →Rea
hable abs Rstep vs (w :: ws) rs .Hint Constru
tors Rea
hable abs .Lemma sound abs vs ws rs : Rea
hable abs Rstep vs ws rs →Sound vs → Sound ws → Sound rs .Proof with simpl in ×; auto.unfold Sound .indu
tion 1...intros. apply IHRea
hable abs ...intros. destru
t H4 ...intros. destru
t (in app or (�Rstep Sound H H4 ))...apply rea
hable next with w ...Qed.Lemma 
omplete abs vs ws rs : Rea
hable abs Rstep vs ws rs →Invariant vs ws → GComplete vs ws rs .Proof with simpl in ×; auto. unfold Invariant , GComplete.indu
tion 1; intros.split...apply Invariant 
losed...destru
t IHRea
hable abs . apply (�Rstep Invariant H )...destru
t H3 .intuition; repeat intro...destru
t H5 . subst...eapply H3 ... apply (Rstep GComplete H )...Qed.End 
ontents.


