
Under onsideration for publiation in J. Funtional Programming 1The view from the leftConor MBride and James MKinnaDepartment of Computer SieneUniversity of Durham.t.mbride�durham.a.ukj.h.mkinna�durham.a.ukAbstratInterative, re�nement-style proof onstrution in type theory has several things to o�erthe programmer seeking to exploit languages with dependent types.Firstly, as is by now quite well-known, de�nition by pattern mathing beomes a moredisriminating tool for problem-solving, sine it re�nes the explanation of types as well asvalues. This orresponds to the instantiation of propositions in proof by indution.Seondly, Gentzen's sequent alulus draws attention to the rôle played by ut formul�.Subsidiary ase analyses on the results of intermediate omputations, whih ommonlytake plae on the right-hand side of de�nitions by pattern mathing, should rather beexplained by `left rules'. This subsumes the trivial ase of Boolean guards in simply-typedlanguages.Thirdly, pattern mathing deompositions have a well-de�ned interfae given by a de-pendent type. These are user-de�nable, and generalize Wadler's notion of `view' (Wadler,1987). The programmer wishing to introdue a new view of a datatype, and exploit itdiretly in pattern mathing, may do so via a standard idiom: writing a program.This paper introdues enough syntax and semantis to aount for this high-level styleof programming in dependent type theory. It ulminates in the development of a type-heker for the simply-typed lambda alulus, whih furnishes a view of raw terms aseither being well-typed, or ontaining an error. The implementation of this view is a proofthat typeheking is deidable. 1 IntrodutionContemporary proof development systems based on intensional type theory (witha onsequent notion of expliit proof objet on the one hand, and omputation asa primitive notion in the theory on the other) have a highly evolved aount ofgoal-direted problem-solving, based on the \problems-as types" priniple.Programming is a partiular kind of problem-solving, and onsequently we mightexpet to gain insight from suh proof systems into the programming proess, es-peially in the presene of languages with dependent types. Natural dedution pre-sentations of programming, with the aompanying slogans \propositions-as-types"and \proofs-as-programs" are, of ourse, by now very familiar. Our motivation



2 Conor MBride and James MKinnaomes from more reent work (Pym, 1990; Herbelin, 1995; Dykho� & Pinto, 1998)exploring re�nements of Gentzen's sequent alulus (Gentzen, 1935). Our interestlies in the light this sheds upon the interative proess of proof/program onstru-tion. In partiular, we fous on the following features:� left rules, whih give rise to the left-hand sides of pattern mathes;� ut formul�, whih apture the types of intermediate omputations ;� right rules, whih more-or-less diretly apture the right-hand sides of patternmathing equations, where these are in onstrutor form.We intend this paper, among other things, to help push towards an appropriatesyntax for programs presented in this style.Suh an analysis is also familiar territory to readers of Wadler's work in the early1990's (Wadler, 1994). All of these studies, however, have largely foused on thefuntional fragment. Indutively-de�ned datatypes have reeived rather less atten-tion, not least beause indution interferes with ut-elimination|preisely Gentzen'smotivation for introduing sequent alulus in the �rst plae.This paper develops an analysis of interative program development based on theseideas from sequent alulus. We wish to identify the following new insights:� the appliation of a ut rule is not restrited to the right-hand side of a math;analysing ut-formul� on the left o�ers onsiderable notational onveniene,even when programming with simple types;� the introdution of type dependeny makes pattern mathing a far more pow-erful notion than its explanation via a term language of ase-expressions; weexplore the onsequenes of this in detail below;� one of these onsequenes is that ontrol strutures based on ombining on-tinuations an be rei�ed as data|this gives us `views for free!';� by fousing on interative development, we expose the possibility of a moreexible approah to programming.The key feature of pattern mathing in simply typed languages is that the stru-ture of an arbitrary value in a datatype is explained. This explanation provides aanonial ontrol struture for the programmer, analysed by Augusstson and oth-ers in terms of deision trees, whih marries a swith on the outermost onstrutorsymbol with the exposure of subexpressions (Augustsson, 1985).In dependently typed languages, espeially those used for indutive theorem prov-ing, pattern mathing arises from the appliation of an elimination rule (indutionpriniple). The key feature of indution is that the result type is instantiated, andhene further explained, by the patterns.This has several onsequenes for the programmer exploiting dependent types.Firstly, we an, and should, extend the syntax and semantis of pattern math-ing to go beyond traditional presentations involving ase. In partiular, one should



The view from the left 3identify, and reord expliitly (in the deision tree), the elimination rule giving riseto the patterns. This gives us one kind of node, whih we dub `by-nodes', in ourdeision trees, and orrespond diretly to appliation of left rules.Seondly, that we an, and should, reanalyse expressions on the right-hand side ofpattern mathes. A ommon idiom is to onsider subsidiary ase analyses on theoutome of some subomputation, whose type, from a logial point of view, is aut formula. In the trivial ase of a Boolean ase split, this idiom is made onreteby the use of guards. The introdution of languages with type dependeny, how-ever, onsiderably strengthens the utility of subsidiary ase analyses on suh utformul�/subomputations, sine they an hange the types of further subomputa-tions. This gives a new kind of node in the deision tree, whih we dub `with-nodes',and orresponds to the use of ut. But now there is a twist in the tail: we analyseuts in suh a way as to permit further pattern mathing; namely that ut formul�are analysed on the left, not on the right as in urrent pratie.Finally, the statement of an indution priniple for a datatype orresponds to iden-tifying an allowable set of patterns with whih to math on values of the type; thatis to say, it furnishes a view in Wadler's sense (Wadler, 1987). Now, ertain views,orresponding to the simple mathes on onstrutors, or the standard struturalindution priniple for the datatype (Burstall, 1969; Nordstr�om et al., 1990), arealways available for free. But the programmer may also de�ne new views, providedonly that the orresponding indution priniple be admissible.There is a standard method for ahieving this: by writing a program. To be ableto do so, however, demands an expressive enough type system, in whih typesan expliitly desribe patterns. Given suh a type struture, one may then goeven further. The programmer may introdue a new datatype, whose `view forfree' is preisely the sought-after view. To establish this view for the old datatype,one onstruts an isomorphism or, more generally, simply a surjetion from theold datatype. Suh surjetions embrae Coquand's notion of `overing' (Coquand,1992), and are also obtained by writing programs with dependent types.We onlude our tehnial disussion with the development of a typeheker for thesimply typed lambda alulus. This presentation furnishes a view of raw lambdaterms as either being well-typed, or ontaining the soure of a type error. Theimplementation of this view is a proof that typeheking is deidable, and we show,in the ourse of writing the program, how the type of suh erroneous terms emergesfrom the problem deomposition.AknowledgementsWe gratefully aknowledge the support of the EPSRC, through grants GR/N 24988and GR/R 72259. We also thank the organisers of Dagstuhl seminar 01141, `Se-mantis of Proof Searh', where we presented preliminary versions of some of these



4 Conor MBride and James MKinnaideas. Our main debt, however, is to the programmers who have inspired us: RodBurstall, Fred MBride and Phil Wadler.2 Programming with Deision TreesWe present a high-level syntax for funtional programming in a dependent typetheory. A funtion is de�ned by giving its type signature in a natural dedutionstyle, and writing its deision tree, desribing the hierarhial struture of testsby whih it divides its arguments into �ner and �ner ases. In e�et, a deision treeprovides a ompat notation for a muh larger term in the raw type theory whihmay be generated in full by applying proof tatis in a top-down fashion, direted bythe nodes of the tree. In this paper, we fous on the notational aspets, and diretthe reader interested in the underlying terms to the existing literature (MBride,1999; MBride, 2001b).Eah node of a deision tree is labelled with a head|a word borrowed from thevoabulary of logi programming, here used to mean the funtion symbol appliedto patterns. Internal nodes speify a method by whih this head an be re�ned,leading to a olletion of heads with more detailed patterns, addressed by deisionsubtrees. The leaf nodes of a deision tree, signalled by the 7! symbol, supplya result|an expression over the variables ourring in the patterns, giving thefuntion a return value for that head.This ontrasts with the usual presentation of pattern-mathing (Burstall, 1969;MBride, 1970), where a funtion is given by a prioritised assoiation list map-ping heads to results. Our deision trees resemble the output of Augustsson's algo-rithm for ompiling at pattern mathing into a hierarhy of `simple' ase expres-sions. (Augustsson, 1985).The identity funtion has a one-node tree:let t : Tiden t : T iden t 7! tNote that we presume any free variables ourring in the type signature, e.g. Tabove, to be universally quanti�ed impliitly in the type of the funtion. Thesequanti�ers are inserted as far to the left as type dependeny permits, and we writethem longhand, when we absolutely must, with Pollak's j notation (Pollak, 1992).The atual type of iden is 8T jType:T ! T . If we want to make suh argumentsexpliit in appliations, we subsript them: idenN is the identity funtion for thenatural numbers.We imagine that deision trees will be onstruted interatively. Indeed, this ispreisely the mode of operation supported by the proof assistant ALF and itssuessors (Magnusson, 1994; Coquand & Coquand, 1999). An open deision treeontains open nodes whih await either a method or a result. These e�etivelypair goal types in the underlying theory, with their orresponding heads. The type



The view from the left 5signature of a funtion determines the initial open tree|a single node whose headhas a fresh pattern variable for eah argument. We may summarise of the statusof an open node in more detail, giving its ontext of pattern variables, and atype whih labels the atual result type with its orresponding head. A typialdevelopment thus begins:let ~x : ~Sf ~x : R[~x ℄ f ~x ?~x : ~S `? hf ~x : R[x ℄iWe use de Bruijn's telesope notation to indiate a sequene of typings, suh as~x : ~S (de Bruijn, 1991). The notation R[~x ℄ indiates that R is a term over the ~x ,and we denote instantiations of the ~x with terms ~s in R by R[~s℄.Our pratie will be to write an inomplete program as a type signature with anopen tree, then to summarise any open nodes of interest below. At any stage, anopen node will have a summary resembling~x : ~X `? hf ~p[~x ℄ : R[~p[~x ℄℄iWe may lose a node by supplying a result r [~x ℄ in R[~p[~x ℄℄, yielding: : : f ~p[~x ℄ 7! r [~x ℄We grow a deision tree by applying a method to an open node, aquiring a ol-letion of open subnodes. In order to speify a method, we must explain how toompute the summaries of the subnodes from the summaries of the original. Theimplementation of a method must perform the orresponding proof step, reduingthe original goal to the subgoals given by the subnodes. In e�et, our approahaugments traditional onstrution by re�nement with the bookkeeping of heads viaannotations in types.The next two setions speify two suh methods, both of whih have ready im-plementations given by established proof tatis. The `by' method supports aseanalysis and strutural reursion; the `with' method introdues an intermediateomputation for subsequent analysis. With-nodes o�er new notational onveniene,even when working with simple types. However, it is in the presene of indutivefamilies of datatypes that these two methods show their true potential.3 By-nodesBy-nodes invoke known methods of analysis, yielding subnodes whih have aessto more information. Their implementation is given by MBride's ElimUnify tati,details of whih an be found in (MBride, 2001b). By-nodes support the appliationof arbitrary ase analysis and reursion operators. Every indutive family omesequipped with `standard' operators for onstrutor-ase analysis and onstrutor-



6 Conor MBride and James MKinnaguarded reursion, hene by-nodes easily subsume Coquand's notion of pattern-mathing for dependent types, in whih the onnetion to onstrutors is hard-wired (Coquand, 1992). Let us onsider ase analysis �rst, then add reursion later.3.1 Case AnalysisA simple example is found in the `bind' funtion, , for the Maybe monad.data A : TypeMaybeA : Type where a : Ayes a : MaybeA no : MaybeAlet f : A ! Maybe B x : MaybeAf x : Maybe B f x byMaybe-Case xf yes a 7! f af no 7! noNote that the program is the whole tree, grouping a node with its subtrees expli-itly. Later in this setion, we shall examine ways to redue this textual overhead,inferring standard by-nodes from the textual lues their o�spring inherit, but fornow, let us write our programs in full.The eliminator e in `by e' must have a type whih abstrats a sheme of patternmathing and/or reursion. The type of Maybe-Case x is8�:MaybeA!Type: (8a :A: � (yes a)) ! (� no) ! � xThis type asserts that in any setting, abstrated by �, x an be split into thepatterns (yesa) and no. It is the type of an `elimination rule' for Maybe instantiatedto eliminate a partiular `target'. We all suh types shemes, and we have a littlesyntati sugar for them. Lete : f� ~q : ~I � (~x1 : ~X1) � ~q1 j : : : j (~xn : ~Xn) � ~qngabbreviate e : 8�:8~i :~I : Type: (8~x1 : ~X1: � ~q1) ! � � � (8~xn : ~Xn: � ~qn) ! � ~qMaybe-Case x : f� x : MaybeA � (a : A) � (yes a) j () � nogLogially, the type of a sheme asserts that any values of form ~q must math atleast one of the ~qj . A program must explain what to do for eah possible math.Note that we use q 's for patterns in shemes, to distinguish them from the p's inheads. A program must explain what to do for eah possible math: we aquire asubnode for eah ~qj whih uni�es with ~q .At the type theory level, the implementation hooses a suitable value for �. MBridealls this value themotive, beause it explains the purpose of the elimination. Themotive odes up the uni�ation problem as a set of equations. The full details an befound in (MBride, 2001b), but we reaptiulate the basi tehnique, a ommonplaeof theorem-proving with indutively de�ned relations. For an open node,



The view from the left 7~x : ~X `? hf ~p[~x ℄ : R[~p[~x ℄℄iwe take� := �~i :~I : 8~x : ~X :~i = ~q ! hf ~p[~x ℄ : R[~p[~x ℄℄iWe write ~i = ~q for a series of equational hypotheses and re~t for the sequene ofanonial proofs that eah t equals itself. We now havee � ?1 : : : ?n ~x (re ~q) : hf ~p[~x ℄ : R[~p[~x ℄℄iwhere eah ?j is a subgoal orresponding to a ase of the sheme~xj : ~Xj ; ~x ; ~X ; ~qj = ~q `? hf ~p[~x ℄ : R[~p[~x ℄℄iThe mahine now simpli�es the equations ~qj = ~q by �rst-order uni�ation, usingthe substitutivity of equality and the basi properties of datatype onstrutors.We use the algorithm introdued in (MBride, 1998). This repliates within typetheory the uni�ation kept impliit in (Coquand, 1992). There are three possibleoutomes: it may ompute a most general uni�er �j taking ~x ; ~xj to terms over some~x 0j : ~X 0j ; it may show that the equations have no uni�er, yielding a vauous solutionfor ?j ; it may get stuk on a non-onstrutor equation.If uni�ation gets stuk for any ase, the mahine rejets the by-method. Otherwise,it forms a by-node, with the uni�ed subgoals as its subnodes:~x 0j : ~X 0j `? hf ~p[�j~x ℄ : R[~p[�j~x ℄℄iThese subnodes speify the ontinuations whih must be passed to eliminator sothat it an handle eah possible outome. In our Maybe-Case x example, x uni�eswith eah pattern, so we must supply both a `suess' and a `failure' ontinuation.: : : f ~p[~x ℄ by e...f ~p[�j~x ℄ ?... e.g. f x byMaybe-Case xf yes a ?f no ?Uni�ation gives us the overlap between the patterns being split and the patternsin the ases of the sheme. When we work with dependent types, this an simplifysome ases and rule out others altogether. The `tail of a vetor' has beome theroutine example. The family Vet de�ned below, re�nes the type of lists with anindex making the lengths of vetors expliit. We hoose to put the head of a vetoron the right, as this suits our later examples, where they represent typing ontexts.data A : Type n : NVetA n : Type where " : VetA 0xs : VetA n x : Axs :: x : VetA (sn)The Vet family has a single ase analysis operator:



8 Conor MBride and James MKinnaVet-CaseA;n xs : f� n : N; xs : Vet A n �() � 0 "j (n : N; xs : VetA n; x : A) � (sn) (xs :: x )gNow, onsider the programming problemlet xs : VetA (sn)vtail xs : VetA n vtail xs ?A : Type; n : N; xs : VetA (sn) `? vtail xs : VetA nWhen we apply the method `by Vet-Case xs', we are splitting a nonempty ve-tor. Uni�ation rules out the possibility of the " onstrutor. The deision tree isextended with only one subnode, whih we may readily lose:vtail xs by Vet-Case xsvtail (xs :: x ) 7! xsIn general, a single by-node may tell us about a many pattern variables, as well asre�ning the result type of the funtion. This is as it should be: we should expetthe information obtained by testing to show up in more informative types whihlegitimize a wider range of subsequent ativity.3.2 By-nodes for ReursionThere is nothing to prevent `indutive hypotheses' ourring in the sheme of aby-node eliminator. For example, the traditional notion of primitive reursion forN is given by the shemeN-Elim n : f� n : N � () � 0 j (n : N; � n) � (sn)gWhen we build a by-node with suh a sheme, the ontext of the s-subnode aquiresan indutive hypothesis, representing a set of reursive alls. The head annotation,opied from the original node into the motive, now tell us exatly whih alls arepermitted. For examplelet n;m : Nn +m : N n +m by N-Elim n0+m 7! msn +m ?n;m : N; (m 0 : N) hn +m 0 : Ni `? sn +m : NIn our example, we may all n+m 0, for any m 0. We might de�ne + tail reursively,losing the node with n + sm; we might also return s(n +m). More generally, wemay make any reursive all for whih the mahine an �nd an appropriate headannotation in the ontext.There is no hard-wired notion of reursion. We are free to use any sheme, provided



The view from the left 9we an �nd an eliminator whih gives it an operational semantis. We ould evenadd general reursion by assertingx : Tgeneral x : f� x : T � (x : T ; 8y :T : � y) � xgLogially, this is a bare-faed lie, but it an be given the obvious `free beer tomorrow'operational semantis.Even without going this far, we do not have to try too hard to improve on primitivereursion. For eah indutive family of datatypes, F, the mahine automatiallyonstruts an operator, F-Re, whih permits reursion to strip o� more than oneonstrutor per step. For example,N-Re n : f� n : N � (n : N; N-Memo � n) � ngN-Memo � n is the type of a data struture whih holds a value in � n 0 for eahstrit subterm n 0 � n. Gim�enez de�nes this struture indutively (Gim�enez, 1994);MBride de�nes it by omputation on n (MBride, 1999):let � : N ! Type n : NN-Memo � n : Type N-Memo � n by N-Elim nN-Memo � 0 7! UnitN-Memo � (sn) 7! N-Memo � n �� nThe more n is instantiated with onstrutor patterns, the more N-Memo � nexpands to reveal � for eah guarded subterm, the more reursive alls beomeavailable simply by projetion.The general onstrution for F�Memo and F-Re is given in (MBride, 1999).Nesting F-Re by-nodes on a sequene of arguments delivers (at least) the strengthof their lexiographi ombination, where `outer' arguments may remain �xed if`inner' ones derease. The equational onstraints in the motive reappear in the`indutive hypotheses' as mathing problems whih have a trivial solution exatlywhen the reursive all mathes the original head.The separation of reursion from ase analysis gives muh greater exibility to theprogrammer, where primitive reursion fores an immediate ase analysis on anyargument to whih it is applied. For example, we may write the �? test for N byreursion on its seond argument:let x ; y : Nx �? y : Bool x �? y by N-Re yx �? y by N-Case x0�? y 7! truesx �? y by N-Case ysx �? 0 7! falsesx �? sy 7! x �? yThis freedom beomes even more important when working with dependent types.



10 Conor MBride and James MKinnaWe may wish to write a program over some x : F y whih does its ase analysison x but is reursive on the index y , whih may have a totally unrelated stru-ture. Indeed, this is how the �rst-order uni�ation algorithm is given a struturallyreursive presentation in (MBride, 2001).3.3 Hiding Obvious By-nodesThe full deision tree for �? makes quite umbersome reading, even if interativetools help with the writing. We an redue this burden wherever the onstrutorsymbols in the patterns give us a hint that standard ase analysis and reursionoperators have been used. We should like to atten the standard parts of deisiontrees as muh as possible, provided the erased struture, or at least an equivalentstruture, an be reovered.Firstly, outermost F-Re nodes an be removed. The spae of possible lexio-graphi ombinations of subterm orderings on a �xed number of arguments isreadily searhed. Indeed, Abel and Altenkirh give an elegant algorithm for dis-overing lexiographi onstrutor-guarded reursion whih extends to mutuallyde�ned funtions (Abel & Altenkirh, 2000).Seondly, F-Case nodes an be replaed by a at olletion of their subnodes,provided there is at least one. The presene of an unexplained onstrutor symbolin a pattern an be used as a prompt to insert a by-node whih does explain it.Cornes gives an algorithm whih serves exatly this purpose in (Cornes, 1997).However, we annot expet the mahine to reover a hierarhy of ase analysiswhih e�etively proves that a type is empty|type inhabitation is undeidable.For example, given the family of �nite datatypesdata n : NFin n : Type where f0n : Fin sn i : Fin nfsn i : Fin snthe following program annot be redued:let i : Fin 0empty i : Unit empty i by Fin-Case iWe ould hoose to allow the mahine to searh a little for emptiness proofs, perhapstrying one step of ase analysis on eah pattern variable. This would allow the aboveprogram to be given by its type signature alone! Even without this extra work, manyfamiliar programs are attened entirely:let x ; y : Nx =? y : Bool 0 =? 0 7! true0 =? sy 7! falsesx =? 0 7! falsesx =? sy 7! x =? yOf ourse, in trying to reonstitute the full deision tree for =?, we an hoose



The view from the left 11reursion on either argument and ase analysis in either order. We see no reason tobe partiular about whih hoie the mahine makes, provided that ase analysison families is preferred to ase analysis on their indies: it seems foolish to examinean index, when the same information, fored by the type, an be obtained for freeby uni�ation. 4 With-nodes in Deision TreesCase analysis on arguments may not determine the entire ontrol ow througha funtion, nor expose all the information required to ompute its result. Somefuntions must analyse the results of intermediate omputations. A pure pattern-mathing notation fores these omputations to be invoked on the right-hand side,disloating a part of the deision proess. For example, onsider the funtion whihtests if a given label is in the domain of an assoiation list|we use vetors for thelists and numbers for the labels.let lxs : Vet (N �X )m n : Nlxs dom? n : Bool" dom? n 7! falselxs :: (l ; x ) dom? n 7! if l =? n then true else lxs dom? nSimilarly, we must lurh rightwards to unpak a reursive all:let xys : Vet (A� B) nunzip xys : VetA n � Vet B nunzip " 7! ("; ")unzip (xys :: (x ; y)) 7! ase unzip xysof (xs; ys) 7! (xs :: x ; ys :: y)Worse, we may be fored to make a omputation on the right before we are sure tohave �nished deomposing the arguments on the left: Consider testing if one treeis a subtree of another (presuming the equality test has been de�ned):let s ; t : trees sub? t : Bools sub? t 7! if s =? t then trueelse ase tof leaf 7! falset1 node t2 7! s sub? t1 or s sub? t2In the ase of Boolean testing, the guard notation, to our knowledge introduedin (MBride, 1970) and now standard in Haskell, o�ers some help. This allows forBoolean onditions|guards|to be attahed to a head: one the pattern variables



12 Conor MBride and James MKinnahave been bound, these must evaluate to true for the math as a whole to besuessful; otherwise the mahine resumes mathing with the remaining heads.However, true guards throw us to the right, perhaps before we know all we need.Further, guards have nothing to o�er the non-Boolean intermediate value.If our deision trees �nd themselves in need of some ritial information at anypoint in their analysis, we permit them to ask for it. For example, when we havereahed this stage in the development of unzip,unzip (xys :: xy) ?we an trigger the reursive all whih rearranges xys , by reating a with-node:unzip (xys :: xy) with unzip xysunzip (xys :: xy) k xsys ?A with-node invokes an intermediate omputation|a ut-term|and makes itsresult available for analysis on the left by adding an extra olumn to the head,ontaining a fresh pattern variable. The k symbol persists in the subtree of thewith-node separating the new ut-pattern from the old head. This subtree maynow make further analysis of both new and old data. We may now add (and thenatten) by-nodes whih apply �-Case to extrat both heads and tails from theirrespetive tuples, then build the result. The full ode for unzip beomes:let xys : Vet (A� B) nunzip xys : VetA n � Vet B nunzip " 7! ("; ")unzip (xys :: xy) with unzip xysunzip (xys :: (x ; y)) k (xs; ys) 7! (xs :: x ; ys :: y)Similarly, the subtree test beomes muh learer if we pull the equality test to theleft, just as if it were a Boolean guard:let s ; t : trees sub? t : Bools sub? t with s =? ts sub? t k true 7! trues sub? leaf k false 7! falses sub? (t1 node t2) k false 7! s sub? t1 or s sub? t2By way of fousing attention where it is needed, we permit the omission of the textleft of the k where it would simply opy that of the node above:



The view from the left 13let lxs : Vet (N �X )m n : Nlxs dom? n : Bool" dom? n 7! falselxs :: (l ; x ) dom? n with l =? nk true 7! truek false 7! lxs dom? nOf ourse, we ould have exploited the Boolean nature of dom? to fold the testinginto an or, as we did with sub?. The same is not true for the projetion funtion,asso, an example suggested by Pollak, drawn from his experienes with odingreords in type theory (Pollak, 2000). In our world of total funtions, the latterpresents its own problems: what are we to do if the label does not our? Oneapproah is to lift asso to a Maybe type. Another is to make ourrene in thedomain a preondition to the appliation of asso.The use of partial operations with de fato preonditions is a ommon idiom insimply-typed programming, funtional or not, but its orret deployment is leftto the programmer's onsiene. Dependent types allow us a number of ways toenfore preonditions through type information. Perhaps the least radial of theseomes by reeting Boolean values as types via the following family:data b : BoolSo b : Type where oh : So trueOf ourse, we ould de�ne So omputationally, as the funtion taking true to Unitand false to Empty, but we �nd the family a better way to doument our usage ofthe singleton or empty type. We may now impose a Boolean preondition b on anoperation by demanding an extra argument of type So b. For example,let lxs : Vet (N �X )m n : N p : So (lxs dom? n)asso lxs n p : XWe an often satisfy the preondition without omputing it at run time if the labelwas demonstrably put in the list. We begin as we did with dom? :asso " n p ?asso (lxs :: (l ; x )) n p ?The " ase should be impossible, and it is. The type of p is So (" dom? n), whihredues to So false, learly empty. We write:asso " n p by So-Case pWhat of the other ase? What is the type of its p, and how do we exploit it,depending on the outome of l =? n? It is here that we need a more preise aountof with-nodes. Consider a programming problem~x : ~X `? hf ~p : Ri



14 Conor MBride and James MKinnaWhen we attempt to apply the method `with t ', we may divide the dependenygraph of the ~x : ~X in two, with the fewest ~xb : ~Xb below suh that t is well-typed,and the remaining ~xa : ~Xa above. Up to a dependeny-respeting permutation, ourprogramming problem is~xb : ~Xb; ~xa : ~Xa `? hf ~p : Ri where ~xb : ~Xb ` t : TWe ompute the telesope ~xa : ~X 0a and the type R0 by syntatially replaing everyourrene of the normal form of t in the normal forms of the ~Xa and R by a freshvariable w and we hek that this abstration has not broken any typings wherethe value of t was ritial. That is, we hek~xb : ~Xb; w : T ; ~xa : ~X 0a ` R0 : TypeIf this hek fails, we rejet the with-node. If all is well, we pose the subproblem~xb : ~Xb; w : T ; ~xa : ~X 0a `? hf ~p k w : R0iA solution to this problem yields a solution to the original when w is instantiatedwith t . In fat, a with-node's immediate hild is the root node for a new loallyde�ned funtion, f 0 whih has aess to everything in the parent ontext (inludingmemo strutures) and the new argument w . f ~p k w is just a onvenient displaysyntax for f 0 ~xa w ~xb. In e�et, the with-node is just the programming analogue ofCoq's Pattern tati (Coq, 2001).Now we know the type of p in the :: -ase of asso:: : : ; p : So (lxs :: (l ; x ) dom? n k l =? n) `? hasso (lxs :: (l ; x )) n p : X iThe evaluation of dom? has got stuk just inside its with-node, beause l =? nis not a onstrutor. Nor is it a variable, so we annot simply do Bool-Case on it,but we now have the means to turn it into a variable! We were going to test l =? nanyway, but the with-node also abstrats its term from the type of p.asso (lxs :: (l ; x )) n p with l =? nk b ?: : : ; p : So (lxs :: (l ; x ) dom? n k b) `? hasso (lxs :: (l ; x )) n p k b : X iCase analysis on b now allows the type of p to redue still further:asso (lxs :: (l ; x )) n p with l =? nk true ?k false ?: : : ; p : So true `? hasso (lxs :: (l ; x )) n p k true : X i: : : ; p : So (lxs dom? n) `? hasso (lxs :: (l ; x )) n p k false : X iWe may lose both nodes. Here is the �nished program:



The view from the left 15let lxs : Vet (N �X )m n : Np : So (lxs dom? n)asso lxs n p : Xasso " n p by So-Case passo (lxs :: (l ; x )) n p with l =? nk true 7! xk false 7! asso lxs n pPollak suggests a heterogeneous variant of this problem, assoiating eah labelwith a dependent pair ontaining a type and a term with that type in the datastruture Vet (N � 9A :Type: A)m. We should be able to write a funtion assoTto projet out the type for a label, then make asso produe a term of the typegiven by assoT , with dom? a preondition to both! Our notation handles thiseasily, using with-nodes to synhronize all three funtions.The introdution of with-nodes helps us to tidy up previously disparate fragmentsof testing, olloating them on the left by allowing the extension of heads with ut-patterns orresponding to the results of intermediate omputations. The treatmentis uniform where guards privilege Boolean values, and the aquisition of new datadoes not prelude further analysis of the old data within the same deision proess.Furthermore, by bringing intermediate values|whose types are Gentzen-style ut-formul�|into the ontext under srutiny and abstrating them from types, wegive a lean aount of the e�et their subsequent analysis has on our knowledgeof the rest of the problem. In ontrast, a free-oating ase-expression must eitherre-abstrat every other piee of information it a�ets, or else yield highly non-loalonsequenes. As we shall shortly see, with-nodes have great impat when used inonjuntion with ase analysis on dependent families.5 Views through Indutive FamiliesWe have said that by-nodes permit the appliation of non-standard eliminators,but we have thus far given no examples where we exploit this potential. In thissetion, we shall give several suh examples, and we shall show how these non-standard eliminators may be manufatured from the standard ones, yielding thefuntionality of Wadler's `views', and more (Wadler, 1987). Let us begin where hedid, by providing the `ons' view of our `sno'-vetors, where ons is de�ned:let x : A xs : Vet A nx ons xs : VetA (sn) x ons " 7! " :: xx ons (xs :: y) 7! (x ons xs) :: yWe may now speify the `ons' view:bakwards xs : f � n : N; xs : VetA n� () � 0 "j (x : A; xs VetA n) � (sn) (x ons xs)g



16 Conor MBride and James MKinnaThis view an be used to write the vlast funtion. Just as with vtail, uni�ationremoves the " ase:let xs : Vet A (sn)vlast xs : A vlast xs by bakwards xsvlast (x ons xs) 7! xHow might we implement bakwards? Shemes are, in e�et, the types of poly-morphi ontinuation ombinators. We ould write a ontinuation-passing program,making use of the view reursively:bakwards " � �" � 7! �"bakwards (xs :: x ) � �" � by bakwards xsbakwards (" :: x ) � �" � 7! � x "bakwards ((x ons xs) :: y) � �" � 7! � x (xs :: y)However, there is a �rst-order method to ahieve the same e�et whih appears as areurring idiom in MKinna and Pollak's work on formal metatheory (MKinna &Pollak, 1999). Whenever they need to establish an alternative indution priniplefor a relation R, they introdue the relation R0 whih natively has that indutionpriniple, and then show that R0 inludes R. We may do the same for Vet: insteadof showing bakwards for every suitable �, we may show it for the smallest, turning� into an indutive family and the ontinuations ~� into its onstrutors:data xs : VetA nBak n xs : Type where bak" : Bak 0 "x : A xs : VetA nbak x xs : Bak (sn) (x ons xs)We may show that Bak overs the vetors:let xs : VetA nbak xs : Bak n xsbak " 7! bak"bak (xs :: x ) with bak xsbak (" :: x ) k bak" 7! bak x "bak ((x ons xs) :: y) k (bak x xs) 7! bak x (xs :: y)The de�nition of bakwards is now trivial:bakwards xs � �" � with bak xsbakwards " � �" � k bak" 7! �"bakwards (x ons xs) � �" � k (bak x xs) 7! � x xsIn e�et, bakwards delivers the e�et on xs of ase analysis on bak xs. Theatual omposition of the `proof' delivered by bak is irrelevant. This is suh asimple and ommon onstrution that it an and should be done on the y. Weintrodue a derived form|the with-by-node, taking a `proof' e whose type is aninstane of an indutive family F. This has the e�et of `withe', yielding ut-pattern



The view from the left 17x , then `by F-Case x ', exept that we omit x 's olumn from the new heads. Thismakes bakwards redundant, and simpli�es bak:bak " 7! bak"bak (xs :: x ) with-by bak xsbak (" :: x ) 7! bak x "bak ((x ons xs) :: y) 7! bak x (xs :: y)What we have done is to explain non-standard pattern-mathing via the re�ne-ment of index information whih naturally aompanies the standard notion ofase analysis for indutive families. We have also replaed a higher-order funtionombining ontinuations with a �rst-order funtion ombining onstrutors, invert-ing Churh's enoding of datatypes via higher-order ombinators in the �-alulus.Turning losed fragments of funtion spaes into data, not merely ompositionaland funtionally interpretable but indutive, will, we hope, beome a powerful om-monplae of dependently typed programming. It is oneivable that programs whihompute suh `onrete funtions' only to interpret them immediately|exatly thebehaviour of a with-by-node|an be transformed automatially into a more eÆ-ient ontinuation-passing form by deforestation, a tehnique for whih we also haveWadler to thank (Wadler, 1990).Wadler oneived his view notation as syntati sugar for the insertion of mutallyinverse oerions between datatypes, one of whih admits pattern-mathing, theother potentially abstrat. The idea that a signature for an abstrat data struturemight hide its atual representation, but nonetheless o�er an admissible notionof pattern-mathing, overomes a genuine problem in the engineering of modularode. Programming with admissible notions of pattern-mathing is exatly whatour by-nodes permit, with the bonus that the interfae is given by a type whih anbe required of an exported method in the usual way. Moreover, this type enforesthe `no junk' diretion of the bijetion: Wadler is fored by an inexpressive typesystem to trust the programmer.The presentation of views through indutive families also makes it easy to state`no onfusion' as the requirement that the `overing' funtion delivers the onlypossible proof in eah ase. For example, to show that our `ons' view of vetorsis unambiguous, we may prove the following uniqueness property of its overingfuntion:goal b : Bak n xsbak xs = b 5.1 Views for TestingThe essene of pattern-mathing is to onnet a test on data with the exposure ofthe information to whih we beome entitled, given the test's result, enapsulatingseletor methods within a framework whih ensures that they apply.



18 Conor MBride and James MKinnaViews allow us to extend that framework to a wider lass of tests by funtional pro-gramming alone. We have no need to tinker with the implementation of pattern-mathing to ahieve support for learer ode, nor need we aept the unbridledsearh by whih logi programs deompose data in terms of de�ned funtion sym-bols. For example, the following view expresses the linear ordering on the naturalnumbers N, inorporating both the subtration operation with the onditions undrwhih it is well-de�ned:data x ; y : NCompare x y where ompLt x y : Compare x (x + sy)ompEq x : Compare x xompGt x y : Compare (y + sx ) ylet x ; y : Nomp x y : Compare x yomp 0 0 7! ompEq 0omp 0 (sy) 7! ompLt 0 yomp (sx ) 0 7! ompGt x 0omp (sx ) (sy) with-by omp x yomp (sx ) (s(x + sy)) 7! ompLt (sx ) yomp (sx ) (sx ) 7! ompEq (sx )omp (s(y + sx )) (sy) 7! ompGt x (sy)The Compare family re�nes the enumeration fLT;EQ;GTg, traditionally used totype the deision funtion of an ordering, with indies whih explain the impliationsof the result for the data being ompared. The type of omp tells us|and thetypeheker|that its result does atually pertain to its arguments, a fat we keepto ourselves in the simply typed aount. The program is not so far from thetraditional oding of omparison, subtration, maximum and minimum operators,and it does the job of all of them.The same analysis applies, even more urgently, to the funtions whih deide equalityfor datatypes. One bit is not very muh information unless you know how it isto be interpreted: how is the typeheker supposed to know that T [x ℄ and T [y ℄are the same type, just beause a partiular Boolean value|that of x =? y|happens to be true? In this setting, the non-linear patterns in MBride's thesis,implemented via LISP's Equal prediate (MBride, 1970), beome more than anotational onveniene.We an ahieve this e�et by giving the equality test a more informative type.For example, let us de�ne the equality test for the datatype Simp of simple typeexpressions, whih will prove useful in our example later on:data Simp : Type where o : Simp S ;T : SimpS � T : Simp



The view from the left 19We de�ne a view, SimpEq? whih, for a given S : Simp, splits any T : Simp into Sor `anything else'. We shall need a type family oding up `Simp with S removed',and an embedding from that family bak into Simp:data S : SimpSimp� S : Type where : : :let S 0 : Simp� SSnS 0 : Simp : : :data S ;T : SimpSimpEq? S T : Type simpSame S : SimpEq? S ST 0 : Simp� TsimpDi� S 0 : SimpEq? S (SnS 0)We will `disover' the onstrutors of Simp � S and the behaviour of SnS 0 as wewrite the overing funtion, simpEq?|by ase analysis, then reursive views:let S ;T : SimpsimpEq? S T : SimpEq? S TsimpEq? o o 7! simpSame osimpEq? o (S � T ) ?simpEq? (S � T ) o ?simpEq? (S1 � T1) (S2 � T2) with-by simpEq? S1 S2;simpEq? (S � T1) (S � T2) with-by simpEq? T1 T2;simpEq? (S � T ) (S � T ) 7! simpSame (S � T )simpEq? (S � T ) (S � TnT 0) ?simpEq? (S � T1) (SnS 0 � T2) ?We now give Simp�S onstrutors whih just pakage the ontexts of our four opennodes and de�ne SnS 0 to deode them in orrespondene to the nodes' patterns:neqo S T : Simp� o on(neqo S T ) 7! S � Tneq� : Simp� (S � T ) (S � T )nneq� 7! oS : Simp T 0 : Simp� TneqTT 0 : Simp� (S � T ) (S � T )n(neqT T 0) 7! S � TnT 0S 0 : Simp� S T2 : SimpneqS S 0 T2 : Simp� (S � T1) (S � T1)n(neqS S 0 T2) 7! SnS 0 � T2We may now omplete the de�nition of simpEq?:



20 Conor MBride and James MKinnasimpEq? o o 7! simpSame osimpEq? o (S � T ) 7! simpDi� (neqo S T )simpEq? (S � T ) o 7! simpDi� neq�simpEq? (S1 � T1) (S2 � T2) with-by simpEq? S1 S2;simpEq? (S � T1) (S � T2) with-by simpEq? T1 T2;simpEq? (S � T ) (S � T ) 7! simpSame (S � T )simpEq? (S � T ) (S � TnT 0) 7! simpDi� (neqT T 0)simpEq? (S � T1) (SnS 0 � T2) 7! simpDi� (neqS S 0 T2)This onstrution an be made entirely systemati. The SimpEq? family an bemade parametri on triples onsisting of a type, its `subtration' type and the nembedding. The seond of these need not be de�ned indutively|it an be de�nedby omputation for every datatype. Indeed, given a universe onstrution for aolletion of indutive datatypes, this `system' an be turned into a generi program.In (MBride, 2001a), the �rst author gives just suh a universe onstrution forthe regular datatypes|a single indutive family apturing every datatype in thelanguage losed under polynomial type funtors and least �xed point.
5.2 Views for SeletionSeletor operations allow us to extrat the piees of a data struture, but sometimes,when programming with dependent types, we would like to know more|namely,that the data struture really is the thing made from the piees. Pattern-mathingdelivers this information diretly, and views allow us to extend its sope to morefasinating varieties of seletion.For example, we may see an element of VetAn as an array of n A's, indexed (safely)by elements of Fin n, as de�ned above. That is, we may use fsm f0n : Fin (m + sn)as an index into a vetor of that length, hopping it into a pre�x ys : VetAm anda suÆx xs :: x : VetA (sn), with x being the element so extrated. Let us �rst giveourselves the language with whih to express this:let m : N i : Fin nfsm i : Fin (m + n) fs0 i 7! ifssm i 7! fs (fsm i)let xs : Vet A n ys : Vet Amxs ++ ys : VetA (m + n) xs ++ " 7! xsxs ++ (ys :: y) 7! xs ++ ys :: yWe let ++ bind more tightly than :: to minimise the number of brakets in normalforms. Observe that the arguments of + are the opposite way round to those of ++beause we are using `sno-vetors' and `ons-numbers'. Let us now state our viewof vetors as arrays and show that it overs:



The view from the left 21data xs : VetA n i : Fin nChop xs i : Typewhere xs : VetA n x : A ys : Vet AmhopGlue xs x ys : Chop (xs :: x ++ ys) (fsm f0n)let xs : Vet A n i : Fin nhop xs i : Chop xs ihop (xs :: x ) f0 7! hopGlue xs x "hop (xs :: y) (fs i) with-by hop xs ihop ((xs :: x ++ ys) :: y) (fs (fsm f0n )) 7! hopGlue xs x (ys :: y)Seletion presented in this way appeals strongly to our visual sense of the strutureof data|we see as we do. Many other ommon funtions ould be given a similartreatment, Pollak's `assoiation list' example being a prime andidate. We leavethis as an exerise for the reader.
6 What do Deision Trees do?We have presented our notation for programming with deision trees, and we haveasserted that these programs an be rendered as (rather large) terms in type theoryby the mehanisms whih underpin known tatis in the domain of theorem-proving.We have said relatively little about the equations whih hold of suh programs,either at the level of their redution behaviour or of the equational laws whihthey satisfy. To some extent, this is beause there is relatively little to say: theoperational e�et of a by-node is given entirely by that of its eliminator applied tothe ontinuations generated from its subtrees. The instantiation of head patternsomes from uni�ation with sheme patterns, rather than any native understandingof datatype onstrutors. We bring our own semantis.Let us �rst onsider what we might prove about the eliminators we use in by-nodes and thus dedue about the funtions we build from them. Eliminator shemesare theorems whih assert that their ases are exhaustive for the patterns beinganalysed. They do not ensure that the ases are disjoint, or even that an individualpattern is unambiguous. One an easily show that the pattern n +m aptures allnatural numbers, but this alone does not determine whih n and m will be hosenat a given math. It is the eliminator itself whih makes these hoies. The morewe know about an eliminator, the more we know about the programs whih use it.We desribe an eliminator with the additional property that its patterns are dis-joint and unambiguous as a partition. There is a standard way to show that aneliminator is a partition:



22 Conor MBride and James MKinnagiven e : f� ~q : ~I � (~x1 : ~X1) � ~q1 j : : : j (~xn : ~Xn) � ~qngfor eah j, show ~q = ~qje � ~� = �j ~xjThe eliminator in a with-by-node arising from a view is a partition if and only ifthe overing funtion has the uniqueness property de�ned above.If every by-node in a program is a partition, then we may prove an equational lawabout eah leaf-node, onditional on equations relating the ut-patterns ~w to theoriginal ut-terms ~t :for f ~p k ~w 7! rwe have �1t1 = w1 : : : �ntn = wnf ~p = rwhere �j is the omposition of the substitutions whih have been used to instantiatepattern variables beneath the `with tj ' node. We observe that the onditions aretrivial for ut-terms applying overing funtions with the uniqueness property.Even for by-nodes with overlapping shemes, we know that one of the ontinuationsmust be applied, hene we an reason about funtions whih use them as if theirbehaviour is nondeterministi. One way to do this is to formulate inversion prini-ples for equations of the form f ~p = r whih deliver a number of ases overing the`possible behaviours' of f , but a disussion of this tehnique is outside the sope ofthis paper. Systemati support for reasoning about deision tree programs remainsan ative topi of our researh. Overlapping views may provide us with the means togive intuitive pattern-mathing presentations of programs involving searh, ehoingthe MBrides' experiments with ambiguous patterns in the late 1980s (MBride& MBride, 1989). We plan to investigate the implementation of searh via elimi-nators with monadially lifted shemes, inspired by Wadler's landmark aount offailure and baktraking through lists (Wadler, 1985).Turning to the omputational behaviour of deision trees, let us �rst observe thatwe may regard every node as a program in its own right|it is a funtion fromits ontext to its result type. We may turn eah node into a separate de�nitionwhih �-abstrats its ontext, then returns an appropriate value: for a leaf-node,this is just the supplied result; a with-node applies its sub-node|exatly a ut inthe logial sense; a by-node passes its subnodes as ontinuations to its eliminator.A deision tree thus beomes a tree of `lets' in type theory.If we allow a `native' notion of pattern-mathing, as proposed in (Coquand, 1992),we an exploit the known properties of the standard F-Re and F-Case operatorsto replae lusters of our `lets' with more omplex programs. In partiular, the`native' behaviour of F-Case is exatlyF-Case (j ~xj) � ~�; �j ~xj



The view from the left 23An eliminator whih applies F-Case is thus trivially a partition. A tree of F-Caseappliations delivers a overing in Coquand's sense, and the orresponding lusterof lets may thus be replaed by a single pattern-mathing de�nition. Moreover, theoriginal tree struture tells us how to ompile this de�nition, Augustsson-style.Further, the projetions from the memo-struture F-Memo, used to de�ne F-Re,are omputationally equal to the orresponding reursive appliations of F-Re.We may thus merge a luster of F-Re lets, replaing the projetions from memo-strutures with reursive alls.The native pattern-mathing programs whih arise from these simpli�ations havea redution behaviour whih holds at the level of onversion for the original de�ni-tions (MBride, 1999). A simple simulation argument shows that the transformationpreserves strong normalization, and we onjeture that an argument by orthogo-nality will deliver preservation of onuene. Deision trees built only from thestandard operators atten into single `native' programs, hene we know that forthese trees, 7! really means ;.Deision trees whih ontain with-nodes or non-standard by-nodes nonetheless re-due to a set of mutually reursive native programs. MBride's Oleg system (builtfrom spare parts of Pollak's Lego) has a suite of tatis for manufaturing suhsets of programs, interatively supporting the onstrution tehniques whih beameour `by-nodes' and `with-nodes'. All the examples in this paper were developed in-teratively using Oleg.
7 A Simple TypehekerWe now present our main example, a typeheking view for simply typed �-terms inChurh style. We give a �rst-order indutive presentation of terms whih follows along tradition in the literature, from MKinna and Pollak's treatment of `Vlosed'terms, through to Bellegarde and Hook's monadi de�nition, reently rendered inHaskell (via polymorphi reursion) by Bird and Paterson (MKinna & Pollak,1993; Bellegarde & Hook, 1995; Bird & Paterson, 1999).data n : NTerm n : Type where i : Fin nvar i : Term n f ; s : Term napp f s : Term nS : Simp t : Term (sn)lam S t : Term nFollowing Altenkirh and Reus, we may give an indutive presentation of just thewell-typed terms of a given type, in a given ontext (Altenkirh & Reus, 1999). Thisamounts to writing down the rules of the type system in a syntax direted form:



24 Conor MBride and James MKinnadata � : Vet Simp n T : SimpGood � T : Typewhere � : Vet Simp n T : Simp � : Vet SimpmgVar � T � : Good (� :: T ++�) Tf : Good � (S � T ) s : Good � SgApp f s : Good � T t : Good (� :: S ) TgLam S t : Good � (S � T )There is an obvious forgetful map, g, from Goods to Terms. We keep the typeexpliit, beause we would like to see the type when we use g in a pattern.let t : Goodn � Tg T t : Term n g T (gVarn;m � T �) 7! var (fsm f0n )g T (gApp f s) 7! app (g f ) (g s)g (S � T ) (gLam S t) 7! lam S (g T )Let us now speify our typeheker as a view whih tells us whether or not a givenTerm is Good.data � : Vet Simp n t : Term nTypeChek? � t : Typewhere t : Good � TgoodT t : TypeChek? � (g T t) t : Bad �bad t : TypeChek? � (b t)We have not yet de�ned the type of Bad terms, nor its forgetful map, b. We shall`disover' these in due ourse, just as in our development of the equality view. Hereare their respetive formation rule and signature:data � : Vet Simp nBad � : Type let t : Badn �b t : Term nThe typeheker is fairly straightforward, using the hop view to aess the ontext,and the simpEq? view to ensure that appliations are well-typed. Let us begin bytaking the term apart:let � : Vet Simp n t : Term ntypeChek? � t : TypeChek? � t typeChek? � (var i) ?typeChek? � (app f s) ?typeChek? � (lam S t) ?A variable is always well-typed. The hop view extrats its type from the ontext:typeChek? � (var i) with-by hop � itypeChek? (� :: T n++m �) (var (fsm f0n )) 7! good T (gVar � T �)An abstration is well-typed if its body is. We all the typeheker reursively. Letus leave the `bad' ase for the time being:typeChek? � (lam S t) with-by typeChek? (� :: S ) ttypeChek? � (lam S (g T t)) 7! good (S � T ) (gLam S t)typeChek? � (lam S (b t)) ?To typehek an appliation, we �rst make sure its `funtion' really is funtional:



The view from the left 25typeChek? � (app f s) with-by typeChek? � ftypeChek? � (app (g o f ) s) ?typeChek? � (app (g (S � T ) f ) s) ?typeChek? � (app (b f ) s) ?If so, we proeed to typehek the argument:typeChek? � (app (g (S � T ) f ) s) with-by typeChek? � stypeChek? � (app (g (S � T ) f ) (g S 0 s)) ?typeChek? � (app (g (S � T ) f ) (b s)) ?One we know the argument's type, we must hek that it oinides with the domainof the funtion:typeChek? � (app (g (S � T ) f ) (g S 0 s)) with-by simpEq? S S 0typeChek? � (app (g (S � T ) f ) (g S s)) 7! good T (gApp f s)typeChek? � (app (g (S � T ) f ) (g (SnS 0) s)) ?We have �ve open nodes remaining. These orrespond to the two basi type errors|non-funtion appliation and appliation mismath|together with the three aseswhih propagate an internal type error outwards. It is now lear how to de�ne Badand its forgetful map, b. Just as we did with simpEq?, we soop up the ontextsand patterns from the open nodes.f : Goodn � o s : Term nbNonFun f s : Bad � b (bNonFun f s) 7!app (g o f ) sf : Good � (S � T ) s : Good � (SnS 0)bMismath f s : Bad � b (bMismath f s) 7!app (g (S � T ) f ) (g (SnS 0) s)f : Good � (S � T ) s : Bad �bArg f s : Bad � b (bArg f s) 7!app (g (S � T ) f ) (b s)f : Badn � s : Term nbFun f s : Bad � b (bFun f s) 7!app (b f ) st : Bad (� :: S )bLam S t : Bad � b (bLam S t) 7!lam S (b t)We may thus lose the �ve open nodes and present the ompleted typeheker:



26 Conor MBride and James MKinnatypeChek? � (var i) with-by hop � itypeChek? (� :: T n++m �) (var (fsm f0n)) 7! good T (gVar � T �)typeChek? � (app f s) with-by typeChek? � ftypeChek? � (app (g o f ) s) 7! bad (bNonFun f s)typeChek? � (app (g (S � T ) f ) s) with-by typeChek? � stypeChek? � (app (g (S � T ) f ) (g S 0 s)) with-by simpEq? S S 0typeChek? � (app (g (S � T ) f ) (g S s)) 7! good T (gApp f s)typeChek? � (app (g (S � T ) f ) (g (SnS 0) s)) 7! bad (bMismath f s)typeChek? � (app (g (S � T ) f ) (b s)) 7! bad (bArg f s)typeChek? � (app (b f ) s) 7! bad (bFun f s)typeChek? � (lam S t) with-by typeChek? (� :: S ) ttypeChek? � (lam S (g T t)) 7! good (S � T ) (gLam S t)typeChek? � (lam S (b t)) 7! bad (bLam S t)This is not just a program: it is a proof that typeheking is deidable for thesimply typed �-alulus in Churh style. It does not merely say `yes' or `no', butrather explains eah raw term as deriving by a forgetful map either from a typedterm or a broken term. Its type guarantees that the term being heked really isthe term it is given. Its analysis is onisely stated and imposes the onditions forwell-typedness (and its omplement) just as they are expressed in the typing rules.Moreover, as its reursive alls show, it represents these two possibilities in apattern-mathing style, visibly delivering either a well-typed term whih may bepassed to an exeption-free interpreter in the style of Augustsson and Carlsson (Au-gustsson & Carlsson, 1999), or a useful error diagnosti. The latter loates theleftmost type error in a raw term|its `prinipal gripe'. It ould easily be adaptedto �nd every appliation of a well-typed non-funtion or mismathed appliationbetween two well-typed terms|useful information not only for error reporting, butalso for type debugging and repair, as suggested by MAdam (MAdam, 1999).8 The Conlusion is: Further Work requiredThe main disovery we have made in the light of this researh is how little we knowabout funtional programming with dependent types. It is no longer redible tooneive of dependently typed programming merely as a means to reover the legit-imay of programs whih were lost to us when we moved from untyped languagesto the Hindley-Milner system. We take its inherent omplexity as an opportunity,rather than a problem, and we hope we have given good reason to believe thata programming notation whih is sensitive to the new interplay between pattern-mathing, intermediate omputations and result types an exploit this potentialwith the minimum of diÆulty.More generally, we take the explosion of power whih dependent types bring toprogramming as a ue to re-evaluate design hoies about the language with whihwe express programs, the tools with whih we onstrut programs, and the programs
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