
Proof Pearl: Program-ming reahabilityalgorithms in CoqJames MKinna, Dan Synek, and Eelis van der WeegenInstitute for Computing and Information SienesRadboud University NijmegenHeijendaalseweg 135, 6525 AJ Nijmegen, The NetherlandsAbstrat. We present a omparison of approahes to the representa-tion and veri�ation of non-struturally reursive algorithms in the typetheory CIC of the Coq proof assistant. We illustrate our ideas in theontext of reahability algorithms on (�nite) graphs.Our approah makes use of Sozeau's Program mahinery, a relatively re-ent addition to Coq, whih permits a very lean representation of fun-tional programs in CIC. We onsider: a version of the algorithm whihonly fouses on the termination argument, for whih we then give a di-ret proof of partial orretness; a de�nition and proof using Program `inone go'; and a �nal variant, where we on�ne the use of Program to totalorretness, proving partial orretness via the graph of the funtion.This leads to some observations for Coq users and implementors on-erning the traditional separation of onerns in program veri�ation.1 IntrodutionThis paper makes another ontribution to the literature and ulture of system-ati formal reasoning in onstrutive type theory about non-struturally reur-sive funtions. We onsider algorithms for the problem of reahability in �nitedireted graphs, represented in the type theory CIC of the proof assistant Coq.1.1 The ProblemWhat does the appliation-oriented developer of proofs do to streamline the taskof heking or proving properties of algorithms, when these do not enjoy `natural'representation in the (programming) language of their hosen proof assistant?A reurring idea when proving programs orret is the separation of on-erns. We �rst want to de�ne a program, then prove its partial orretness andthen prove that it terminates for all suitable arguments. When working in typetheory, this is not a problem when the funtion an be de�ned by struturalreursion, sine termination is then a onsequene of its de�nition. De�nition bynon-strutural reursion is more problemati, as we then annot express it as afuntion until we have proved it terminates. We typially might do this by well-founded reursion, but that an lead to a term whose intensional omputationalbehaviour is at odds with the reursive spei�ation we have in mind.

2 James MKinna, Dan Synek, and Eelis van der WeegenAnother problem, also a separation of onerns, is how to hoose when tospeify the properties of the funtion we are de�ning. Using the propositions-as-types paradigm we an speify the properties by an expressive Σ-type and thenreason about the funtion from the input-output properties so spei�ed. But thismeans that we need to antiipate the properties we need the funtion to haveall at one by giving it an expressive enough type. An alternative is to prove theproperties of the funtion as needed; but this means that we over and over againneed to do some kind of well-founded indution whih is appropriately orrelatedwith the well-founded reursion de�ning the funtion; this seems unneessarilyompliated, and an ertainly beome so in pratie.A anonial solution, and the one we elaborate upon here, is to de�ne anindution priniple one and for all from the de�nition of the funtion. Oneway to do this is to indutively de�ne a relation, the extensional graph of thefuntion, orresponding to the reursive all struture of the funtion we arede�ning. The indution priniple derived from this relation is preisely the oneneeded to prove any property about the funtion, sine its de�nition apturesexatly the intermediate reursive alls arising from a given all to the funtion,and hene the orresponding indution hypotheses.Having separated the indution priniple from the funtion we wish to de�newe an prove the properties we want using the indution priniple indued bythe graph without referene to the well-de�nedness or otherwise of the funtion.We an then de�ne the funtion using the Program ommand using the minimalriteria to establish termination, namely inhabitation of the graph. Indeed, beingindutively de�ned, the graph enapsulates the minimal properties whih anyall of the funtion, assumed to be well-de�ned, must satisfy; thus we may reover(a version of) least �xed-point semantis in the ontext of a total type theory.This paper shows a way to fator that development, in the ase of a reahabil-ity algorithm, into a termination argument (justifying the existene of a funtion)and a separate partial orretness proof, whih makes no ommitment to the ex-istene of the funtion. The key enabling devie has already been alluded to: amehanism for obtaining the indutive hypotheses asserting the well-de�nednessof intermediate reursive alls.1.2 Related WorkUnsurprisingly, there is a great deal of related work; this touhes on some ofthe oldest problems and tehniques in omputer siene, as well as the mostreent. Our original inspiration for onsidering the indutively-de�ned graph as-soiated with a funtion omes from MCarthy's seminal work on omputational(or reursion) indution[1℄. Gérard Huet was another early in�uene, desribingindutively-de�ned families in type theory as �a kind of typed Prolog�. In unpub-lished work[2℄ the �rst author (with Conor MBride) has explored its appliationin the ontext of Epigram funtion de�nitions; the graph is an example of theirversion of Wadler's idea of view [3℄.

Proof Pearl: Program-ming reahability algorithms in Coq 3Sozeau's reent PhD thesis work [4, 5℄ introdued the impressive Programsuite of ommands and tatial support to the Coq system. We will explain itsbehaviour and usage below.Slind's PhD thesis work [6℄ o�ers users of both HOL and Isabelle/HOL agreat deal of similar funtionality with the TFP pakage, but a diret ompar-ison between the approahes seems di�ult sine CIC is by design a ompu-tational meta-theory, distinguishing intensional objets (algorithms/funtions)whose evaluation is part of the power of the theory, from their logial (exten-sional) behaviour established by proof.Working at Sophia-Antipolis with the Coq system itself, Bertot and Balaa [7℄onsidered the problems assoiated with funtions de�ned by well-founded reur-sion. Their work draws attention to many of the problems arising from attempt-ing to relate intensional behaviour of suh funtions to their extensional proper-ties given by their �xed-point equation. Later, Barthe and his o-workers [8, 9℄developed the Funtion mahinery for generating the indutively-de�ned graphand its assoiated indution priniple automatially from a CIC-de�nable fun-tion. Their work furthermore permitted a lean syntax for funtion de�nitionboth by strutural reursion and by well-founded reursion. It is unfortunatethat the urrent implementation of these ideas remains buggy, and does notintegrate well with the new Program infrastruture.A ompanion approah to reasoning with graphs is the so-alled `Bove-Capretta' method of working with indutively-de�ned domain prediates [10�12℄.As the name implies, these prediates de�ne the domain of de�nition of a fun-tion; they are used as a struture over whih to do reursion in order to de�neotherwise non-struturally reursive funtions in type theory. Extensionally, theymay be seen as preisely the domains of the orresponding indutively-de�nedgraphs. Spae forbids a detailed omparison between their approah and ours.Work on algorithms on direted graphs (we rave the indulgene of the readerover the lash in these two uses of the term `graph') and their orretnessproofs [13, notably℄ goes bak at least as far as MCarthy's work, and a sur-vey seems an impossible endeavour here. The lassial literature presents suhthings in imperative, not funtional, style. As regards mahine-heked develop-ments in proof assistants, as muh to our surprise as were Moore and Zhang'searlier observations about Dijkstra's SSSP algorithm [14℄, there seem ompar-atively few examples of how to do this kind of thing without relatively heavymahinery. A notable omparison point is Hurd's formalisation in HOL in theontext of a (muh larger) development [15℄. Tobias Nipkow drew our attentionto a very losely related, but entirely independent, development by Nishiharaand Minamide in Isabelle/HOL [16℄; their approah involves a nested reursivede�nition of depth-�rst searh, with the assoiated ompliations in reasoning.1.3 ContributionIn the ontext of hybrid systems veri�ation in the the Coq system, we neededto hek properties of various graph reahability algorithms. We isolated thework of this paper from that muh larger development.

4 James MKinna, Dan Synek, and Eelis van der WeegenOur prinipal ontribution is to ompare various versions of how to de�ne,and prove the orretness of, the algorithm reahables explored in detail below.prototype We reap the imperative iterative spei�ation of the algorithm de-�ned in pseudoode, together with a sketh of its orretness proof.simplest version We �rst de�ne a `plain' version of the algorithm, as a tail-reursive `worker' funtion reahables worker, and a �at `wrapper' fun-tion reahables. These operate on lists (representing subsets), so we needto introdue non-dupliation hypotheses for the representation to be valid.We also de�ne the `step' funtion rstep, implementing the loop body inthe imperative prototype. The only non-trivial proof obligation in the use ofProgram is that required to prove termination. This requires formalisationof the termination invariant and the measure funtion.version 0 Now, having suessfully de�ned these funtions, in order to proveanything about them, one approah is to develop diretly an indution prini-ple `by hand' for reahables worker and reahables, whih isolates theirlogial properties from the partiular method (by well-founded reursion)whih Program uses internally to build de�nitions. In fat, by a quirk of theProgram implementation, we need to tweak the funtions slightly, yieldingreahables worker0 and reahables0. The indution priniple we deriveis moreover `polluted' with the need to expliitly projet lists out of the
Σ-types used in our de�nitions. We use the indution priniple to provesoundness and ompleteness of our de�nitions; we refer bak to a olletionof lemmas proved about the various prediates and invariants, espeiallyregarding how they interat with the step funtion rstep.version 1 We next onsider a diret proof of orretness, organised as a singleProgram Fixpoint de�nition, of reahables worker1 and reahables1.This version yields a partial orretness and termination argument mostlosely resembling the lassial Dijkstra-Hoare point of view. Both the inputprediates and result types beome entangled with information neessaryonly for termination. Moreover, we need to use the hypotheses arising fromwell-founded indution in order to reason indutively as if the funtion iswell-de�ned.version 2 We then fatorise the orretness proof, by introduing the relationalspei�ation of the indutively-de�ned graph of reahables worker (we ig-nore the ase of reahables, as it has no interesting indutive struture).By indution on this relational spei�ation we an prove the desired (par-tial) orretness properties; the termination argument is as before, but nowthe initial onditions are as in the �rst version, while the result type spei-�es that the funtion witnesses the graph relation. The proof of this is verynearly automati, and ould be made so, we believe, in a future version ofProgram.version . . . All of the foregoing is, in fat abstrat with respet to the proper-ties of the step funtion rstep. Indeed, we ould keep abstrating, based onthe graph relation idea, moreover in a ompositional way. But for the sakeof this paper (and the reader!) we leave suh extensions to future papers.

Proof Pearl: Program-ming reahability algorithms in Coq 51.4 OutlineWe begin in Setion 2 with the lassial imperative spei�ation and veri�ationof an abstrat reahability algorithm. We then show in Setion 2.1 how this givesrise to a proto-de�nition in the Gallina spei�ation language of Coq, remarkingon the limitations of the raw typeheker in attempting to hek wellformedness(in partiular, termination) of suh de�nitions.We then sketh in Setion 2.2 how Sozeau's Program mahinery an help us,and in partiular how it might be used to support the separation of onerns.We then desribe the various versions of our onrete (depth-�rst) funtionalimplementation of reahability, and show how the use of Program leads to aless-or-more smooth organisation of the veri�ations whih arise in eah ase.We disuss the onsequenes eah version has for the separation of onerns andthe pragmatis of working with Coq.Finally, we onlude with some observations about the further abstrationinherent in our development and the prospets for extensions and future work.2 Speifying and verifying the algorithmThe graph reahability algorithm we formalise an be spei�ed imperatively. Itsde�nition and orretness proof are routine, and inluded only for the sake ofompleteness.pseudoode prototype We assume given a �nite direted graph G. The operators+ and - denote set union and set di�erene, respetively, de�ned on subsets ofthe set verties of the verties in G.Algorithm reahables.inputs: subset "start" of verties.pre-ondition:output: subset "result" of verties.post-ondition:for all v, (v in result) <�> (v reahable from start).beginloals: subsets "visited" and "waiting".visited:= {};waiting:= start;while (waiting <> {}){pik w in waiting;visited:= visited + {w};waiting:= (neighbours w) + waiting - visited;};result:= visited;end

6 James MKinna, Dan Synek, and Eelis van der Weegeninformal proof The partial orretness of algorithm reahables follows fromthe following equivalent of the post-ondition:post-ondition: for all v,(v in (waiting + visited)) <�> (v reahable from start).This is beause on termination of the loop we have waiting = {} and heneon termination of the algorithm, result = waiting + visited . The onditiontrivially holds on loop entry, sine then waiting + visited = start . Unfor-tunately, the ondition alone is not a loop invariant.The subset of verties R reahable from start may be haraterised indu-tively as the smallest subset S satisfying two properties:� for all v, v in start -> v in S� S is losed under neighboursTo show R ontains result on termination (soundness) amounts to observingthat at eah iteration, the subset waiting + visited grows only by the additionof neighbours, and hene, indutively, by verties reahable from start .Similarly waiting + visited always satis�es the �rst property, that is tosay for all v, v in start -> v in (waiting + visited) is a loop invari-ant. Hene on termination of the algorithm, result will ontain R (omplete-ness) provided we an satisfy the seond property.So we are left with Dijkstra's invariant whih establishes this:invariant: for all v,(v in (neighbours(visited))) -> (v in (waiting + visited)).On exit, similarly to above, the property redues tofor all v, (v in (neighbours(result))) -> (v in result).and hene result is losed under neighbours as required. It trivially holdson loop entry, where neighbours(visited) = neighbours({}) = {} . Finally,one proves that it is maintained on eah iteration by inspetion of the loop body.Total orretness follows if we an show that a variant measure dereaseson eah iteration: the size of verties - visited is a suitable suh measure,provided we an show that on eah iteration, a `new' vertex is added to visited .We remark without further omment that this an be seured with the additionalloop invariant stating that waiting and visited are disjoint.2.1 Towards de�ning the algorithm in CoqWe begin with an initial preamble loading list utilities and other library �les (hereomitted; please see the full development for details), followed by an algebraistruture for direted graphs, and reahability, haraterised in the usual way asthe re�exive-transitive losure of a binary relation.

Proof Pearl: Program-ming reahability algorithms in Coq 7Variables (State: Type) (trans: State -> State -> Prop).Indutive reahable: State -> State -> Prop :=| reahable refl s: reahable s s| reahable next a b : reahable a b ->trans b -> reahable a .Reord DiGraph: Type := Build{ Vertex: Set; Vertex eq de: forall (v v': Vertex), deision (v = v'); verties: list Vertex; verties exhaustive: forall v, In v verties; edges: Vertex -> list Vertex; edges NoDup: forall v, NoDup (edges v)}.We then de�ne reahability in the graph from an initial set of verties start;this property is rather straightforwardly losed under the edge relation.Variable G: DiGraph.Let Edge (v w: Vertex G): Prop := In w (edges v).Let SubsetV := list (Vertex G).Let emptyV : SubsetV := [℄. Hint Unfold emptyV.Let addV v vs : SubsetV := v :: vs. Hint Unfold addV.Variable start: SubsetV.Hypothesis NoDup start: NoDup start.Let reahable v: Prop := exists s,In s start /\ reahability.reahable Edge s v.Lemma reahable start v: In v start -> reahable v.As a pure funtional program (CIC term), we fator the imperative ontrol stru-ture into a worker whih expresses the result as a (tail-reursive) funtion of theloal variables, and a wrapper, whih initialises them.pseudo-Coq fragment The wrapper funtion (minus typing deoration) is verystraightforward.Definition reahables:= reahables worker emptyV start.The funtional prototype of the worker funtion relies on a de�nition of a funtionrstep implementing the assignments of the loop body. The pik operation ismodelled by pattern mathing on the waiting list: when the list is empty, thefuntion terminates, returning a result list given de�nitionally by (the �nalvalue of) visited .

8 James MKinna, Dan Synek, and Eelis van der WeegenFixpoint reahables worker (visited waiting: SubsetV) :=math waiting with| nil => visited| w :: ws => reahables worker (addV w visited) (rstep visited w ws)end.where the step funtion rstep may be given diretly in Coq as follows:Definition rstep vs w ws :=(subtrV (edges w) ((addV w vs) ++ ws)) ++ ws.Sine the worker's reursion is non-strutural, we annot give it as an ordinaryFixpoint/math style de�nition in Coq's Gallina vernaular syntax. The mathonstrution makes `ML-style' pattern mathing available to the user (the realstory is muh more powerful, but orrespondingly more ompliated, thanks tothe dependent types in CIC). The Fixpoint onstrution only supports the de�-nition of struturally reursive funtions, whose termination heking is handledby a hard-wired syntati hek (`guarded by destrutors') in the Coq type-heker. This makes prototyping the program, and its orretness proofs, fall atthe �rst hurdle, and has been seen as a long-standing disadvantage of workingin type theory for erti�ed programming.2.2 What does Program do?Sozeau's Program extensions to this language give the programmer a muh more�exible range of ation:� the syntax is upwardly ompatible (one writes Program Fixpoint et.);� termination may also be spei�ed by a measure funtion into a well-foundedordering;� the input and output types of the funtion may be onstrained by prediatesin a way whih is transparent to the funtion body.Rather than perform a yes/no syntati hek, the Program mahinery thengenerates proof obligations for the user, muh in the style of PVS prediatesubtyping, indued by the struture of the program one is attempting to de�ne.The `de�nition' is not aepted by the typeheker until eah pending obli-gation has been disharged: so in this sense, the typeheker annot aept def-initions whih have not been proved terminating. However, the algorithm fortypeheking-modulo-prediate-subtyping whih drives this mahinery does al-low the programmer:� to write partial funtions, if a suitable onservative domain prediate may bespei�ed; this leads to proof obligations on the appliation of suh funtions;� to onstrain the result type, whih will lead to an obligation to prove thatproperty of the omputed answer;� to delay the obligation to show termination via the ordering.

Proof Pearl: Program-ming reahability algorithms in Coq 9Further, the typeheking algorithm follows the Fixpoint/math struture givenby the programmer, so math will typially lead to proof obligations orrespond-ing to eah ase, and use of Fixpoint generates an indutive hypothesis (guar-anteed by the well-founded reursion driving the termination proof) providing,for suitably onstrained inputs, the existene of reursive alls of the funtion.Now, Coq users may speify funtions, their termination measures, and theirinput-output behaviour in advane of, or rather hand-in-hand with, ensuring thewell-de�nedness of suh objets. However, in doing so, it is easy to lose sight ofthe lassial separation of onerns between termination and orretness: whilethese are given to the user of Program as separate obligations to disharge,nevertheless the `sript' objet whih de�nes suh a funtion must be ompletedbefore any other useful work may be done.It seems that one must still prove total and partial orretness together. Notonly that, but an objet suessfully de�ned by Program is only extensionallyequivalent to the programmer's reursive spei�ation: neessarily so, as it isgiven internally by appeal to reursors over well-founded orderings. To proveanything about suh a funtion after de�ning it leaves the user with the un-omfortable task of exhuming from Program's internals exatly those appeals towell-founded reursion/indution needed to massage the de�nition into the rightform.3 Using Program to de�ne and verify the algorithm3.1 Simplest VersionThe worker funtion itself may be given in the extended syntax as follows.Program Fixpoint reahables worker (visited: SubsetV)(waiting: { ws | Termination visited ws }){measure measureV visited}: SubsetV :=math waiting with| nil => visited| w :: ws => reahables worker (addV w visited) (rstep visited w ws)end.The waiting argument is given a Σ-type, whose prediate Termination ex-presses the invariant required to show derease of the measure desribed earlier.Definition Termination (vs ws: SubsetV): Prop :=NoDup ws /\ Disjoint ws vs.Definition measureV (vs: SubsetV): nat :=length (subtrV (verties G) vs).This gives rise to the �rst of two generated obligations:NoDup (w :: ws) /\ Disjoint (w :: ws) vs ->measureV (w :: vs) < measureV vs.

10 James MKinna, Dan Synek, and Eelis van der Weegenand without building in the termination invariant Termination this lemmawould not be provable. Additionally we see a seond obligation generated, ex-pressing that the invariant holds for the arguments passed in the reursive alls.In other words, it must be shown that the invariant is preserved by rstep:Lemma Termination preserved vs w ws:Termination vs (addV w ws) ->Termination (addV w vs) (rstep vs w ws).The proof of this obligation is similarly straightforward. After both have beendisharged, the onstant reahables worker is atually de�ned by Program. Itis de�ned in terms of Fix measure sub, whih enapsulates the mahinery usedfor indution over a measure, using the aessibility prediate A.The non-reursive wrapper is now de�nable, generating no proof obligations.Program Definition reahables: SubsetV:= �reahables worker emptyV start.Corretness Now that we have a working de�nition, it is time to start worryingabout orretness. For this algorithm, orretness an be split into soundness andompleteness. More spei�ally, we would like to establish the following Σ-typefor the reahables funtion:Program Definition reahables: { rs | Speifiation rs }:= �reahables worker emptyV start.where Speifiation onsists of two onjunts:Definition Speifiation rs : Prop := Sound rs /\ Complete rs.Soundness spei�es that everything omputed is indeed reahable:Definition Sound (ss : SubsetV): Prop := forall v, In v ss -> reahable v.Completeness spei�es that everything reahable is omputed. We indutivelygeneralise this notion, and establish its relationship to the loop exit property:Definition Complete (ss: SubsetV): Prop :=forall v, reahable v -> In v ss.Definition GComplete (vs ws rs: SubsetV): Prop :=losed under Edge rs /\ inl ws rs /\ inl vs rs.(* termination lemma: when we finish, we have what we want *)Lemma gomplete omplete vs: GComplete [℄ start vs -> Complete vs.

Proof Pearl: Program-ming reahability algorithms in Coq 113.2 Version 0: Corretness by separate indutionIn a grossly simpli�ed view of the problem, one typially proves properties of areursively de�ned funtion by indution on the argument on whih the algo-rithm struturally reurses. This way, in the ase of a reursive all, the funtioninvoation naturally unfolds to some ode applied to a simpler appliation, whihis (hopefully) preisely the subjet of the indution hypothesis.For funtions de�ned by an ordinary Fixpoint, this strategy works �out of thebox�, without any additional mahinery. However, the funtion reahables workerwe de�ned is not an ordinary Fixpoint de�nition. As desribed above, it is ex-pressed indiretly in terms of Fix measure sub whih does some intriate reur-sion on (proofs of) the aessibility prediate A, using a onstant orrespondingto the measure-dereasing obligation we proved above. But that's not what theuser thinks of as the semantis of the reursive de�nition. Consequently, it ismost unnatural to try to appeal to the atual dereasing argument's indutionpriniple (Wf re or something), sine from a user's perspetive, the argumentto the reursive all is what gets �smaller�. Or rather: suh a all is �earlier� inthe ourse of values omputed on the way to the top-level all. So what we reallywant is an indution priniple saying:Lemma reahables worker0 ind (P: forall (vs ws rs: SubsetV), Prop)(Pbase: forall vs, P vs emptyV vs)(Pre: forall vs w ws rs, P (addV w vs) (rstep vs w ws) rs ->P vs (w :: ws) rs):forall vs ws, P vs (`ws) (reahables worker0 vs ws).We an prove suh an indution priniple by unfolding the Wf measure submahinery and following the reursion over A. In fat, however, we do not �ndourselves in this ideal world, at least not at �rst. We derive automatially (butwith some pain) the following priniple:Lemma reahables worker0 ind aux(P: forall (vs: SubsetV) (ws: {l | Termination vs l}), SubsetV -> Prop)(Pbase: forall vs a, P vs (exist emptyV a) vs)(Pre: forall vs w ws p rs,P (w :: vs) (exist (rstep vs w ws) p) rs -> forall mp,P vs (exist (w::ws) mp) rs):forall visited waiting, P visited waiting (�reahables worker0 visited waiting).from whih we may, with further work, get the desired indution priniple. Onesees in reahables worker0 ind aux the extra `junk' in the form of existentialwitnesses suh as (exist (rstep vs w ws) p) for termination whih areonly there beause required by Program. In an ideal world, we would be able toprove properties like soundness and ompleteness while oblivious to terminationonerns (and indeed, in setion 3.4 below we will show a way to omplete thisseparation of onerns).Nevertheless, using the derived indution priniple, we an prove soundnessand ompleteness:

12 James MKinna, Dan Synek, and Eelis van der WeegenLemma sound vs ws: Sound vs ->Sound (`ws) -> Sound (reahables worker0 vs ws).Lemma omplete vs ws: Invariant vs (`ws) ->GComplete vs (`ws) (reahables worker0 vs ws).But notie now the wrinkle in the ointment: the lemmas speak about thevalues (`ws) whih are �rst projetions from the deorated Σ-types, and inpratie this kind of niggling detail, and its proliferation into other goals, anoverwhelm the non-expert user.3.3 Version 1: Integrated orretnessA very palatable alternative to the last solution involving a ustom indutionpriniple, and in harmony with forty or �fty years of thought in imperativeprogram veri�ation, is to integrate the orretness statement into the originalde�nition. That is, instead of writing a Program Fixpointwhih produes a barelist, we have it produe a Σ-deorated list whih bundles up the soundness andompleteness proofs. Just as with the lassial informal sketh of the proof, thisfores us to add new invariants to the input argument types in order to makethe resulting extra proof obligation provable. The result looks like this:Program Fixpoint reahables worker1(visited: { vs | Sound vs })(waiting: { ws | Sound ws /\ Termination visited ws /\ Invariant visited ws}){measure measureV visited}:{ rs | Sound rs /\ GComplete visited waiting rs } :=math waiting with| nil => visited| w :: ws => reahables worker1 (addV w visited) (rstep visited w ws)end.We now get the all-too-imaginable proof obligations, for example in the aseof an empty waiting list:Next Obligation. (* the result in the nil ase meets the spe *)(* Sound visited /\ GComplete visited [℄ visited *)In all, there are �ve outstanding proof obligations, namely to hek:� that the exit ondition of the reursion does indeed yield a sound and om-plete set of verties;� that the argument (addV w visited) to the reursive all is indeed sound;� that the onjuntion of the soundness, termination and Dijkstra invariantsis indeed preserved by rstep;� that the termination measure does indeed derease;� that the Dijkstra invariant implies generalised ompleteness.

Proof Pearl: Program-ming reahability algorithms in Coq 13It is good to know that none of them is surprising, and enouraging that Programensures we see only these obligations. Nevertheless, it takes a ertain familiaritywith how it all works in order to untangle these goals, espeially the last one.So, while this approah may work, and indeed preditably so to someonefamiliar with both the problem and the proof assistant, it remains a problem thatthe termination and orretness invariants and arguments are now merged intothe same Σ-type deorations and proof obligations, respetively. Consequently,it is hard to know for sure whih invariant is required for whih property, andonly by insisting on distint names and distint lemmas (used to prove the proofobligation) an one approximate any kind of separation of onerns.Furthermore, suh an approah learly does not sale: eah time one is in-terested in showing a new property, one has to hak the original de�nition (topush more and more invariants into the Σ-types) and hak the proof obligations(whose goal is now a bigger onjuntion) to insert the proof of the new property.3.4 Version 2: using the graph relationThe problems su�ered by the above approahes arise from the following fats:� that in this type theory, to reason about a funtion, that funtion must havebeen already proved terminating;� that the only �free� (primitive) indution priniple to whih one may appeal,orresponds to the struturally dereasing argument, whih for a funtionde�ned with Program and measure is a mere implementation detail of thetermination proof;� that even if one ould obtain the desired indution priniple, it would still bepolluted with Σ-deoration only needed for termination; this is a neessaryonsequene of de�ning the funtion's type in this way.But the indutively-de�ned graph su�ers from none of these defets, as ob-served by other authors before us. By shifting from intensional terms whose ter-mination is internally guaranteed by the type theory, to a formal objet thatrepresents a type of �evidene that the funtion is well-de�ned�, and whoseinhabitants must either be onstruted (by the user or tatis, when provingwell-de�nedness), or else when available as hypotheses are a witness to well-de�nedness, we get to �eat our ake and have it too�.For our partiular example, we obtain an �unpolluted� version of indutionfor reahables worker above, namely the anonial priniple assoiated with:Indutive Reahable rel: forall (visited waiting result: SubsetV), Prop :=| reahable empty vs: Reahable rel vs nil vs| reahable ons vs w ws rs:Reahable rel (w :: vs) (rstep vs w ws) rs ->Reahable rel vs (w :: ws) rs.We an now prove soundness and ompleteness for (input, output) relatedby Reahable rel:

14 James MKinna, Dan Synek, and Eelis van der WeegenLemma sound2 vs ws rs: Reahable rel vs ws rs ->Sound vs -> Sound ws -> Sound rs.Lemma omplete2 vs ws rs: Reahable rel vs ws rs ->Invariant vs ws -> GComplete vs ws rs.Next, we show that there atually is a funtion reahables worker2 thatomputes outputs whih are related to the inputs by the graph relation. For this,we use Program Fixpoint for the �nal time on this problem:Program Fixpoint reahables worker2 (visited: SubsetV)(waiting: { ws | Termination visited ws }){measure measureV visited}: { rs | Reahable rel visited waiting rs } :=math waiting with| nil => visited| w :: ws => reahables worker2 (addV w visited) (rstep visited w ws)end.This di�ers from the de�nition in 3.1 only in that the result type now ex-presses that the result is related to the inputs by the graph relation. The proofobligations generated are:� measure derease, proved as in 3.1;� preservation of the Termination invariant, as in 3.1;� a last obligation, whih ould be automated, whih essentially observes thatthe values of the funtion reahables worker2 satisfy the properties ex-pressed by onstrutors of the Reahable rel relation, that is �it has thereursive all struture as spei�ed�.It is now routine to de�ne our �nal version reahables2 of the wrapper byProgram Definition reahables2: { rs | Speifiation rs }:= �reahables worker2 emptyV start.whose termination obligations are preisely those of soundness and ompleteness.Now the partial orretness lemmas we proved via the graph ome to the fore:Next Obligation.Proof with auto. unfold Speifiation.destrut (�reahables worker2 emptyV(exist (fun l => Termination emptyV l) start reahables2 obligation 1))...simpl in *.split.apply (sound2 r)...apply gomplete omplete...apply (omplete2 r)...Qed.

Proof Pearl: Program-ming reahability algorithms in Coq 154 ConlusionWe began with a traditional perspetive on program veri�ation and the short-omings of onventional type-theoreti approahes to representing non-struturallyreursive programs. We then showed how to progressively re�ne an approah tode�ning suh funtions in CIC using the Program mahinery, onluding with adevelopment whih separates partial orretness out as a purely logial a�air,and restrits the use of Program to proving termination. This perhaps surprisingonlusion omes from paying attention to the separation of onerns, and leads,we believe, to a more abstrat, �exible and disiplined approah.But this is not the last word, sine the graph an be derived from the funtionde�nition. We hope this paper will inspire the implementors of the Programfeature in Coq to de�ne this indutive relation automatially from the Programonstrution. We would then not need to do the double work of �rst de�ning thefuntion and then its graph with the risk of mistakes suh dupliation implies.4.1 Future workWe onsider the following extensions to this researh, in the de�nitions andproofs of the algorithms, and in the spei� Coq engineering of our strategy:� we have only onsidered here a naïve reahability algorithm; nevertheless,by identifying the soundness and ompleteness lemmas, we are able to dropin any other replaement step funtion rstep having these properties; in-deed, one may make the de�nition of the graph relation ompositional in theabstrat graph of suh a step funtion; we intend to explore this in futurepubliations;� the algorithm itself is presented here purely onretely in terms of lists, butthe orretness proof should be presented as fatored through a �nite setrepresentation;� the de�nition of reahable we made is tail-reursive, following the iterativeprototype of its lassial, imperative forebear; so a priori it must be run toompletion in order to spit out the �rst element of its result. But a modesttweak to the de�nition an ensure that at eah iteration, the new visitednode beomes visible in the output immediately, making the de�nition aprodutive one. This opens the way to onsidering the problem of verifyinga o-indutive de�nition of reahable for in�nite graphs;� going beyond the hypothetial integration of Program with the graph ma-hinery, as already envisaged by the �rst author [2℄, one ould imaginenot only systematially synthesising and applying the anonial indutivehoie of graph indued by a funtion de�nition, but further still to on-sider parametrising the mahinery on a user-supplied suh hoie, with theanonial hoie as a default.But suh onsiderations must wait: for now, it is time to terminate the paper!

16 James MKinna, Dan Synek, and Eelis van der WeegenAknowledgments The work is partially supported by NWO/BRICKS projet�ARPA: Advaning the Real use of Proof Assistants�. The �rst author gratefullyaknowledges support of the NWO-funded luster �DIAMANT�.Referenes1. MCarthy, J.: A basis for a mathematial theory of omputation. In Bra�ort, P.,Hirshberg, D., eds.: Computer Programming and Formal Systems, North-Holland(1963)2. MKinna, J.: MCarthy-Painter Indution in Epigram. Talk given at the SottishTheorem Proving (STP) Seminar (July 2003) http://www.s.ru.nl/�james/stp.pdf.3. MBride, C., MKinna, J.: The View from the Left. Journal of Funtional Pro-gramming 14(1) (2004)4. Sozeau, M.: Program-ing Finger Trees in Coq. In: Pro. ICFP'07, ACM (2007)5. Sozeau, M.: Un environnement pour la programmation ave types dépendants.PhD thesis, LRI/Paris XI Orsay (2008)6. Slind, K.: Reasoning about Terminating Funtional Programs. PhD thesis, TUMunih (1999)7. Balaa, A., Bertot, Y.: Fix-Point Equations for Well-Founded Reursion in TypeTheory. In: Pro. TPHOLs'00. Volume 1869 of LNCS., Springer (2000)8. Barthe, G., Courtieu, P.: E�ient Reasoning about Exeutable Spei�ations inCoq. In V. A. Carreno, C. Muñoz and S. Tahar, ed.: Pro. TPHOLs'02. Volume2410 of LNCS., Springer (2002)9. Barthe, G., Forest, J., Pihardie, D., Rusu, V.: De�ning and Reasoning AboutReursive Funtions: A Pratial Tool for the Coq Proof Assistant. In Hagiya, M.,Wadler, P., eds.: Pro. FLOPS 2006. Volume 3945 of LNCS., Springer (2006)10. Bove, A.: Programming in Martin-Löf type theory: Uni�ation - A non-trivialexample (November 1999) Lientiate Thesis, Chalmers University of Tehnology.11. Bove, A., Capretta, V.: Nested General Reursion and Partiality in Type Theory.In Boulton, R.J., Jakson, P.B., eds.: Pro. TPHOLs'01. Volume 2152 of LNCS.,Springer (2001)12. Bove, A.: General Reursion in Type Theory. PhD thesis, Department of Com-puting Siene, Chalmers University of Tehnology (2002)13. Dijkstra, E.W.: A note on two problems in onnexion with graphs. NumerisheMathematik 1 (1959) 269�27114. Moore, J.S., Zhang, Q.: Proof Pearl: Dijkstra's Shortest Path Algorithm Veri�edwith ACL2. In Hurd, J., Melham, T.F., eds.: Pro. TPHOLs'05. Volume 3603 ofLNCS., Springer (2005)15. Gordon, M.J.C., Hurd, J., Slind, K.: Exeuting the Formal Semantis of the A-ellera Property Spei�ation Language by Mehanised Theorem Proving. In Geist,D., Troni, E., eds.: Pro. CHARME'03. Volume 2860 of LNCS., Springer (2003)16. Nishihara, T., Minamide, Y.: Depth-�rst searh. JAR Arhive of Formal Proofs(June 2008) http://afp.soureforge.net/entries/Depth-First-Searh.shtml.A Coq soure pearl.vThis appendix (generated with oqdo) is provided for ompleteness and the on-veniene of reviewers. The full development, inluding the util.v, list util.v,

Proof Pearl: Program-ming reahability algorithms in Coq 17and fix measure utils.v utility �les, may be obtained from the authors atwww.s.ru.nl/�james/2009-TPHOLS.We used the urrent (8.2) release of Coq.Require Import List.Require Import util.Require Import list util.Require �x measure utils.Require Import Program.Require Import Wf nat.Set Impliit Arguments .Module reahability.Setion de�nitions.Variables (State: Type) (trans : State → State → Prop).Indutive reahable: State → State → Prop :=
| reahable re� s : reahable s s
| reahable next a b : reahable a b →trans b → reahable a .Lemma reahable trans a b: reahable a b →
∀ , reahable b → reahable a .Proof with auto.indution 2...apply reahable next with b...Qed.End de�nitions.End reahability.Hint Construtors reahability.reahable.Reord DiGraph: Type := Build{ Vertex: Set; Vertex eq de: ∀ (v v' : Vertex), deision (v = v'); verties: list Vertex; verties exhaustive: ∀ v , In v verties; edges: Vertex → list Vertex; edges NoDup: ∀ v , NoDup (edges v)}.Hint Resolve edges NoDup.Hint Immediate edges NoDup.Hint Immediate verties exhaustive.Impliit Arguments edges [d ℄.Setion ontents.Variable G : DiGraph.Let Edge (v w : Vertex G): Prop := In w (edges v).Let ved := Vertex eq de G . Let subtrV := subtr ved .

18 James MKinna, Dan Synek, and Eelis van der WeegenLet SubsetV := list (Vertex G).Let emptyV : SubsetV := [℄. Hint Unfold emptyV .Let addV v vs : SubsetV := v :: vs . Hint Unfold addV .Variable start : SubsetV .Hypothesis NoDup start : NoDup start .Let reahable v : Prop := ∃ s ,In s start ∧ reahability.reahable Edge s v .Lemma reahable start v : In v start → reahable v .Proof. firstorder. Qed.Hint Resolve reahable start.Lemma reahable next v : reahable v → ∀ w , Edge v w → reahable w .Proof with auto.intros. repeat destrut H . ∃ x . split...apply reahability.reahable next with v ...Qed.Definition Sound (ss : SubsetV): Prop := ∀ v , In v ss → reahable v .Hint Unfold Sound.Lemma Sound empty: Sound emptyV . repeat intro. elim H . Qed.Hint Immediate Sound empty.Definition Complete (ss : SubsetV): Prop := ∀ v , reahable v → In v ss .Definition GComplete (vs ws rs : SubsetV): Prop :=losed under Edge rs ∧ inl ws rs ∧ inl vs rs .Lemma gomplete omplete vs : GComplete [℄ start vs → Complete vs .Proof. unfold Complete, GComplete.intros vs [[i j ℄℄ v [s [b d ℄℄.indution d ; eauto.Qed.Definition Spei�ation rs : Prop := Sound rs ∧ Complete rs .Definition rstep vs w ws :=(subtrV (edges w) ((addV w vs) ++ ws)) ++ ws .Lemma rstep Sound lemma vs w ws :inl (rstep vs w ws) ((edges w) ++ ws).Proof with auto. unfold rstep, subtrV .repeat intro.destrut (in app or H)...destrut (In subtr H0)...Qed.Lemma rstep GComplete lemma vs w ws : inl ws (rstep vs w ws).

Proof Pearl: Program-ming reahability algorithms in Coq 19Proof with auto.repeat intro.apply in or app...Qed.Lemma rstep Invariant lemma vs w ws :inl (subtrV (edges w) (addV w vs)) (rstep vs w ws).Proof with auto.repeat intro.simpl in H .unfold rstep. simpl.destrut (snd (In remove) H).destrut (In subtr H0).destrut (In de ved a ws)...apply in or app.left .apply In remove'...apply subtr In...intro.destrut (in app or H4)...Qed.Let neighbours := �at map (�edges G).Definition Invariant vs ws : Prop := inl (neighbours vs) (ws ++ vs).Lemma Invariant empty l : Invariant emptyV l .Proof. unfold Invariant . intuition. Qed.Hint Immediate Invariant empty.Lemma Invariant preserved vs w ws :Invariant vs (addV w ws) →Invariant (addV w vs) (rstep vs w ws).Proof with auto. unfold Invariant .intros.unfold neighbours in ×. simpl.apply inl app.repeat intro.destrut (In de ved a (addV w vs))...apply in or app.left .apply rstep Invariant lemma...apply subtr In...apply inl tran with ((addV w ws) ++ vs)...apply inl app.apply inl ons...eapply inl appr...unfold addV ...

20 James MKinna, Dan Synek, and Eelis van der Weegenapply inl appl.apply inl appr...apply inl appr...unfold addV ...unfold inl . eauto.Qed.Lemma Invariant losed rs : Invariant rs emptyV → losed under Edge rs .Proof with auto.intros. apply losed by �at map inl...Qed.Definition measureV (vs : SubsetV): nat := length (subtrV (verties G) vs).Lemma measureV derease ws w vs :Disjoint (w :: ws) vs → measureV (w :: vs) < measureV vs .Proof.intros. unfold measureV . apply remove length lt.eapply subtr In. eauto. apply (fst (Disjoint ons H)).Qed.Definition Termination (vs ws : SubsetV): Prop :=NoDup ws ∧ Disjoint ws vs .Lemma Termination start: Termination emptyV start .Proof. split; auto. intro. intuition. Qed.Hint Resolve Termination start.Lemma NoDup rstep vs w ws :NoDup (addV w ws) → NoDup (rstep vs w ws).Proof with auto.intros.inversion lear H .apply NoDup app...apply NoDup subtr...repeat intro.destrut (snd (In remove ved) H).destrut (In subtr ved H3)...destrut (not In app H6)...Qed.Lemma Disjoint rstep vs w ws :NoDup (addV w ws) → Disjoint (addV w ws) vs → Disjoint (rstep vs wws) (addV w vs).Proof with auto.intros.inversion lear H .destrut (Disjoint ons H0).unfold rstep, subtrV .repeat intro.

Proof Pearl: Program-ming reahability algorithms in Coq 21destrut (in app or H4)...destrut (In subtr H6)...destrut H5 .subst...destrut (H3 x)...Qed.Lemma Termination preserved vs w ws :Termination vs (addV w ws) →Termination (addV w vs) (rstep vs w ws).Proof with auto. unfold Termination.intros.destrut H .split.apply NoDup rstep...apply Disjoint rstep...Qed.Program Fixpoint reahables worker (visited : SubsetV)(waiting : { ws | Termination visited ws }){measure measureV visited}: SubsetV :=math waiting with
| nil ⇒ visited
| w :: ws ⇒ reahables worker (addV w visited) (rstep visited w ws)end.Next Obligation. Proof with auto. destrut H . apply measureV dereasewith ws ... Qed.Next Obligation. Proof with auto. apply Termination preserved... Qed.Program Definition reahables: SubsetV:= �reahables worker emptyV start .Lemma rw isEta: isEta reahables worker. apply isEta wit. Defined.Definition reahables worker0 := unEta rw isEta.Impliit Arguments reahables worker0 [℄.Lemma isFix measure sub:�x measure utils.isFix measure sub measureV reahables worker0.Proof.unfold reahables worker0 . simpl.apply �x measure utils.show isFix measure sub.Defined.Lemma reahables worker0 ind aux(P : ∀ (vs : SubsetV) (ws : {l | Termination vs l}), SubsetV → Prop)(Pbase: ∀ vs a, P vs (exist emptyV a) vs)(Pre: ∀ vs w ws p rs ,

22 James MKinna, Dan Synek, and Eelis van der WeegenP (w :: vs) (exist (rstep vs w ws) p) rs → ∀ mp,P vs (exist (w ::ws) mp) rs):
∀ visited waiting , P visited waiting (�reahables worker0 visited waiting).Proof with auto.do 4 intro.pattern visited , (reahables worker0 visited).apply (�x measure utils.ret isFix measure sub).lear visited .intros.rename x into visited .destrut waiting .rename x into waiting .destrut waiting ; simpl...apply (Pre (X (exist (rstep visited v waiting)))).Qed.Lemma reahables worker0 ind (P : ∀ (vs ws rs : SubsetV), Prop)(Pbase: ∀ vs , P vs emptyV vs)(Pre: ∀ vs w ws rs , P (addV w vs) (rstep vs w ws) rs →P vs (w :: ws) rs):
∀ vs ws , P vs (`ws) (reahables worker0 vs ws).Proof with auto.do 5 intro. pattern vs , ws , (reahables worker0 vs ws).apply reahables worker0 ind aux...simpl.intros.lear mp. apply Pre...Qed.Lemma sound vs ws : Sound vs →Sound (`ws) → Sound (reahables worker0 vs ws).Proof with simpl; auto.do 2 intro.pattern vs , (`ws), (reahables worker0 vs ws).apply reahables worker0 ind; unfold Sound ...intros.apply H ... intuition.intros.destrut (in app or (rstep Sound lemma H3))...apply reahable next with w ...Qed.Lemma omplete vs ws : Invariant vs (`ws) →GComplete vs (`ws) (reahables worker0 vs ws).Proof with unfold emptyV , addV ; simpl; auto.do 2 intro.pattern vs , (`ws), (reahables worker0 vs ws).

Proof Pearl: Program-ming reahability algorithms in Coq 23apply reahables worker0 ind; unfold GComplete; intros.intuition.apply Invariant losed...unfold emptyV ...destrut H . apply Invariant preserved...unfold addV in H1 ; destrut H1 .intuition...apply inl ons...apply inl tran with (rstep vs0 w ws0)...apply rstep GComplete lemma.repeat intro...Qed.Program Definition reahables0: { rs | Spei�ation rs }:= �reahables worker0 emptyV start .Next Obligation.Proof with auto. unfold Spei�ation.split.apply sound...apply gomplete omplete...apply omplete...Qed.Program Fixpoint reahables worker1(visited : { vs | Sound vs })(waiting : { ws | Sound ws ∧ Termination visited ws ∧ Invariant visited ws}){measure measureV visited}:{ rs | Sound rs ∧ GComplete visited waiting rs } :=math waiting with
| nil ⇒ visited
| w :: ws ⇒ reahables worker1 (addV w visited) (rstep visited w ws)end.Next Obligation.Proof with auto.destrut H ; destrut H1 ...repeat split...apply Invariant losed...Qed.Next Obligation.Proof. unfold Sound in ×. simpl. intuition. subst. auto. Qed.Next Obligation.Proof. apply measureV derease with ws . firstorder. Qed.Next Obligation.Proof with simpl; auto.

24 James MKinna, Dan Synek, and Eelis van der Weegendestrut H . destrut H1 .destrut (Termination preserved H1).destrut H1 .inversion lear H1 .unfold Sound .repeat split; intros...destrut (in app or (rstep Sound lemma visited w ws H1))...apply reahable next with w ...apply Invariant preserved...Qed.Next Obligation. Proof with auto.math goal with[⊢ ontext [reahables worker1 ?a ?b℄ ℄ ⇒destrut (reahables worker1 a b)end.simpl in ×. lear reahables worker1 . subst.unfold addV , GComplete, Invariant in ×.intuition...apply inl ons...apply inl tran with (rstep visited w ws)...apply rstep GComplete lemma.repeat intro...Qed.Program Definition reahables1: { rs | Spei�ation rs }:= �reahables worker1 emptyV start .Obligation Tati := idta.Next Obligation.Proof with intuition; auto. unfold Spei�ation.math goal with[⊢ ontext [reahables worker1 ?a ?b℄ ℄ ⇒destrut (reahables worker1 a b)end.simpl in ×.split...apply gomplete omplete...Qed.Obligation Tati := program simpl.Indutive Reahable rel: ∀ (visited waiting result : SubsetV), Prop :=
| reahable empty vs : Reahable rel vs nil vs
| reahable ons vs w ws rs :Reahable rel (w :: vs) (rstep vs w ws) rs →Reahable rel vs (w :: ws) rs .Hint Construtors Reahable rel .

Proof Pearl: Program-ming reahability algorithms in Coq 25Lemma sound2 vs ws rs : Reahable rel vs ws rs →Sound vs → Sound ws → Sound rs .Proof with simpl in ×; auto.unfold Sound .indution 1...intros. apply IHReahable rel ...intros. destrut H3 ...intros. destrut (in app or (rstep Sound lemma H3))...apply reahable next with w ...Qed.Lemma omplete2 vs ws rs : Reahable rel vs ws rs →Invariant vs ws → GComplete vs ws rs .Proof with simpl in ×; auto. unfold GComplete.indution 1; intros.split...apply Invariant losed...destrut IHReahable rel . apply Invariant preserved...intuition; repeat intro...destrut H2 . subst...apply H3 .apply (rstep GComplete lemma vs w ws)...Qed.Program Fixpoint reahables worker2(visited : SubsetV)(waiting : { ws | Termination visited ws }){measure measureV visited}: { rs | Reahable rel visited waiting rs } :=math waiting with
| nil ⇒ visited
| w :: ws ⇒ reahables worker2 (addV w visited) (rstep visited w ws)end.Next Obligation. Proof with auto. destrut H . apply measureV dereasewith ws ... Qed.Next Obligation. Proof with auto. apply Termination preserved... Qed.Next Obligation. Proof with auto. apply sig self. subst... Qed.Program Definition reahables2: { rs | Spei�ation rs }:= �reahables worker2 emptyV start .Next Obligation.Proof with auto. unfold Spei�ation.destrut (�reahables worker2 emptyV(exist (fun l ⇒Termination emptyV l) start reahables2 obligation 1))...simpl in ×.split.apply (sound2 r)...apply gomplete omplete...

26 James MKinna, Dan Synek, and Eelis van der Weegenapply (omplete2 r)...Qed.Variable Rstep : ∀ (visited : SubsetV)(w : Vertex G)(waiting step: SubsetV),Prop.Hypothesis Rstep Sound : ∀ vs w ws S , ∀ r : Rstep vs w ws S , inl S ((edgesw) ++ ws).Hypothesis Rstep GComplete : ∀ vs w ws S , ∀ r : Rstep vs w ws S , inl wsS .Hypothesis Rstep Invariant : ∀ vs w ws S , ∀ (r : Rstep vs w ws S),inl (neighbours (addV w vs)) (S ++ (addV w vs)).Hypothesis Rstep Termination : ∀ vs w ws S , ∀ (r : Rstep vs w ws S),Termination vs (addV w ws) → Termination (addV w vs) S .Indutive Reahable abs(Rstep : ∀ (visited : SubsetV)(w : Vertex G)(waiting step: SubsetV), Prop): ∀ (visited waiting result : SubsetV), Prop :=
| reahable abs empty vs : Reahable abs Rstep vs nil vs
| reahable abs ons vs w ws ss rs : Rstep vs w ws ss →Reahable abs Rstep (w :: vs) ss rs →Reahable abs Rstep vs (w :: ws) rs .Hint Construtors Reahable abs .Lemma sound abs vs ws rs : Reahable abs Rstep vs ws rs →Sound vs → Sound ws → Sound rs .Proof with simpl in ×; auto.unfold Sound .indution 1...intros. apply IHReahable abs ...intros. destrut H4 ...intros. destrut (in app or (�Rstep Sound H H4))...apply reahable next with w ...Qed.Lemma omplete abs vs ws rs : Reahable abs Rstep vs ws rs →Invariant vs ws → GComplete vs ws rs .Proof with simpl in ×; auto. unfold Invariant , GComplete.indution 1; intros.split...apply Invariant losed...destrut IHReahable abs . apply (�Rstep Invariant H)...destrut H3 .intuition; repeat intro...destrut H5 . subst...eapply H3 ... apply (Rstep GComplete H)...Qed.End ontents.

