
Under
onsideration for publi
ation in J. Fun
tional Programming 1The view from the leftConor M
Bride and James M
KinnaDepartment of Computer S
ien
eUniversity of Durham
.t.m
bride�durham.a
.ukj.h.m
kinna�durham.a
.ukAbstra
tIntera
tive, re�nement-style proof
onstru
tion in type theory has several things to o�erthe programmer seeking to exploit languages with dependent types.Firstly, as is by now quite well-known, de�nition by pattern mat
hing be
omes a moredis
riminating tool for problem-solving, sin
e it re�nes the explanation of types as well asvalues. This
orresponds to the instantiation of propositions in proof by indu
tion.Se
ondly, Gentzen's sequent
al
ulus draws attention to the rôle played by
ut formul�.Subsidiary
ase analyses on the results of intermediate
omputations, whi
h
ommonlytake pla
e on the right-hand side of de�nitions by pattern mat
hing, should rather beexplained by `left rules'. This subsumes the trivial
ase of Boolean guards in simply-typedlanguages.Thirdly, pattern mat
hing de
ompositions have a well-de�ned interfa
e given by a de-pendent type. These are user-de�nable, and generalize Wadler's notion of `view' (Wadler,1987). The programmer wishing to introdu
e a new view of a datatype, and exploit itdire
tly in pattern mat
hing, may do so via a standard idiom: writing a program.This paper introdu
es enough syntax and semanti
s to a

ount for this high-level styleof programming in dependent type theory. It
ulminates in the development of a type-
he
ker for the simply-typed lambda
al
ulus, whi
h furnishes a view of raw terms aseither being well-typed, or
ontaining an error. The implementation of this view is a proofthat type
he
king is de
idable. 1 Introdu
tionContemporary proof development systems based on intensional type theory (witha
onsequent notion of expli
it proof obje
t on the one hand, and
omputation asa primitive notion in the theory on the other) have a highly evolved a

ount ofgoal-dire
ted problem-solving, based on the \problems-as types" prin
iple.Programming is a parti
ular kind of problem-solving, and
onsequently we mightexpe
t to gain insight from su
h proof systems into the programming pro
ess, es-pe
ially in the presen
e of languages with dependent types. Natural dedu
tion pre-sentations of programming, with the a

ompanying slogans \propositions-as-types"and \proofs-as-programs" are, of
ourse, by now very familiar. Our motivation

2 Conor M
Bride and James M
Kinna
omes from more re
ent work (Pym, 1990; Herbelin, 1995; Dy
kho� & Pinto, 1998)exploring re�nements of Gentzen's sequent
al
ulus (Gentzen, 1935). Our interestlies in the light this sheds upon the intera
tive pro
ess of proof/program
onstru
-tion. In parti
ular, we fo
us on the following features:� left rules, whi
h give rise to the left-hand sides of pattern mat
hes;�
ut formul�, whi
h
apture the types of intermediate
omputations ;� right rules, whi
h more-or-less dire
tly
apture the right-hand sides of patternmat
hing equations, where these are in
onstru
tor form.We intend this paper, among other things, to help push towards an appropriatesyntax for programs presented in this style.Su
h an analysis is also familiar territory to readers of Wadler's work in the early1990's (Wadler, 1994). All of these studies, however, have largely fo
used on thefun
tional fragment. Indu
tively-de�ned datatypes have re
eived rather less atten-tion, not least be
ause indu
tion interferes with
ut-elimination|pre
isely Gentzen'smotivation for introdu
ing sequent
al
ulus in the �rst pla
e.This paper develops an analysis of intera
tive program development based on theseideas from sequent
al
ulus. We wish to identify the following new insights:� the appli
ation of a
ut rule is not restri
ted to the right-hand side of a mat
h;analysing
ut-formul� on the left o�ers
onsiderable notational
onvenien
e,even when programming with simple types;� the introdu
tion of type dependen
y makes pattern mat
hing a far more pow-erful notion than its explanation via a term language of
ase-expressions; weexplore the
onsequen
es of this in detail below;� one of these
onsequen
es is that
ontrol stru
tures based on
ombining
on-tinuations
an be rei�ed as data|this gives us `views for free!';� by fo
using on intera
tive development, we expose the possibility of a more
exible approa
h to programming.The key feature of pattern mat
hing in simply typed languages is that the stru
-ture of an arbitrary value in a datatype is explained. This explanation provides a
anoni
al
ontrol stru
ture for the programmer, analysed by Augusstson and oth-ers in terms of de
ision trees, whi
h marries a swit
h on the outermost
onstru
torsymbol with the exposure of subexpressions (Augustsson, 1985).In dependently typed languages, espe
ially those used for indu
tive theorem prov-ing, pattern mat
hing arises from the appli
ation of an elimination rule (indu
tionprin
iple). The key feature of indu
tion is that the result type is instantiated, andhen
e further explained, by the patterns.This has several
onsequen
es for the programmer exploiting dependent types.Firstly, we
an, and should, extend the syntax and semanti
s of pattern mat
h-ing to go beyond traditional presentations involving
ase. In parti
ular, one should

The view from the left 3identify, and re
ord expli
itly (in the de
ision tree), the elimination rule giving riseto the patterns. This gives us one kind of node, whi
h we dub `by-nodes', in ourde
ision trees, and
orrespond dire
tly to appli
ation of left rules.Se
ondly, that we
an, and should, reanalyse expressions on the right-hand side ofpattern mat
hes. A
ommon idiom is to
onsider subsidiary
ase analyses on theout
ome of some sub
omputation, whose type, from a logi
al point of view, is a
ut formula. In the trivial
ase of a Boolean
ase split, this idiom is made
on
reteby the use of guards. The introdu
tion of languages with type dependen
y, how-ever,
onsiderably strengthens the utility of subsidiary
ase analyses on su
h
utformul�/sub
omputations, sin
e they
an
hange the types of further sub
omputa-tions. This gives a new kind of node in the de
ision tree, whi
h we dub `with-nodes',and
orresponds to the use of
ut. But now there is a twist in the tail: we analyse
uts in su
h a way as to permit further pattern mat
hing; namely that
ut formul�are analysed on the left, not on the right as in
urrent pra
ti
e.Finally, the statement of an indu
tion prin
iple for a datatype
orresponds to iden-tifying an allowable set of patterns with whi
h to mat
h on values of the type; thatis to say, it furnishes a view in Wadler's sense (Wadler, 1987). Now,
ertain views,
orresponding to the simple mat
hes on
onstru
tors, or the standard stru
turalindu
tion prin
iple for the datatype (Burstall, 1969; Nordstr�om et al., 1990), arealways available for free. But the programmer may also de�ne new views, providedonly that the
orresponding indu
tion prin
iple be admissible.There is a standard method for a
hieving this: by writing a program. To be ableto do so, however, demands an expressive enough type system, in whi
h types
an expli
itly des
ribe patterns. Given su
h a type stru
ture, one may then goeven further. The programmer may introdu
e a new datatype, whose `view forfree' is pre
isely the sought-after view. To establish this view for the old datatype,one
onstru
ts an isomorphism or, more generally, simply a surje
tion from theold datatype. Su
h surje
tions embra
e Coquand's notion of `
overing' (Coquand,1992), and are also obtained by writing programs with dependent types.We
on
lude our te
hni
al dis
ussion with the development of a type
he
ker for thesimply typed lambda
al
ulus. This presentation furnishes a view of raw lambdaterms as either being well-typed, or
ontaining the sour
e of a type error. Theimplementation of this view is a proof that type
he
king is de
idable, and we show,in the
ourse of writing the program, how the type of su
h erroneous terms emergesfrom the problem de
omposition.A
knowledgementsWe gratefully a
knowledge the support of the EPSRC, through grants GR/N 24988and GR/R 72259. We also thank the organisers of Dagstuhl seminar 01141, `Se-manti
s of Proof Sear
h', where we presented preliminary versions of some of these

4 Conor M
Bride and James M
Kinnaideas. Our main debt, however, is to the programmers who have inspired us: RodBurstall, Fred M
Bride and Phil Wadler.2 Programming with De
ision TreesWe present a high-level syntax for fun
tional programming in a dependent typetheory. A fun
tion is de�ned by giving its type signature in a natural dedu
tionstyle, and writing its de
ision tree, des
ribing the hierar
hi
al stru
ture of testsby whi
h it divides its arguments into �ner and �ner
ases. In e�e
t, a de
ision treeprovides a
ompa
t notation for a mu
h larger term in the raw type theory whi
hmay be generated in full by applying proof ta
ti
s in a top-down fashion, dire
ted bythe nodes of the tree. In this paper, we fo
us on the notational aspe
ts, and dire
tthe reader interested in the underlying terms to the existing literature (M
Bride,1999; M
Bride, 2001b).Ea
h node of a de
ision tree is labelled with a head|a word borrowed from thevo
abulary of logi
 programming, here used to mean the fun
tion symbol appliedto patterns. Internal nodes spe
ify a method by whi
h this head
an be re�ned,leading to a
olle
tion of heads with more detailed patterns, addressed by de
isionsubtrees. The leaf nodes of a de
ision tree, signalled by the 7! symbol, supplya result|an expression over the variables o

urring in the patterns, giving thefun
tion a return value for that head.This
ontrasts with the usual presentation of pattern-mat
hing (Burstall, 1969;M
Bride, 1970), where a fun
tion is given by a prioritised asso
iation list map-ping heads to results. Our de
ision trees resemble the output of Augustsson's algo-rithm for
ompiling
at pattern mat
hing into a hierar
hy of `simple'
ase expres-sions. (Augustsson, 1985).The identity fun
tion has a one-node tree:let t : Tiden t : T iden t 7! tNote that we presume any free variables o

urring in the type signature, e.g. Tabove, to be universally quanti�ed impli
itly in the type of the fun
tion. Thesequanti�ers are inserted as far to the left as type dependen
y permits, and we writethem longhand, when we absolutely must, with Polla
k's j notation (Polla
k, 1992).The a
tual type of iden is 8T jType:T ! T . If we want to make su
h argumentsexpli
it in appli
ations, we subs
ript them: idenN is the identity fun
tion for thenatural numbers.We imagine that de
ision trees will be
onstru
ted intera
tively. Indeed, this ispre
isely the mode of operation supported by the proof assistant ALF and itssu

essors (Magnusson, 1994; Coquand & Coquand, 1999). An open de
ision tree
ontains open nodes whi
h await either a method or a result. These e�e
tivelypair goal types in the underlying theory, with their
orresponding heads. The type

The view from the left 5signature of a fun
tion determines the initial open tree|a single node whose headhas a fresh pattern variable for ea
h argument. We may summarise of the statusof an open node in more detail, giving its
ontext of pattern variables, and atype whi
h labels the a
tual result type with its
orresponding head. A typi
aldevelopment thus begins:let ~x : ~Sf ~x : R[~x ℄ f ~x ?~x : ~S `? hf ~x : R[x ℄iWe use de Bruijn's teles
ope notation to indi
ate a sequen
e of typings, su
h as~x : ~S (de Bruijn, 1991). The notation R[~x ℄ indi
ates that R is a term over the ~x ,and we denote instantiations of the ~x with terms ~s in R by R[~s℄.Our pra
ti
e will be to write an in
omplete program as a type signature with anopen tree, then to summarise any open nodes of interest below. At any stage, anopen node will have a summary resembling~x : ~X `? hf ~p[~x ℄ : R[~p[~x ℄℄iWe may
lose a node by supplying a result r [~x ℄ in R[~p[~x ℄℄, yielding: : : f ~p[~x ℄ 7! r [~x ℄We grow a de
ision tree by applying a method to an open node, a
quiring a
ol-le
tion of open subnodes. In order to spe
ify a method, we must explain how to
ompute the summaries of the subnodes from the summaries of the original. Theimplementation of a method must perform the
orresponding proof step, redu
ingthe original goal to the subgoals given by the subnodes. In e�e
t, our approa
haugments traditional
onstru
tion by re�nement with the bookkeeping of heads viaannotations in types.The next two se
tions spe
ify two su
h methods, both of whi
h have ready im-plementations given by established proof ta
ti
s. The `by' method supports
aseanalysis and stru
tural re
ursion; the `with' method introdu
es an intermediate
omputation for subsequent analysis. With-nodes o�er new notational
onvenien
e,even when working with simple types. However, it is in the presen
e of indu
tivefamilies of datatypes that these two methods show their true potential.3 By-nodesBy-nodes invoke known methods of analysis, yielding subnodes whi
h have a

essto more information. Their implementation is given by M
Bride's ElimUnify ta
ti
,details of whi
h
an be found in (M
Bride, 2001b). By-nodes support the appli
ationof arbitrary
ase analysis and re
ursion operators. Every indu
tive family
omesequipped with `standard' operators for
onstru
tor-
ase analysis and
onstru
tor-

6 Conor M
Bride and James M
Kinnaguarded re
ursion, hen
e by-nodes easily subsume Coquand's notion of pattern-mat
hing for dependent types, in whi
h the
onne
tion to
onstru
tors is hard-wired (Coquand, 1992). Let us
onsider
ase analysis �rst, then add re
ursion later.3.1 Case AnalysisA simple example is found in the `bind' fun
tion, , for the Maybe monad.data A : TypeMaybeA : Type where a : Ayes a : MaybeA no : MaybeAlet f : A ! Maybe B x : MaybeAf x : Maybe B f x byMaybe-Case xf yes a 7! f af no 7! noNote that the program is the whole tree, grouping a node with its subtrees expli
-itly. Later in this se
tion, we shall examine ways to redu
e this textual overhead,inferring standard by-nodes from the textual
lues their o�spring inherit, but fornow, let us write our programs in full.The eliminator e in `by e' must have a type whi
h abstra
ts a s
heme of patternmat
hing and/or re
ursion. The type of Maybe-Case x is8�:MaybeA!Type: (8a :A: � (yes a)) ! (� no) ! � xThis type asserts that in any setting, abstra
ted by �, x
an be split into thepatterns (yesa) and no. It is the type of an `elimination rule' for Maybe instantiatedto eliminate a parti
ular `target'. We
all su
h types s
hemes, and we have a littlesynta
ti
 sugar for them. Lete : f� ~q : ~I � (~x1 : ~X1) � ~q1 j : : : j (~xn : ~Xn) � ~qngabbreviate e : 8�:8~i :~I : Type: (8~x1 : ~X1: � ~q1) ! � � � (8~xn : ~Xn: � ~qn) ! � ~qMaybe-Case x : f� x : MaybeA � (a : A) � (yes a) j () � nogLogi
ally, the type of a s
heme asserts that any values of form ~q must mat
h atleast one of the ~qj . A program must explain what to do for ea
h possible mat
h.Note that we use q 's for patterns in s
hemes, to distinguish them from the p's inheads. A program must explain what to do for ea
h possible mat
h: we a
quire asubnode for ea
h ~qj whi
h uni�es with ~q .At the type theory level, the implementation
hooses a suitable value for �. M
Bride
alls this value themotive, be
ause it explains the purpose of the elimination. Themotive
odes up the uni�
ation problem as a set of equations. The full details
an befound in (M
Bride, 2001b), but we re
aptiulate the basi
 te
hnique, a
ommonpla
eof theorem-proving with indu
tively de�ned relations. For an open node,

The view from the left 7~x : ~X `? hf ~p[~x ℄ : R[~p[~x ℄℄iwe take� := �~i :~I : 8~x : ~X :~i = ~q ! hf ~p[~x ℄ : R[~p[~x ℄℄iWe write ~i = ~q for a series of equational hypotheses and re
~t for the sequen
e of
anoni
al proofs that ea
h t equals itself. We now havee � ?1 : : : ?n ~x (re
 ~q) : hf ~p[~x ℄ : R[~p[~x ℄℄iwhere ea
h ?j is a subgoal
orresponding to a
ase of the s
heme~xj : ~Xj ; ~x ; ~X ; ~qj = ~q `? hf ~p[~x ℄ : R[~p[~x ℄℄iThe ma
hine now simpli�es the equations ~qj = ~q by �rst-order uni�
ation, usingthe substitutivity of equality and the basi
 properties of datatype
onstru
tors.We use the algorithm introdu
ed in (M
Bride, 1998). This repli
ates within typetheory the uni�
ation kept impli
it in (Coquand, 1992). There are three possibleout
omes: it may
ompute a most general uni�er �j taking ~x ; ~xj to terms over some~x 0j : ~X 0j ; it may show that the equations have no uni�er, yielding a va
uous solutionfor ?j ; it may get stu
k on a non-
onstru
tor equation.If uni�
ation gets stu
k for any
ase, the ma
hine reje
ts the by-method. Otherwise,it forms a by-node, with the uni�ed subgoals as its subnodes:~x 0j : ~X 0j `? hf ~p[�j~x ℄ : R[~p[�j~x ℄℄iThese subnodes spe
ify the
ontinuations whi
h must be passed to eliminator sothat it
an handle ea
h possible out
ome. In our Maybe-Case x example, x uni�eswith ea
h pattern, so we must supply both a `su

ess' and a `failure'
ontinuation.: : : f ~p[~x ℄ by e...f ~p[�j~x ℄ ?... e.g. f x byMaybe-Case xf yes a ?f no ?Uni�
ation gives us the overlap between the patterns being split and the patternsin the
ases of the s
heme. When we work with dependent types, this
an simplifysome
ases and rule out others altogether. The `tail of a ve
tor' has be
ome theroutine example. The family Ve
t de�ned below, re�nes the type of lists with anindex making the lengths of ve
tors expli
it. We
hoose to put the head of a ve
toron the right, as this suits our later examples, where they represent typing
ontexts.data A : Type n : NVe
tA n : Type where " : Ve
tA 0xs : Ve
tA n x : Axs :: x : Ve
tA (sn)The Ve
t family has a single
ase analysis operator:

8 Conor M
Bride and James M
KinnaVe
t-CaseA;n xs : f� n : N; xs : Ve
t A n �() � 0 "j (n : N; xs : Ve
tA n; x : A) � (sn) (xs :: x)gNow,
onsider the programming problemlet xs : Ve
tA (sn)vtail xs : Ve
tA n vtail xs ?A : Type; n : N; xs : Ve
tA (sn) `? vtail xs : Ve
tA nWhen we apply the method `by Ve
t-Case xs', we are splitting a nonempty ve
-tor. Uni�
ation rules out the possibility of the "
onstru
tor. The de
ision tree isextended with only one subnode, whi
h we may readily
lose:vtail xs by Ve
t-Case xsvtail (xs :: x) 7! xsIn general, a single by-node may tell us about a many pattern variables, as well asre�ning the result type of the fun
tion. This is as it should be: we should expe
tthe information obtained by testing to show up in more informative types whi
hlegitimize a wider range of subsequent a
tivity.3.2 By-nodes for Re
ursionThere is nothing to prevent `indu
tive hypotheses' o

urring in the s
heme of aby-node eliminator. For example, the traditional notion of primitive re
ursion forN is given by the s
hemeN-Elim n : f� n : N � () � 0 j (n : N; � n) � (sn)gWhen we build a by-node with su
h a s
heme, the
ontext of the s-subnode a
quiresan indu
tive hypothesis, representing a set of re
ursive
alls. The head annotation,
opied from the original node into the motive, now tell us exa
tly whi
h
alls arepermitted. For examplelet n;m : Nn +m : N n +m by N-Elim n0+m 7! msn +m ?n;m : N; (m 0 : N) hn +m 0 : Ni `? sn +m : NIn our example, we may
all n+m 0, for any m 0. We might de�ne + tail re
ursively,
losing the node with n + sm; we might also return s(n +m). More generally, wemay make any re
ursive
all for whi
h the ma
hine
an �nd an appropriate headannotation in the
ontext.There is no hard-wired notion of re
ursion. We are free to use any s
heme, provided

The view from the left 9we
an �nd an eliminator whi
h gives it an operational semanti
s. We
ould evenadd general re
ursion by assertingx : Tgeneral x : f� x : T � (x : T ; 8y :T : � y) � xgLogi
ally, this is a bare-fa
ed lie, but it
an be given the obvious `free beer tomorrow'operational semanti
s.Even without going this far, we do not have to try too hard to improve on primitivere
ursion. For ea
h indu
tive family of datatypes, F, the ma
hine automati
ally
onstru
ts an operator, F-Re
, whi
h permits re
ursion to strip o� more than one
onstru
tor per step. For example,N-Re
 n : f� n : N � (n : N; N-Memo � n) � ngN-Memo � n is the type of a data stru
ture whi
h holds a value in � n 0 for ea
hstri
t subterm n 0 � n. Gim�enez de�nes this stru
ture indu
tively (Gim�enez, 1994);M
Bride de�nes it by
omputation on n (M
Bride, 1999):let � : N ! Type n : NN-Memo � n : Type N-Memo � n by N-Elim nN-Memo � 0 7! UnitN-Memo � (sn) 7! N-Memo � n �� nThe more n is instantiated with
onstru
tor patterns, the more N-Memo � nexpands to reveal � for ea
h guarded subterm, the more re
ursive
alls be
omeavailable simply by proje
tion.The general
onstru
tion for F�Memo and F-Re
 is given in (M
Bride, 1999).Nesting F-Re
 by-nodes on a sequen
e of arguments delivers (at least) the strengthof their lexi
ographi

ombination, where `outer' arguments may remain �xed if`inner' ones de
rease. The equational
onstraints in the motive reappear in the`indu
tive hypotheses' as mat
hing problems whi
h have a trivial solution exa
tlywhen the re
ursive
all mat
hes the original head.The separation of re
ursion from
ase analysis gives mu
h greater
exibility to theprogrammer, where primitive re
ursion for
es an immediate
ase analysis on anyargument to whi
h it is applied. For example, we may write the �? test for N byre
ursion on its se
ond argument:let x ; y : Nx �? y : Bool x �? y by N-Re
 yx �? y by N-Case x0�? y 7! truesx �? y by N-Case ysx �? 0 7! falsesx �? sy 7! x �? yThis freedom be
omes even more important when working with dependent types.

10 Conor M
Bride and James M
KinnaWe may wish to write a program over some x : F y whi
h does its
ase analysison x but is re
ursive on the index y , whi
h may have a totally unrelated stru
-ture. Indeed, this is how the �rst-order uni�
ation algorithm is given a stru
turallyre
ursive presentation in (M
Bride, 2001
).3.3 Hiding Obvious By-nodesThe full de
ision tree for �? makes quite
umbersome reading, even if intera
tivetools help with the writing. We
an redu
e this burden wherever the
onstru
torsymbols in the patterns give us a hint that standard
ase analysis and re
ursionoperators have been used. We should like to
atten the standard parts of de
isiontrees as mu
h as possible, provided the erased stru
ture, or at least an equivalentstru
ture,
an be re
overed.Firstly, outermost F-Re
 nodes
an be removed. The spa
e of possible lexi
o-graphi

ombinations of subterm orderings on a �xed number of arguments isreadily sear
hed. Indeed, Abel and Altenkir
h give an elegant algorithm for dis-
overing lexi
ographi

onstru
tor-guarded re
ursion whi
h extends to mutuallyde�ned fun
tions (Abel & Altenkir
h, 2000).Se
ondly, F-Case nodes
an be repla
ed by a
at
olle
tion of their subnodes,provided there is at least one. The presen
e of an unexplained
onstru
tor symbolin a pattern
an be used as a prompt to insert a by-node whi
h does explain it.Cornes gives an algorithm whi
h serves exa
tly this purpose in (Cornes, 1997).However, we
annot expe
t the ma
hine to re
over a hierar
hy of
ase analysiswhi
h e�e
tively proves that a type is empty|type inhabitation is unde
idable.For example, given the family of �nite datatypesdata n : NFin n : Type where f0n : Fin sn i : Fin nfsn i : Fin snthe following program
annot be redu
ed:let i : Fin 0empty i : Unit empty i by Fin-Case iWe
ould
hoose to allow the ma
hine to sear
h a little for emptiness proofs, perhapstrying one step of
ase analysis on ea
h pattern variable. This would allow the aboveprogram to be given by its type signature alone! Even without this extra work, manyfamiliar programs are
attened entirely:let x ; y : Nx =? y : Bool 0 =? 0 7! true0 =? sy 7! falsesx =? 0 7! falsesx =? sy 7! x =? yOf
ourse, in trying to re
onstitute the full de
ision tree for =?, we
an
hoose

The view from the left 11re
ursion on either argument and
ase analysis in either order. We see no reason tobe parti
ular about whi
h
hoi
e the ma
hine makes, provided that
ase analysison families is preferred to
ase analysis on their indi
es: it seems foolish to examinean index, when the same information, for
ed by the type,
an be obtained for freeby uni�
ation. 4 With-nodes in De
ision TreesCase analysis on arguments may not determine the entire
ontrol
ow througha fun
tion, nor expose all the information required to
ompute its result. Somefun
tions must analyse the results of intermediate
omputations. A pure pattern-mat
hing notation for
es these
omputations to be invoked on the right-hand side,dislo
ating a part of the de
ision pro
ess. For example,
onsider the fun
tion whi
htests if a given label is in the domain of an asso
iation list|we use ve
tors for thelists and numbers for the labels.let lxs : Ve
t (N �X)m n : Nlxs dom? n : Bool" dom? n 7! falselxs :: (l ; x) dom? n 7! if l =? n then true else lxs dom? nSimilarly, we must lur
h rightwards to unpa
k a re
ursive
all:let xys : Ve
t (A� B) nunzip xys : Ve
tA n � Ve
t B nunzip " 7! ("; ")unzip (xys :: (x ; y)) 7!
ase unzip xysof (xs; ys) 7! (xs :: x ; ys :: y)Worse, we may be for
ed to make a
omputation on the right before we are sure tohave �nished de
omposing the arguments on the left: Consider testing if one treeis a subtree of another (presuming the equality test has been de�ned):let s ; t : trees sub? t : Bools sub? t 7! if s =? t then trueelse
ase tof leaf 7! falset1 node t2 7! s sub? t1 or s sub? t2In the
ase of Boolean testing, the guard notation, to our knowledge introdu
edin (M
Bride, 1970) and now standard in Haskell, o�ers some help. This allows forBoolean
onditions|guards|to be atta
hed to a head: on
e the pattern variables

12 Conor M
Bride and James M
Kinnahave been bound, these must evaluate to true for the mat
h as a whole to besu

essful; otherwise the ma
hine resumes mat
hing with the remaining heads.However, true guards throw us to the right, perhaps before we know all we need.Further, guards have nothing to o�er the non-Boolean intermediate value.If our de
ision trees �nd themselves in need of some
riti
al information at anypoint in their analysis, we permit them to ask for it. For example, when we haverea
hed this stage in the development of unzip,unzip (xys :: xy) ?we
an trigger the re
ursive
all whi
h rearranges xys , by
reating a with-node:unzip (xys :: xy) with unzip xysunzip (xys :: xy) k xsys ?A with-node invokes an intermediate
omputation|a
ut-term|and makes itsresult available for analysis on the left by adding an extra
olumn to the head,
ontaining a fresh pattern variable. The k symbol persists in the subtree of thewith-node separating the new
ut-pattern from the old head. This subtree maynow make further analysis of both new and old data. We may now add (and then
atten) by-nodes whi
h apply �-Case to extra
t both heads and tails from theirrespe
tive tuples, then build the result. The full
ode for unzip be
omes:let xys : Ve
t (A� B) nunzip xys : Ve
tA n � Ve
t B nunzip " 7! ("; ")unzip (xys :: xy) with unzip xysunzip (xys :: (x ; y)) k (xs; ys) 7! (xs :: x ; ys :: y)Similarly, the subtree test be
omes mu
h
learer if we pull the equality test to theleft, just as if it were a Boolean guard:let s ; t : trees sub? t : Bools sub? t with s =? ts sub? t k true 7! trues sub? leaf k false 7! falses sub? (t1 node t2) k false 7! s sub? t1 or s sub? t2By way of fo
using attention where it is needed, we permit the omission of the textleft of the k where it would simply
opy that of the node above:

The view from the left 13let lxs : Ve
t (N �X)m n : Nlxs dom? n : Bool" dom? n 7! falselxs :: (l ; x) dom? n with l =? nk true 7! truek false 7! lxs dom? nOf
ourse, we
ould have exploited the Boolean nature of dom? to fold the testinginto an or, as we did with sub?. The same is not true for the proje
tion fun
tion,asso
, an example suggested by Polla
k, drawn from his experien
es with
odingre
ords in type theory (Polla
k, 2000). In our world of total fun
tions, the latterpresents its own problems: what are we to do if the label does not o

ur? Oneapproa
h is to lift asso
 to a Maybe type. Another is to make o

urren
e in thedomain a pre
ondition to the appli
ation of asso
.The use of partial operations with de fa
to pre
onditions is a
ommon idiom insimply-typed programming, fun
tional or not, but its
orre
t deployment is leftto the programmer's
ons
ien
e. Dependent types allow us a number of ways toenfor
e pre
onditions through type information. Perhaps the least radi
al of these
omes by re
e
ting Boolean values as types via the following family:data b : BoolSo b : Type where oh : So trueOf
ourse, we
ould de�ne So
omputationally, as the fun
tion taking true to Unitand false to Empty, but we �nd the family a better way to do
ument our usage ofthe singleton or empty type. We may now impose a Boolean pre
ondition b on anoperation by demanding an extra argument of type So b. For example,let lxs : Ve
t (N �X)m n : N p : So (lxs dom? n)asso
 lxs n p : XWe
an often satisfy the pre
ondition without
omputing it at run time if the labelwas demonstrably put in the list. We begin as we did with dom? :asso
 " n p ?asso
 (lxs :: (l ; x)) n p ?The "
ase should be impossible, and it is. The type of p is So (" dom? n), whi
hredu
es to So false,
learly empty. We write:asso
 " n p by So-Case pWhat of the other
ase? What is the type of its p, and how do we exploit it,depending on the out
ome of l =? n? It is here that we need a more pre
ise a

ountof with-nodes. Consider a programming problem~x : ~X `? hf ~p : Ri

14 Conor M
Bride and James M
KinnaWhen we attempt to apply the method `with t ', we may divide the dependen
ygraph of the ~x : ~X in two, with the fewest ~xb : ~Xb below su
h that t is well-typed,and the remaining ~xa : ~Xa above. Up to a dependen
y-respe
ting permutation, ourprogramming problem is~xb : ~Xb; ~xa : ~Xa `? hf ~p : Ri where ~xb : ~Xb ` t : TWe
ompute the teles
ope ~xa : ~X 0a and the type R0 by synta
ti
ally repla
ing everyo

urren
e of the normal form of t in the normal forms of the ~Xa and R by a freshvariable w and we
he
k that this abstra
tion has not broken any typings wherethe value of t was
riti
al. That is, we
he
k~xb : ~Xb; w : T ; ~xa : ~X 0a ` R0 : TypeIf this
he
k fails, we reje
t the with-node. If all is well, we pose the subproblem~xb : ~Xb; w : T ; ~xa : ~X 0a `? hf ~p k w : R0iA solution to this problem yields a solution to the original when w is instantiatedwith t . In fa
t, a with-node's immediate
hild is the root node for a new lo
allyde�ned fun
tion, f 0 whi
h has a

ess to everything in the parent
ontext (in
ludingmemo stru
tures) and the new argument w . f ~p k w is just a
onvenient displaysyntax for f 0 ~xa w ~xb. In e�e
t, the with-node is just the programming analogue ofCoq's Pattern ta
ti
 (Coq, 2001).Now we know the type of p in the :: -
ase of asso
:: : : ; p : So (lxs :: (l ; x) dom? n k l =? n) `? hasso
 (lxs :: (l ; x)) n p : X iThe evaluation of dom? has got stu
k just inside its with-node, be
ause l =? nis not a
onstru
tor. Nor is it a variable, so we
annot simply do Bool-Case on it,but we now have the means to turn it into a variable! We were going to test l =? nanyway, but the with-node also abstra
ts its term from the type of p.asso
 (lxs :: (l ; x)) n p with l =? nk b ?: : : ; p : So (lxs :: (l ; x) dom? n k b) `? hasso
 (lxs :: (l ; x)) n p k b : X iCase analysis on b now allows the type of p to redu
e still further:asso
 (lxs :: (l ; x)) n p with l =? nk true ?k false ?: : : ; p : So true `? hasso
 (lxs :: (l ; x)) n p k true : X i: : : ; p : So (lxs dom? n) `? hasso
 (lxs :: (l ; x)) n p k false : X iWe may
lose both nodes. Here is the �nished program:

The view from the left 15let lxs : Ve
t (N �X)m n : Np : So (lxs dom? n)asso
 lxs n p : Xasso
 " n p by So-Case passo
 (lxs :: (l ; x)) n p with l =? nk true 7! xk false 7! asso
 lxs n pPolla
k suggests a heterogeneous variant of this problem, asso
iating ea
h labelwith a dependent pair
ontaining a type and a term with that type in the datastru
ture Ve
t (N � 9A :Type: A)m. We should be able to write a fun
tion asso
Tto proje
t out the type for a label, then make asso
 produ
e a term of the typegiven by asso
T , with dom? a pre
ondition to both! Our notation handles thiseasily, using with-nodes to syn
hronize all three fun
tions.The introdu
tion of with-nodes helps us to tidy up previously disparate fragmentsof testing,
ollo
ating them on the left by allowing the extension of heads with
ut-patterns
orresponding to the results of intermediate
omputations. The treatmentis uniform where guards privilege Boolean values, and the a
quisition of new datadoes not pre
lude further analysis of the old data within the same de
ision pro
ess.Furthermore, by bringing intermediate values|whose types are Gentzen-style
ut-formul�|into the
ontext under s
rutiny and abstra
ting them from types, wegive a
lean a

ount of the e�e
t their subsequent analysis has on our knowledgeof the rest of the problem. In
ontrast, a free-
oating
ase-expression must eitherre-abstra
t every other pie
e of information it a�e
ts, or else yield highly non-lo
al
onsequen
es. As we shall shortly see, with-nodes have great impa
t when used in
onjun
tion with
ase analysis on dependent families.5 Views through Indu
tive FamiliesWe have said that by-nodes permit the appli
ation of non-standard eliminators,but we have thus far given no examples where we exploit this potential. In thisse
tion, we shall give several su
h examples, and we shall show how these non-standard eliminators may be manufa
tured from the standard ones, yielding thefun
tionality of Wadler's `views', and more (Wadler, 1987). Let us begin where hedid, by providing the `
ons' view of our `sno
'-ve
tors, where
ons is de�ned:let x : A xs : Ve
t A nx
ons xs : Ve
tA (sn) x
ons " 7! " :: xx
ons (xs :: y) 7! (x
ons xs) :: yWe may now spe
ify the `
ons' view:ba
kwards xs : f � n : N; xs : Ve
tA n� () � 0 "j (x : A; xs Ve
tA n) � (sn) (x
ons xs)g

16 Conor M
Bride and James M
KinnaThis view
an be used to write the vlast fun
tion. Just as with vtail, uni�
ationremoves the "
ase:let xs : Ve
t A (sn)vlast xs : A vlast xs by ba
kwards xsvlast (x
ons xs) 7! xHow might we implement ba
kwards? S
hemes are, in e�e
t, the types of poly-morphi

ontinuation
ombinators. We
ould write a
ontinuation-passing program,making use of the view re
ursively:ba
kwards " � �" �
 7! �"ba
kwards (xs :: x) � �" �
 by ba
kwards xsba
kwards (" :: x) � �" �
 7! �
 x "ba
kwards ((x
ons xs) :: y) � �" �
 7! �
 x (xs :: y)However, there is a �rst-order method to a
hieve the same e�e
t whi
h appears as are
urring idiom in M
Kinna and Polla
k's work on formal metatheory (M
Kinna &Polla
k, 1999). Whenever they need to establish an alternative indu
tion prin
iplefor a relation R, they introdu
e the relation R0 whi
h natively has that indu
tionprin
iple, and then show that R0 in
ludes R. We may do the same for Ve
t: insteadof showing ba
kwards for every suitable �, we may show it for the smallest, turning� into an indu
tive family and the
ontinuations ~� into its
onstru
tors:data xs : Ve
tA nBa
k n xs : Type where ba
k" : Ba
k 0 "x : A xs : Ve
tA nba
k
 x xs : Ba
k (sn) (x
ons xs)We may show that Ba
k
overs the ve
tors:let xs : Ve
tA nba
k xs : Ba
k n xsba
k " 7! ba
k"ba
k (xs :: x) with ba
k xsba
k (" :: x) k ba
k" 7! ba
k
 x "ba
k ((x
ons xs) :: y) k (ba
k
 x xs) 7! ba
k
 x (xs :: y)The de�nition of ba
kwards is now trivial:ba
kwards xs � �" �
 with ba
k xsba
kwards " � �" �
 k ba
k" 7! �"ba
kwards (x
ons xs) � �" �
 k (ba
k
 x xs) 7! �
 x xsIn e�e
t, ba
kwards delivers the e�e
t on xs of
ase analysis on ba
k xs. Thea
tual
omposition of the `proof' delivered by ba
k is irrelevant. This is su
h asimple and
ommon
onstru
tion that it
an and should be done on the
y. Weintrodu
e a derived form|the with-by-node, taking a `proof' e whose type is aninstan
e of an indu
tive family F. This has the e�e
t of `withe', yielding
ut-pattern

The view from the left 17x , then `by F-Case x ', ex
ept that we omit x 's
olumn from the new heads. Thismakes ba
kwards redundant, and simpli�es ba
k:ba
k " 7! ba
k"ba
k (xs :: x) with-by ba
k xsba
k (" :: x) 7! ba
k
 x "ba
k ((x
ons xs) :: y) 7! ba
k
 x (xs :: y)What we have done is to explain non-standard pattern-mat
hing via the re�ne-ment of index information whi
h naturally a

ompanies the standard notion of
ase analysis for indu
tive families. We have also repla
ed a higher-order fun
tion
ombining
ontinuations with a �rst-order fun
tion
ombining
onstru
tors, invert-ing Chur
h's en
oding of datatypes via higher-order
ombinators in the �-
al
ulus.Turning
losed fragments of fun
tion spa
es into data, not merely
ompositionaland fun
tionally interpretable but indu
tive, will, we hope, be
ome a powerful
om-monpla
e of dependently typed programming. It is
on
eivable that programs whi
h
ompute su
h `
on
rete fun
tions' only to interpret them immediately|exa
tly thebehaviour of a with-by-node|
an be transformed automati
ally into a more eÆ-
ient
ontinuation-passing form by deforestation, a te
hnique for whi
h we also haveWadler to thank (Wadler, 1990).Wadler
on
eived his view notation as synta
ti
 sugar for the insertion of mutallyinverse
oer
ions between datatypes, one of whi
h admits pattern-mat
hing, theother potentially abstra
t. The idea that a signature for an abstra
t data stru
turemight hide its a
tual representation, but nonetheless o�er an admissible notionof pattern-mat
hing, over
omes a genuine problem in the engineering of modular
ode. Programming with admissible notions of pattern-mat
hing is exa
tly whatour by-nodes permit, with the bonus that the interfa
e is given by a type whi
h
anbe required of an exported method in the usual way. Moreover, this type enfor
esthe `no junk' dire
tion of the bije
tion: Wadler is for
ed by an inexpressive typesystem to trust the programmer.The presentation of views through indu
tive families also makes it easy to state`no
onfusion' as the requirement that the `
overing' fun
tion delivers the onlypossible proof in ea
h
ase. For example, to show that our `
ons' view of ve
torsis unambiguous, we may prove the following uniqueness property of its
overingfun
tion:goal b : Ba
k n xsba
k xs = b 5.1 Views for TestingThe essen
e of pattern-mat
hing is to
onne
t a test on data with the exposure ofthe information to whi
h we be
ome entitled, given the test's result, en
apsulatingsele
tor methods within a framework whi
h ensures that they apply.

18 Conor M
Bride and James M
KinnaViews allow us to extend that framework to a wider
lass of tests by fun
tional pro-gramming alone. We have no need to tinker with the implementation of pattern-mat
hing to a
hieve support for
learer
ode, nor need we a

ept the unbridledsear
h by whi
h logi
 programs de
ompose data in terms of de�ned fun
tion sym-bols. For example, the following view expresses the linear ordering on the naturalnumbers N, in
orporating both the subtra
tion operation with the
onditions undrwhi
h it is well-de�ned:data x ; y : NCompare x y where
ompLt x y : Compare x (x + sy)
ompEq x : Compare x x
ompGt x y : Compare (y + sx) ylet x ; y : N
omp x y : Compare x y
omp 0 0 7!
ompEq 0
omp 0 (sy) 7!
ompLt 0 y
omp (sx) 0 7!
ompGt x 0
omp (sx) (sy) with-by
omp x y
omp (sx) (s(x + sy)) 7!
ompLt (sx) y
omp (sx) (sx) 7!
ompEq (sx)
omp (s(y + sx)) (sy) 7!
ompGt x (sy)The Compare family re�nes the enumeration fLT;EQ;GTg, traditionally used totype the de
ision fun
tion of an ordering, with indi
es whi
h explain the impli
ationsof the result for the data being
ompared. The type of
omp tells us|and thetype
he
ker|that its result does a
tually pertain to its arguments, a fa
t we keepto ourselves in the simply typed a

ount. The program is not so far from thetraditional
oding of
omparison, subtra
tion, maximum and minimum operators,and it does the job of all of them.The same analysis applies, even more urgently, to the fun
tions whi
h de
ide equalityfor datatypes. One bit is not very mu
h information unless you know how it isto be interpreted: how is the type
he
ker supposed to know that T [x ℄ and T [y ℄are the same type, just be
ause a parti
ular Boolean value|that of x =? y|happens to be true? In this setting, the non-linear patterns in M
Bride's thesis,implemented via LISP's Equal predi
ate (M
Bride, 1970), be
ome more than anotational
onvenien
e.We
an a
hieve this e�e
t by giving the equality test a more informative type.For example, let us de�ne the equality test for the datatype Simp of simple typeexpressions, whi
h will prove useful in our example later on:data Simp : Type where o : Simp S ;T : SimpS � T : Simp

The view from the left 19We de�ne a view, SimpEq? whi
h, for a given S : Simp, splits any T : Simp into Sor `anything else'. We shall need a type family
oding up `Simp with S removed',and an embedding from that family ba
k into Simp:data S : SimpSimp� S : Type where : : :let S 0 : Simp� SSnS 0 : Simp : : :data S ;T : SimpSimpEq? S T : Type simpSame S : SimpEq? S ST 0 : Simp� TsimpDi� S 0 : SimpEq? S (SnS 0)We will `dis
over' the
onstru
tors of Simp � S and the behaviour of SnS 0 as wewrite the
overing fun
tion, simpEq?|by
ase analysis, then re
ursive views:let S ;T : SimpsimpEq? S T : SimpEq? S TsimpEq? o o 7! simpSame osimpEq? o (S � T) ?simpEq? (S � T) o ?simpEq? (S1 � T1) (S2 � T2) with-by simpEq? S1 S2;simpEq? (S � T1) (S � T2) with-by simpEq? T1 T2;simpEq? (S � T) (S � T) 7! simpSame (S � T)simpEq? (S � T) (S � TnT 0) ?simpEq? (S � T1) (SnS 0 � T2) ?We now give Simp�S
onstru
tors whi
h just pa
kage the
ontexts of our four opennodes and de�ne SnS 0 to de
ode them in
orresponden
e to the nodes' patterns:neqo S T : Simp� o on(neqo S T) 7! S � Tneq� : Simp� (S � T) (S � T)nneq� 7! oS : Simp T 0 : Simp� TneqTT 0 : Simp� (S � T) (S � T)n(neqT T 0) 7! S � TnT 0S 0 : Simp� S T2 : SimpneqS S 0 T2 : Simp� (S � T1) (S � T1)n(neqS S 0 T2) 7! SnS 0 � T2We may now
omplete the de�nition of simpEq?:

20 Conor M
Bride and James M
KinnasimpEq? o o 7! simpSame osimpEq? o (S � T) 7! simpDi� (neqo S T)simpEq? (S � T) o 7! simpDi� neq�simpEq? (S1 � T1) (S2 � T2) with-by simpEq? S1 S2;simpEq? (S � T1) (S � T2) with-by simpEq? T1 T2;simpEq? (S � T) (S � T) 7! simpSame (S � T)simpEq? (S � T) (S � TnT 0) 7! simpDi� (neqT T 0)simpEq? (S � T1) (SnS 0 � T2) 7! simpDi� (neqS S 0 T2)This
onstru
tion
an be made entirely systemati
. The SimpEq? family
an bemade parametri
 on triples
onsisting of a type, its `subtra
tion' type and the nembedding. The se
ond of these need not be de�ned indu
tively|it
an be de�nedby
omputation for every datatype. Indeed, given a universe
onstru
tion for a
olle
tion of indu
tive datatypes, this `system'
an be turned into a generi
 program.In (M
Bride, 2001a), the �rst author gives just su
h a universe
onstru
tion forthe regular datatypes|a single indu
tive family
apturing every datatype in thelanguage
losed under polynomial type fun
tors and least �xed point.
5.2 Views for Sele
tionSele
tor operations allow us to extra
t the pie
es of a data stru
ture, but sometimes,when programming with dependent types, we would like to know more|namely,that the data stru
ture really is the thing made from the pie
es. Pattern-mat
hingdelivers this information dire
tly, and views allow us to extend its s
ope to morefas
inating varieties of sele
tion.For example, we may see an element of Ve
tAn as an array of n A's, indexed (safely)by elements of Fin n, as de�ned above. That is, we may use fsm f0n : Fin (m + sn)as an index into a ve
tor of that length,
hopping it into a pre�x ys : Ve
tAm anda suÆx xs :: x : Ve
tA (sn), with x being the element so extra
ted. Let us �rst giveourselves the language with whi
h to express this:let m : N i : Fin nfsm i : Fin (m + n) fs0 i 7! ifssm i 7! fs (fsm i)let xs : Ve
t A n ys : Ve
t Amxs ++ ys : Ve
tA (m + n) xs ++ " 7! xsxs ++ (ys :: y) 7! xs ++ ys :: yWe let ++ bind more tightly than :: to minimise the number of bra
kets in normalforms. Observe that the arguments of + are the opposite way round to those of ++be
ause we are using `sno
-ve
tors' and `
ons-numbers'. Let us now state our viewof ve
tors as arrays and show that it
overs:

The view from the left 21data xs : Ve
tA n i : Fin nChop xs i : Typewhere xs : Ve
tA n x : A ys : Ve
t Am
hopGlue xs x ys : Chop (xs :: x ++ ys) (fsm f0n)let xs : Ve
t A n i : Fin n
hop xs i : Chop xs i
hop (xs :: x) f0 7!
hopGlue xs x "
hop (xs :: y) (fs i) with-by
hop xs i
hop ((xs :: x ++ ys) :: y) (fs (fsm f0n)) 7!
hopGlue xs x (ys :: y)Sele
tion presented in this way appeals strongly to our visual sense of the stru
tureof data|we see as we do. Many other
ommon fun
tions
ould be given a similartreatment, Polla
k's `asso
iation list' example being a prime
andidate. We leavethis as an exer
ise for the reader.
6 What do De
ision Trees do?We have presented our notation for programming with de
ision trees, and we haveasserted that these programs
an be rendered as (rather large) terms in type theoryby the me
hanisms whi
h underpin known ta
ti
s in the domain of theorem-proving.We have said relatively little about the equations whi
h hold of su
h programs,either at the level of their redu
tion behaviour or of the equational laws whi
hthey satisfy. To some extent, this is be
ause there is relatively little to say: theoperational e�e
t of a by-node is given entirely by that of its eliminator applied tothe
ontinuations generated from its subtrees. The instantiation of head patterns
omes from uni�
ation with s
heme patterns, rather than any native understandingof datatype
onstru
tors. We bring our own semanti
s.Let us �rst
onsider what we might prove about the eliminators we use in by-nodes and thus dedu
e about the fun
tions we build from them. Eliminator s
hemesare theorems whi
h assert that their
ases are exhaustive for the patterns beinganalysed. They do not ensure that the
ases are disjoint, or even that an individualpattern is unambiguous. One
an easily show that the pattern n +m
aptures allnatural numbers, but this alone does not determine whi
h n and m will be
hosenat a given mat
h. It is the eliminator itself whi
h makes these
hoi
es. The morewe know about an eliminator, the more we know about the programs whi
h use it.We des
ribe an eliminator with the additional property that its patterns are dis-joint and unambiguous as a partition. There is a standard way to show that aneliminator is a partition:

22 Conor M
Bride and James M
Kinnagiven e : f� ~q : ~I � (~x1 : ~X1) � ~q1 j : : : j (~xn : ~Xn) � ~qngfor ea
h j, show ~q = ~qje � ~� = �j ~xjThe eliminator in a with-by-node arising from a view is a partition if and only ifthe
overing fun
tion has the uniqueness property de�ned above.If every by-node in a program is a partition, then we may prove an equational lawabout ea
h leaf-node,
onditional on equations relating the
ut-patterns ~w to theoriginal
ut-terms ~t :for f ~p k ~w 7! rwe have �1t1 = w1 : : : �ntn = wnf ~p = rwhere �j is the
omposition of the substitutions whi
h have been used to instantiatepattern variables beneath the `with tj ' node. We observe that the
onditions aretrivial for
ut-terms applying
overing fun
tions with the uniqueness property.Even for by-nodes with overlapping s
hemes, we know that one of the
ontinuationsmust be applied, hen
e we
an reason about fun
tions whi
h use them as if theirbehaviour is nondeterministi
. One way to do this is to formulate inversion prin
i-ples for equations of the form f ~p = r whi
h deliver a number of
ases
overing the`possible behaviours' of f , but a dis
ussion of this te
hnique is outside the s
ope ofthis paper. Systemati
 support for reasoning about de
ision tree programs remainsan a
tive topi
 of our resear
h. Overlapping views may provide us with the means togive intuitive pattern-mat
hing presentations of programs involving sear
h, e
hoingthe M
Brides' experiments with ambiguous patterns in the late 1980s (M
Bride& M
Bride, 1989). We plan to investigate the implementation of sear
h via elimi-nators with monadi
ally lifted s
hemes, inspired by Wadler's landmark a

ount offailure and ba
ktra
king through lists (Wadler, 1985).Turning to the
omputational behaviour of de
ision trees, let us �rst observe thatwe may regard every node as a program in its own right|it is a fun
tion fromits
ontext to its result type. We may turn ea
h node into a separate de�nitionwhi
h �-abstra
ts its
ontext, then returns an appropriate value: for a leaf-node,this is just the supplied result; a with-node applies its sub-node|exa
tly a
ut inthe logi
al sense; a by-node passes its subnodes as
ontinuations to its eliminator.A de
ision tree thus be
omes a tree of `lets' in type theory.If we allow a `native' notion of pattern-mat
hing, as proposed in (Coquand, 1992),we
an exploit the known properties of the standard F-Re
 and F-Case operatorsto repla
e
lusters of our `lets' with more
omplex programs. In parti
ular, the`native' behaviour of F-Case is exa
tlyF-Case (
j ~xj) � ~�; �j ~xj

The view from the left 23An eliminator whi
h applies F-Case is thus trivially a partition. A tree of F-Caseappli
ations delivers a
overing in Coquand's sense, and the
orresponding
lusterof lets may thus be repla
ed by a single pattern-mat
hing de�nition. Moreover, theoriginal tree stru
ture tells us how to
ompile this de�nition, Augustsson-style.Further, the proje
tions from the memo-stru
ture F-Memo, used to de�ne F-Re
,are
omputationally equal to the
orresponding re
ursive appli
ations of F-Re
.We may thus merge a
luster of F-Re
 lets, repla
ing the proje
tions from memo-stru
tures with re
ursive
alls.The native pattern-mat
hing programs whi
h arise from these simpli�
ations havea redu
tion behaviour whi
h holds at the level of
onversion for the original de�ni-tions (M
Bride, 1999). A simple simulation argument shows that the transformationpreserves strong normalization, and we
onje
ture that an argument by orthogo-nality will deliver preservation of
on
uen
e. De
ision trees built only from thestandard operators
atten into single `native' programs, hen
e we know that forthese trees, 7! really means ;.De
ision trees whi
h
ontain with-nodes or non-standard by-nodes nonetheless re-du
e to a set of mutually re
ursive native programs. M
Bride's Oleg system (builtfrom spare parts of Polla
k's Lego) has a suite of ta
ti
s for manufa
turing su
hsets of programs, intera
tively supporting the
onstru
tion te
hniques whi
h be
ameour `by-nodes' and `with-nodes'. All the examples in this paper were developed in-tera
tively using Oleg.
7 A Simple Type
he
kerWe now present our main example, a type
he
king view for simply typed �-terms inChur
h style. We give a �rst-order indu
tive presentation of terms whi
h follows along tradition in the literature, from M
Kinna and Polla
k's treatment of `V
losed'terms, through to Bellegarde and Hook's monadi
 de�nition, re
ently rendered inHaskell (via polymorphi
 re
ursion) by Bird and Paterson (M
Kinna & Polla
k,1993; Bellegarde & Hook, 1995; Bird & Paterson, 1999).data n : NTerm n : Type where i : Fin nvar i : Term n f ; s : Term napp f s : Term nS : Simp t : Term (sn)lam S t : Term nFollowing Altenkir
h and Reus, we may give an indu
tive presentation of just thewell-typed terms of a given type, in a given
ontext (Altenkir
h & Reus, 1999). Thisamounts to writing down the rules of the type system in a syntax dire
ted form:

24 Conor M
Bride and James M
Kinnadata � : Ve
t Simp n T : SimpGood � T : Typewhere � : Ve
t Simp n T : Simp � : Ve
t SimpmgVar � T � : Good (� :: T ++�) Tf : Good � (S � T) s : Good � SgApp f s : Good � T t : Good (� :: S) TgLam S t : Good � (S � T)There is an obvious forgetful map, g, from Goods to Terms. We keep the typeexpli
it, be
ause we would like to see the type when we use g in a pattern.let t : Goodn � Tg T t : Term n g T (gVarn;m � T �) 7! var (fsm f0n)g T (gApp f s) 7! app (g f) (g s)g (S � T) (gLam S t) 7! lam S (g T)Let us now spe
ify our type
he
ker as a view whi
h tells us whether or not a givenTerm is Good.data � : Ve
t Simp n t : Term nTypeChe
k? � t : Typewhere t : Good � TgoodT t : TypeChe
k? � (g T t) t : Bad �bad t : TypeChe
k? � (b t)We have not yet de�ned the type of Bad terms, nor its forgetful map, b. We shall`dis
over' these in due
ourse, just as in our development of the equality view. Hereare their respe
tive formation rule and signature:data � : Ve
t Simp nBad � : Type let t : Badn �b t : Term nThe type
he
ker is fairly straightforward, using the
hop view to a

ess the
ontext,and the simpEq? view to ensure that appli
ations are well-typed. Let us begin bytaking the term apart:let � : Ve
t Simp n t : Term ntypeChe
k? � t : TypeChe
k? � t typeChe
k? � (var i) ?typeChe
k? � (app f s) ?typeChe
k? � (lam S t) ?A variable is always well-typed. The
hop view extra
ts its type from the
ontext:typeChe
k? � (var i) with-by
hop � itypeChe
k? (� :: T n++m �) (var (fsm f0n)) 7! good T (gVar � T �)An abstra
tion is well-typed if its body is. We
all the type
he
ker re
ursively. Letus leave the `bad'
ase for the time being:typeChe
k? � (lam S t) with-by typeChe
k? (� :: S) ttypeChe
k? � (lam S (g T t)) 7! good (S � T) (gLam S t)typeChe
k? � (lam S (b t)) ?To type
he
k an appli
ation, we �rst make sure its `fun
tion' really is fun
tional:

The view from the left 25typeChe
k? � (app f s) with-by typeChe
k? � ftypeChe
k? � (app (g o f) s) ?typeChe
k? � (app (g (S � T) f) s) ?typeChe
k? � (app (b f) s) ?If so, we pro
eed to type
he
k the argument:typeChe
k? � (app (g (S � T) f) s) with-by typeChe
k? � stypeChe
k? � (app (g (S � T) f) (g S 0 s)) ?typeChe
k? � (app (g (S � T) f) (b s)) ?On
e we know the argument's type, we must
he
k that it
oin
ides with the domainof the fun
tion:typeChe
k? � (app (g (S � T) f) (g S 0 s)) with-by simpEq? S S 0typeChe
k? � (app (g (S � T) f) (g S s)) 7! good T (gApp f s)typeChe
k? � (app (g (S � T) f) (g (SnS 0) s)) ?We have �ve open nodes remaining. These
orrespond to the two basi
 type errors|non-fun
tion appli
ation and appli
ation mismat
h|together with the three
aseswhi
h propagate an internal type error outwards. It is now
lear how to de�ne Badand its forgetful map, b. Just as we did with simpEq?, we s
oop up the
ontextsand patterns from the open nodes.f : Goodn � o s : Term nbNonFun f s : Bad � b (bNonFun f s) 7!app (g o f) sf : Good � (S � T) s : Good � (SnS 0)bMismat
h f s : Bad � b (bMismat
h f s) 7!app (g (S � T) f) (g (SnS 0) s)f : Good � (S � T) s : Bad �bArg f s : Bad � b (bArg f s) 7!app (g (S � T) f) (b s)f : Badn � s : Term nbFun f s : Bad � b (bFun f s) 7!app (b f) st : Bad (� :: S)bLam S t : Bad � b (bLam S t) 7!lam S (b t)We may thus
lose the �ve open nodes and present the
ompleted type
he
ker:

26 Conor M
Bride and James M
KinnatypeChe
k? � (var i) with-by
hop � itypeChe
k? (� :: T n++m �) (var (fsm f0n)) 7! good T (gVar � T �)typeChe
k? � (app f s) with-by typeChe
k? � ftypeChe
k? � (app (g o f) s) 7! bad (bNonFun f s)typeChe
k? � (app (g (S � T) f) s) with-by typeChe
k? � stypeChe
k? � (app (g (S � T) f) (g S 0 s)) with-by simpEq? S S 0typeChe
k? � (app (g (S � T) f) (g S s)) 7! good T (gApp f s)typeChe
k? � (app (g (S � T) f) (g (SnS 0) s)) 7! bad (bMismat
h f s)typeChe
k? � (app (g (S � T) f) (b s)) 7! bad (bArg f s)typeChe
k? � (app (b f) s) 7! bad (bFun f s)typeChe
k? � (lam S t) with-by typeChe
k? (� :: S) ttypeChe
k? � (lam S (g T t)) 7! good (S � T) (gLam S t)typeChe
k? � (lam S (b t)) 7! bad (bLam S t)This is not just a program: it is a proof that type
he
king is de
idable for thesimply typed �-
al
ulus in Chur
h style. It does not merely say `yes' or `no', butrather explains ea
h raw term as deriving by a forgetful map either from a typedterm or a broken term. Its type guarantees that the term being
he
ked really isthe term it is given. Its analysis is
on
isely stated and imposes the
onditions forwell-typedness (and its
omplement) just as they are expressed in the typing rules.Moreover, as its re
ursive
alls show, it represents these two possibilities in apattern-mat
hing style, visibly delivering either a well-typed term whi
h may bepassed to an ex
eption-free interpreter in the style of Augustsson and Carlsson (Au-gustsson & Carlsson, 1999), or a useful error diagnosti
. The latter lo
ates theleftmost type error in a raw term|its `prin
ipal gripe'. It
ould easily be adaptedto �nd every appli
ation of a well-typed non-fun
tion or mismat
hed appli
ationbetween two well-typed terms|useful information not only for error reporting, butalso for type debugging and repair, as suggested by M
Adam (M
Adam, 1999).8 The Con
lusion is: Further Work requiredThe main dis
overy we have made in the light of this resear
h is how little we knowabout fun
tional programming with dependent types. It is no longer
redible to
on
eive of dependently typed programming merely as a means to re
over the legit-ima
y of programs whi
h were lost to us when we moved from untyped languagesto the Hindley-Milner system. We take its inherent
omplexity as an opportunity,rather than a problem, and we hope we have given good reason to believe thata programming notation whi
h is sensitive to the new interplay between pattern-mat
hing, intermediate
omputations and result types
an exploit this potentialwith the minimum of diÆ
ulty.More generally, we take the explosion of power whi
h dependent types bring toprogramming as a
ue to re-evaluate design
hoi
es about the language with whi
hwe express programs, the tools with whi
h we
onstru
t programs, and the programs

The view from the left 27we
hoose to write in the �rst pla
e. This in
ludes reassessing the interfa
es andimplementations of standard data stru
tures and algorithms, no less than any otherprograms.We believe that the new languages, tools and libraries will pro�t
onsiderably fromthe experien
e gained in the wider domain of intera
tive problem-solving with de-pendent types. Our new analysis of the left-hand sides of fun
tional programs stemsdire
tly from sequent
al
ulus. By adding the
ut rule (with-nodes) and permittingarbitrary left rules (by-nodes), we introdu
e a
ompositional language of analysison the left to mat
h the
ompositional language of synthesis on the right. We
reditWadler with the insight that, by
onstru
ting views, we
an and should
hoose toadapt our per
eptions of data to mat
h our
on
eptions of data. We reify his viewsdire
tly, by our treatment of the left. So hurrah for Wadler! Wel
ome to the newprogramming. Referen
esAbel, A., & Altenkir
h, T. (2000). A predi
ative analysis of stru
tural re
ursion. J.fun
tional programming, Mar
h.Altenkir
h, Thorsten, & Reus, Bernhard. (1999). Monadi
 presentations of lambda-termsusing generalized indu
tive types. Computer S
ien
e Logi
 1999.Augustsson, L., & Carlsson, M. (1999). An exer
ise in dependent types: A well-typedinterpreter. www.
s.
halmers.se/~augustss/
ayenne/interp.ps.Augustsson, Lennart. (1985). Compiling Pattern Mat
hing. In: (Jouannaud, 1985).Bellegarde, Fran
oise, & Hook, James. (1995). Substitution: A formal methods
ase studyusing monads and transformations. S
ien
e of Computer Programming.Bird, Ri
hard, & Paterson, Ross. (1999). de Bruijn notation as a nested datatype. Journalof Fun
tional Programming, 9(1), 77{92.Burstall, Rod. (1969). Proving properties of programs by stru
tural indu
tion. Computerjournal, 12(1), 41{48.Coq, L'�Equipe. 2001 (Apr). The Coq Proof Assistant Referen
e Manual. pauil-la
.inria.fr/
oq/do
/main.html.Coquand, Catarina, & Coquand, Thierry. (1999). Stru
tured Type Theory. Workshop onLogi
al Frameworks and Metalanguages.Coquand, Thierry. 1992 (June). Pattern Mat
hing with Dependent Types. Pro
eedings ofthe Logi
al Framework workshop at B�astad.Cornes, Cristina. (1997). Con
eption d'un langage de haut niveau de r�epresenatation depreuves. Ph.D. thesis, Universit�e Paris VII.de Bruijn, N.G. (1991). Teles
opi
 Mappings in Typed Lambda-Cal
ulus. Informationand
omputation, 91, 189{204.Dy
kho�, R., & Pinto, L. (1998). Cut-elimination and a permutation-free sequent
al
ulusfor intuitionisti
 logi
. Studia logi
a, 60, 107{118.Gentzen, G. (1935). Investigations into logi
al dedu
tion. North-Holland. Chap. 3 of (Sz-abo, 1969).Gim�enez, E. (1994). Codifying guarded de�nitions with re
ursive s
hemes. Pages 39{59 of:Dybjer, Peter, Nordstr�om, Bengt, & Smith, Jan (eds), Types for proofs and programs,'94. LNCS, vol. 1158. Springer-Verlag.

28 Conor M
Bride and James M
KinnaHerbelin, H. (1995). A �-
al
ulus stru
ture isomorphi
 to sequent
al
ulus. Pages 67{75of: Pro
eedings of CSL'94. LNCS, vol. 933. Springer-Verlag.Huet, G., & Plotkin, G. D. (eds). 1990 (May). Ele
troni
 Pro
eedings of the First AnnualBRA Workshop on Logi
al Frameworks (Antibes, Fran
e).Jouannaud, Jean-Pierre (ed). (1985). Fun
tional Programming Languages and ComputerAr
hite
ture. LNCS, vol. 201. Springer-Verlag.Magnusson, Lena. (1994). The implementation of ALF|A Proof Editor based on Martin-L�of's Monomorphi
 Type Theory with Expli
it Substitutiton. Ph.D. thesis, ChalmersUniversity of Te
hnology, G�oteborg.M
Adam, Bru
e J. (1999). Generalising te
hniques for type explanation. Pages 243{252of: S
ottish fun
tional programming workshop. Heriot-Watt Department of Computingand Ele
tri
al Engineering Te
hni
al Report RM/99/9.M
Bride, Conor. (1998). Inverting indu
tively de�ned relations in LEGO. Pages 236{253of: Gim�enez, E., & Paulin-Mohring, C. (eds), Types for proofs and programs, '96. LNCS,vol. 1512. Springer-Verlag.M
Bride, Conor. (1999). Dependently Typed Fun
tional Programs and their Proofs. Ph.D.thesis, University of Edinburgh.M
Bride, Conor. (2001a). The Derivative of a Regular Type is its Type of One-HoleContexts. Ele
troni
ally available.M
Bride, Conor. (2001b). Elimination with a Motive. Callaghan, P., Luo, Z., M
Kinna,J., & Polla
k, R. (eds), Types for proofs and programs (pro
eedings of the internationalworkshop, types'00). LNCS. Springer-Verlag. (in preparation).M
Bride, Conor. 2001
 (Feb.). First-Order Uni�
ation by Stru
tural Re
ursion. To appearin the Journal of Fun
tional Programming.M
Bride, F., & M
Bride, C.T. (1989). Craft '89. Queen's University, Belfast. User Manual.M
Bride, Fred. (1970). Computer aided manipulation of symbols. Ph.D. thesis, Queen'sUniversity of Belfast.M
Kinna, J., & Polla
k, R. (1993). Pure type systems formalized. Bezem, M., & Groote,J.F. (eds), Int.
onf. typed lambda
al
uli and appli
ations. LNCS 664. Springer-Verlag.M
Kinna, J., & Polla
k, R. (1999). Some lambda
al
ulus and type theory formalized.Journal of automated reasoning, 23, 373{409. (Spe
ial Issue on Formal Proof, editorsGail Pieper and Frank Pfenning).Polla
k, Robert. 1992 (May). Impli
it syntax. An earlier version of this paper appearedin (Huet & Plotkin, 1990).Polla
k, Robert. (2000). Dependently Typed Re
ords for Representing mathemati
alstru
ture. Aagard, & Harrison (eds), Theorem Proving in Higher Order Logi
s, TPHOLs2000. LNCS, vol. 1869. Springer-Verlag.Nordstr�om, B., Petersson, K., & Smith, J. (1990). Programming in Martin-L�of's typetheory: an introdu
tion. Oxford University Press.Pym, D. (1990). Proofs, sear
h and
omputation in general logi
. Ph.D. thesis, Universityof Edinburgh. Available as CST-69-90, also published as ECS-LFCS-90-125.Szabo, M. (1969). The
olle
ted papers of Gerhard Gentzen. North-Holland.Wadler, P. (1994). A Curry-Howard isomorphism for sequent
al
ulus. Talk given at theEPSRC LogFIT Final Workshop, Fairbairn House, Leeds.Wadler, Philip. (1985). How to Repla
e Failure by a list of Su

esses. In: (Jouannaud,1985).Wadler, Philip. (1987). Views: A way for pattern mat
hing to
ohabit with data abstra
-tion. Popl'87. ACM.

The view from the left 29Wadler, Philip. (1990). Deforestation: transforming programs to eliminate trees. Theoret-i
al
omputer s
ien
e, 73, 231{248. (Spe
ial issue of sele
ted papers from 2'nd ESOP.).

