
Views:A way for pattern matching tocohabit with data abstractionPhilip WadlerProgramming Research Group, Oxford University, UKand Programming Methodology Group, Chalmers University, SwedenJanuary 1987(revised, March 1987)�AbstractPattern matching and data abstraction are important concepts in designing programs,but they do not �t well together. Pattern matching depends on making public a free datatype representation, while data abstraction depends on hiding the representation. Thispaper proposes the views mechanism as a means of reconciling this conict. A view allowsany type to be viewed as a free data type, thus combining the clarity of pattern matchingwith the e�ciency of data abstraction.1 IntroductionInduction and abstraction are fundamental tools of the mathematician's trade, and equallyessential to the computer scientist. Pattern matching is a language feature that supportsinduction, and data abstraction is a feature that supports abstraction; but unfortunatelythese two features do not get on well together. This paper proposes the views mechanismas a means of resolving this problem.As an example of the conict between pattern matching and data abstraction, considerthe de�nition of exponentiation. Mathematicians traditionally de�ne it as follows:x0 = 1xn+1 = x(xn) (1)�This is a revised version of a paper presented at the 14'th ACM Symposium on Principles of Pro-gramming Languages, Munich, January 1987. 1



This de�nition makes it easy to prove properties of exponentiation by means of induction.Functional programming languages encourage a similar style of de�nition. For example,in a language like Hope [BMS80] or Miranda1 [Tur85] we might declare a new typepeano ::= Zero j Succ peanoand then we can write a de�nition that is essentially equivalent to (1):power x Zero = 1power x (Succ n) = x � power x n (2)This style of de�nition has several advantages: each case is displayed clearly as apattern on the left-hand side of an equation; the compiler can check that no cases havebeen accidentally omitted; and the de�nitions are well-suited for proofs by structuralinduction [Bur69] and for program transformation [BD77].However, there is a problem with the above de�nition: it speci�es a particular wayof representing natural numbers, as the free data type peano. The representation of thenumber seven is the data structureSucc (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))Compared with the representation of integers built-in to the computer hardware, thisrepresentation is astonishingly ine�cient. If we had followed the fundamental principle ofdata abstraction (or representation hiding) then this problem would not arise, because wewould be free to implement natural numbers in any convenient way, including the built-ininteger data type.In short, pattern matching supports clear de�nitions and induction, but it requiresthat the representing type be a free data type and be visible. Data abstraction supportse�ciency, but it requires that the representing type be hidden. Thus, the programmer isoften faced with an unenviable choice between clarity and e�ciency.The programming language Hope �nesses this problem in the special case of the naturalnumbers. It provides a special mechanism that allows the built-in integer type to beviewed as if it were the type peano. Such a useful mechanism is clearly a candidate forgeneralization, as the need to view one data type as if it were another is hardly limited tothis special case. This paper proposes a language mechanism called views as a means ofsatisfying this need. A view speci�es how any arbitrary data type (including an abstractdata type) can be viewed as a free data type. It is even possible to specify several di�erentviews of the same type.This paper discusses views in the context of functional languages; similar ideas may beuseful in imperative languages. The notation used in this paper is styled after Miranda.The essential requirement is that the host language permits the declaration of free datatypes. Views are useful regardless of whether eager, applicative order evaluation (as inHope) or lazy, normal order evaluation (as in Miranda) is used; the examples in this paperwork with either evaluation order.1Miranda is a trademark of Research Software Limited.2



Views as described here should not be confused with views in OBJ2 [FGJM85]. Viewsin OBJ2 specify homomorphisms between modules; views as described here specify iso-morphisms between data types. (Joseph Goguen has suggested that the views in thispaper be called \bi-views".)The problem of extending pattern-matching to apply to non-free types is also addressedby Miranda, through the mechanism of \lawful types" [Tho86]. This mechanism is rathermore limited than views. A lawful type is simply a subset of a free type, whereas viewsallow one to specify a correspondence between a free type and any desired type.The remainder of this paper is organized as follows. Section 2 introduces views byshowing how to de�ne a view of integers. Section 3 briey describes an alternative viewof integers. Section 4 gives a simple example of views and abstract data types, in thecontext of two representations of complex numbers. Sections 5 through 8 demonstratefurther applications of views to lists and trees. Section 9 shows two unusual uses of views.Section 10 and 11 describe how views support equational reasoning and induction. Section12 outlines an e�cient implementation method. Section 13 concludes.2 Viewing an integer as zero or a successorThis section introduces the views mechanism by de�ning a view of the built-in integertype, int , that is analogous to the free data type peano discussed in the introduction.Here is the de�nition of the view:view int ::= Zero j Succ intin n = Zero; if n = 0= Succ (n � 1); if n > 0out Zero = 0out (Succ n) = n + 1The �rst line introduces two new names, Zero and Succ, which may appear in terms (onthe right-hand side of equations) and in patterns (on the left-hand side of equations).The in and out clauses are similar to function de�nitions. The in clause de�nes afunction to apply to an int to get a Zero or Succ; it is used when Zero or Succ appear ina pattern on the left-hand side of an equation. The out clause de�nes a function to applyto a Zero or Succ to get an Int ; it is used when Zero or Succ appear on the right-handside of an equation.A view is well-de�ned only when the functions de�ned by the in and out clause areinverses of each other. Together, they specify an isomorphism between (a subset of) theviewed type and (a subset of) the viewing type. In this case, the isomorphism is betweenthe natural numbers (a subset of the viewed type, int ) and values constructed with Succand Zero (the viewing type).Given the above view declaration, one may write de�nitions such as (2) in Section 1,3



or the following de�nition of Fibonacci numbers:�b Zero = Zero�b (Succ Zero) = Succ Zero�b (Succ (Succ n)) = (�b n) + (�b (Succ n))Here, views are used on the right-hand side only for symmetry (and purposes of demon-stration). It would work just as well to say �b Zero = 0 for the �rst equation. Later, wewill see examples where the use of views on the right-hand side is more natural.This view applies only to natural numbers. Any attempt to view a negative integeras a Zero or Succ (for example, by evaluating �b (�1)) will cause a run-time error.It is easy to translate a program that uses views into a program that does not useviews. The view de�nition above is equivalent to a type de�nition and two functionde�nitions: viewtype ::= Zero j Succ intviewin n = Zero; if n = 0= Succ (n � 1); if n > 0viewout Zero = 0viewout (Succ n) = n + 1The function viewin has type int ! viewtype and the function viewout has typeviewtype ! int .A function de�nition such as power or �b is translated in two steps. First, all patternmatching is translated into case expressions; see [Aug85, Wad87]. Second, calls of viewinand viewout are inserted at appropriate places. For example, the �b de�nition above isequivalent to:�b m =case viewin m ofZero ) viewout ZeroSucc m 0 ) case viewin m 0 ofZero ) viewout (Succ (viewout Zero))Succ n ) �b n + �b (viewout (Succ n))Note that values of type viewtype appear in the program only in a very restricted way(namely, as a result of viewin or as an argument to viewout ).Any view may always be expanded out in the way outlined above. Thus, views do notrequire any signi�cant change in the semantics of a functional language.
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3 Another view of integersIt is possible to have more than one view of a data type. An alternative view of integersis as follows:view int ::= Zero j Even int j Odd intin n = Zero; if n = 0= Even (n div 2); if n > 0 ^ n mod 2 = 0= Odd ((n � 1) div 2); if n > 0 ^ n mod 2 = 1out Zero = 0out (Even n) = 2 � n; if 2 � n > 0out (Odd n) = 2 � n + 1; if 2 � n + 1 > 0The in and out clauses again de�ne inverse functions. Note that the constructor Zeroappears in both views; this is permissible and unambiguous because it is given the samede�nition in each.Using this view one can give a more e�cient de�nition of exponentiation:power x Zero = 1power x (Even n) = power (x � x ) npower x (Odd n) = x � power (x � x ) nThis expresses the traditional divide-and-conquer algorithm.4 Viewing a complex number in cartesian and polarcoordinatesThis section gives a simple illustration of how abstract data types can be combined withpattern matching. The pattern matching here is extremely simple|no case analysis orrecursive types are involved|but still useful.Two well known representations of complex numbers are the polar and the cartesian.We might choose to represent complex numbers in the polar representation, and providethe cartesian as a view:complex ::= Pole real realview complex ::= Cart real realin (Pole r t) = Cart (r � cos t) (r � sin t);if (0 < r ^ 0 � t ^ t < 2 � pi) _ (0 = r ^ 0 = t)out (Cart x y) = Pole (sqrt (x 2 + y2)) (atan2 x y)The constraints on r and t are necessary to ensure that there is an isomorphism betweenthe polar and cartesian representations of points; otherwise, many polar representationsmight correspond to one cartesian representation. The function atan2 x y returns the5



arctangent of x=y properly adjusted for quadrant, and returns a sensible value if y is zero(0 if x � 0, and � if x < 0).Multiplication and addition of complex numbers can now be de�ned as follows:add (Cart x y) (Cart x 0 y 0) = Cart (x + x 0) (y + y 0)mult (Pole r t) (Pole r 0 t 0) = Pole (r � r 0) (t + t 0)Here addition was de�ned in terms of the cartesian representation and multiplication interms of the polar representation.Alternatively, we might choose to represent complex numbers in the cartesian repre-sentation, and provide the polar as a view. This requires just a small variation on theprevious declaration:complex ::= Cart real realview complex ::= Pole real realin (Cart x y) = Pole (sqrt (x 2 + y2)) (atan2 x y);out (Pole r t) = Cart (r � cos t) (r � sin t);if (0 < r ^ 0 � t ^ t < 2 � pi) _ (0 = r ^ 0 = t)Here the in and out clauses are reversed from their previous positions. The de�nitions ofadd and mult given previously are still valid under this new declaration. This shows howviews can be used to hide choice of representation, while still allowing the convenience ofpattern matching.The traditional method for hiding a representation is an abstract data type. Just asabstract data types export values and functions, they should also be able to export views.It is easy to modify the abstract data type mechanism of Miranda to include views, forexample: abstype complex withcomplex ::= Cart real realcomplex ::= Pole real realThis abstract type only de�nes views, but in general an abstract type might de�ne bothviews and functions; the syntax for declaring functions is shown below.This declaration can be implemented with a polar representation and a cartesian view,or with a cartesian representation and a polar view, or with some third representationand cartesian and polar both as views. The de�nitions of add and mult will still be validregardless of the representation chosen.For comparison, consider the equivalent abstract type if views are not used:abstype complex withxpart; ypart; rpart; tpart :: complex ! realmkcart ;mkpole :: real ! real ! complexThe single identi�er Cart has been replaced by three identi�ers, xpart, ypart, and mkcart;and similarly for Pole . The corresponding de�nitions of addition and multiplication are:add c c0 = mkcart (xpart c + xpart c0) (ypart c + ypart c0)mult c c0 = mkpole (rpart c � rpart c0) (tpart c + tpart c0)6



In this example the di�erence is not great, but for more complicated examples the ad-vantages of views|compactness and the ability to use pattern matching|would be morepronounced.The example given here is slightly contrived, because in practice it would be moresensible to de�ne the operations add and mult inside the abstraction, rather than outsideit. However, it serves to show how views combine well with data abstraction, and particu-larly how views can reconcile the conict between pattern matching and data abstractionmentioned in the introduction. One way to summarize this result is as follows. Tradi-tionally, abstraction is achieved by refusing to export the representation. With views,abstraction can be achieved by exporting as many representations as desired.5 Viewing a list backwardsAssume that lists are represented in the traditional way, so that, for example, [1; 2] istaken as an abreviation for 1 Cons (2 Cons Nil ), where the constructors Nil and Consare de�ned as follows: list � ::= Nil j � Cons (list �)(Here x Cons xs is just di�erent syntax for Cons x xs.)Of course, the Cons representation of lists is \biased" towards the �rst element of thelist. For example, it is much easier to write a function to return the �rst element of thelist than a function to return the last:head (x Cons xs) = xlast (x Cons Nil ) = xlast (x Cons (x 0 Cons xs)) = last (x 0 Cons xs)We can de�ne a new view, based on constructors Nil and Snoc, that is biased in theopposite way: view list � ::= Nil j (list �) Snoc �in (x Cons Nil ) = Nil Snoc xin (x Cons (xs Snoc x 0)) = (x Cons xs) Snoc x 0out (Nil Snoc x ) = x Cons Nilout ((x Cons xs) Snoc x 0) = x Cons (xs Snoc x 0)This allows us to view the list [1; 2] as if were (Nil Snoc 1) Snoc 2. We can now writede�nitions such as last (xs Snoc x ) = xrotleft (x Cons xs) = xs Snoc xrotright (xs Snoc x ) = x Cons xsHere last is equivalent to the de�nition above, and, for example, rotleft [1; 2; 3; 4] =[2; 3; 4; 1] and rotright [1; 2; 3; 4] = [4; 1; 2; 3].Attention is drawn to three features of the above view.7



First, the constructor Nil , which is part of the representation, also appears in theview, just as Zero was shared between the two di�erent views of integers. In general, it ispermissible (and unambiguous) to let views of the same representation share any numberof constructors with the representation and with each other.Second, some left-hand sides in the in clause above contain Snoc. Matching againstthese will cause a recursive invocation of in. The out clause is recursive in a similar way.Recursive in and out clauses are perfectly acceptable, in the same way that recursivefunction de�nitions are.Third, in the de�nition above the in and out clauses are exact inverses of one another.This can be abbreviated as follows:view list � ::= Nil j (list �) Snoc �inout (x Cons Nil ) = Nil Snoc xinout (x Cons (xs Snoc x 0)) = (x Cons xs) Snoc x 0As mentioned previously, a view is well-de�ned only when the in and out clauses de�nefunctions that are inverses of one another. In the case that a view can be de�ned usingan inout clause, this property follows automatically.Of course, the representation is still biased. For example, x Cons xs evaluates muchmore e�ciently than xs Snoc x . Also, consider the two function de�nitions,f1 (x Cons (x 0 Cons xs)) = e1 x x 0 xsf2 ((xs Snoc x 0) Snoc x ) = e2 xs x 0 xThe matching in f1 takes constant time, while the matching in f2 takes time proportionalto the length of the input list. Indeed, the input list is traversed once to decompose the listfor the outer Snoc, and then the entire input list (except for its last element) is traversedagain to decompose it for the inner Snoc. The next section descibes a representationwhere all bias is removed, and the cons and snoc views are equally e�cient.6 The join representation of listsAs an alternative to the cons representation of lists, several researchers have suggestedthe following representation [Mee84, SH82]:list � ::= Nil j Unit � j (list �) Join (list �)(Interestingly, Meertens has made this suggestion for reasons of mathematical elegance,whereas Sleep and Holmstr�om have suggested it for reasons of e�ciency!) Each list nowhas many possible representations. For example, the list [1; 2] might be represented byany of the following: (Unit 1) Join (Unit 2)(Nil Join (Unit 1)) Join ((Unit 2) Join Nil )(Unit 1) Join ((Unit 2) Join Nil )8



Indeed, each list has a potentially in�nite number of representations, since xs and Nil Joinxs both represent the same list.Assuming this new representation, we can de�ne a view that allows one to view a joinlist as if it were a cons list:view list � ::= Nil j � Cons (list �)in (Unit x ) = x Cons Nilin (Nil Join xs) = in xsin ((Unit x ) Join xs) = x Cons xsin ((xs Join ys) Join zs) = in (xs Join (ys Join zs))out (x Cons xs) = (Unit x ) Join xsThe in clause maps all of the di�erent ways of representing [1; 2] as a join list into thesame view as a cons list, namely 1 Cons (2 Cons Nil ):Conversely, the out clause maps this term back into a particular representation as a joinlist, namely (Unit 1) Join ((Unit 2) Join Nil ):The correctness of the view depends on the equivalence between the various ways ofrepresenting a join list; otherwise, the in and out functions would not be inverses.Note that recursion in the in clause above is indicated explicitly, as compared withthe implicit recursion in the snoc view of the previous section.The equation in the out clause above also appears, inverted, in the in clause. Thus,it is easy to show that the in and out clauses de�ne inverse functions. In this case, theout clause cannot be omitted in favour of an inout clause, because a cons list can berepresented in more than one way by a join list. Choosing which equations to include inthe out clause is equivalent to choosing which representation to use.A snoc view of join lists can be de�ned in a way completely symmetric to the de�nitiongiven above. This is left as an exercise for the reader.A join list can always be viewed as a cons list or a snoc list in time proportional tothe size of the join list. (Further, unless the join list has an abundance of Nil nodes, itssize will be proportional to the size of the corresponding cons and snoc lists.) Also, whenthe join representation is used, appending two lists requires constant time, rather thantime proportional to the size of one of the lists. It is these properties that make the joinrepresentation desirable in terms of e�ciency.7 Viewing a list of pairs as a pair of listsThe function that converts a pair of lists into a list of pairs is de�ned as follows:zip (Nil ;Nil ) = Nilzip (a Cons as; b Cons bs) = (a; b) Cons zip (as; bs)9



(The pair notation is just another syntax for constructors; think of (a; b) as equivalent toPair a b.) For example,zip ([1; 2; 3]; [`a'; `b'; `c']) = [(1; `a'); (2; `b'); (3; `c')]Very often, it is also necessary to decompose a list of pairs into a pair of lists. This isusually done by an idiom such as the following:f cs = e as bswhere as = [a j (a; b) cs ]bs = [b j (a; b) cs ](This uses list comprehension notation; see [Tur81, Wad87].)Clearly, zip de�nes a isomorphism: given a list of pairs cs there is always a uniquepair of lists as and bs such that zip (as; bs) = cs. Thus, we can discard the de�nition ofzip given above, and instead de�ne a view Zip of pairs of lists:view list (�; �) ::= Zip (list �; list �)inout Nil = Zip (Nil ;Nil )inout ((a; b) Cons Zip (as; bs)) = Zip (a Cons as; b Cons bs)(Here the type of the pair (a; b) is written (�; �).) Now we can write Zip (as; bs) in placeof zip (as; bs) on the right-hand side of equations. We can also write Zip (as; bs) on theleft-hand sides of equations. For example, the idiom given above becomesf (Zip (as; bs)) = e as bswhich is somewhat shorter.8 Two representations of treesOne common representation of trees is the following:tree � ::= Leaf � j Branch (tree �) (tree �)Another common representation uses what is called the \spine" (mixing an anatomicalmetaphor with an arboreal one). Spine trees, together with the isomorphism that relatesthem to branch trees, can be conveniently described by the following view:view tree � ::= Spine � (list (tree �))inout (Leaf x ) = Spine x Nilinout (Branch (Spine x xts) xt) = Spine x (xts Snoc xt)For example, the branch treeBranch (Branch (Leaf \f") (Leaf \a")) (Leaf \b")10



is equivalent to the spine treeSpine \f" [Spine \a" [ ];Spine \b" [ ]]:Of course, one could use spine trees as the underlying representation with branch treesas the view, or hide the representation in an abstract type and provide both branch andspine as views.9 Two other uses of viewsThis section presents two rather unusual uses of views. It is not clear whether theseuses should be considered good style, but they do demonstrate the power of the viewmechanism.Occasionally, it is convenient to both match an argument against a pattern, and torefer to it by a single name. (One might say we wish to \eat our argument and have ittoo".) Hope provides the as construct for this purpose. For example, one might write:factorial (n as Zero) = 1factorial (n as Succ n 0) = n � factorial n 0Surprisingly, as can be de�ned as a view:view � ::= � as �in x = x as xout (x as x 0) = x ; if x = x 0This de�nes an isomorphism between any type �, and the subset of the viewing type� as � where the left and right arguments of the constructor are equal. It is unlikely thatone would want to use as on the right-hand side in an equation, but the out clause isnecessary for the view to be well-de�ned.One may even use views in place of predicates. For example, one might de�ne:view int ::= EvenP int j OddP intin n = EvenP n; if n mod 2 = 0= OddP n; if n mod 2 = 1out EvenP n = n; if n mod 2 = 0out OddP n = n; if n mod 2 = 1Then we can write f (EvenP n) = e1 nf (OddP n) = e2 ninstead of f n = e1 n; if n mod 2 = 0= e2 n; if n mod 2 = 111



Replacing conditions by patterns may occasionally be clearer, particularly if many func-tions test the same condition. It may also improve clarity when a function has manyarguments, and the test of the condition interacts with pattern matching for the otherarguments. From the out clause, it can be seen that the term EvenP n is equivalent to nwith the additional assertion that n is even. Conceivably, it might be useful to use EvenPand OddP on the right-hand sides of equations, as a way of documenting that certainconditions hold.10 Equational reasoningIn order for a language feature to be useful, it must be easy to reason about programscontaining that feature. Views have been carefully designed to support two importantproof techniques, equational reasoning and induction. These are discussed in this sectionand the next.Equational reasoning is a principle of such supreme importance that it goes by manynames: referential transparency, the rule of Leibniz, and more plainly \substituting equalsfor equals". As a very simple example, given the function de�nitionlast (x Cons Nil ) = xlast (x Cons (x 0 Cons xs)) = last (x 0 Cons xs) (1)(2)equational reasoning is su�cient to calculate the value of last [`a'; `b'], as follows:last (`a' Cons (`b' Cons Nil )) = last (`b' Cons Nil )= `b' (by 2)(by 1)A key principle in the design of views is that all equations in the in and out clauses ofthe view can be used just like any other equations for equational reasoning. Thus, giventhe view view list � ::= Nil j (list �) Snoc �inout (x Cons Nil ) = Nil Snoc xinout (x Cons (xs Snoc x 0)) = (x Cons xs) Snoc x 0 (3)(4)and the de�nition last (xs Snoc x ) = x (5)we may now calculate as follows:last (`a' Cons (`b' Cons Nil ))= last (`a' Cons (Nil Snoc `b'))= last ((`a' Cons Nil ) Snoc `b')= b (by 3)(by 4)(by 5)Of course, the main value of equational reasoning is not in calculating values but inperforming proofs. Given the de�nitions 12



rotleft (x Cons xs) = xs Snoc xrotright (xs Snoc x ) = x Cons xs (6)(7)we may prove rotright (rotleft xs) = xsfor a non-empty �nite list xs, by simply observing thatrotright (rotleft (x Cons xs) = rotright (xs Snoc x )= x Cons xs (by 6)(by 7)Both the de�nitions and the proof are rather more involved if views are not used.Equational reasoning is valid for all de�nitions that use pattern matching over freedata types. A view establishes an isomorphism between (a subset of) the viewed datatype and (a subset of) a free data type. Thus, equational reasoning is also valid for allde�nitions that use pattern matching over views.However, some caution is required, because the view may imply additional conditionsthat the program must satisfy. For example, consider the view of join lists as cons lists.as cons lists. A look at this view will reveal that it establishes the following conditionson join lists: Nil Join xs = xsxs Join (ys Join zs) = (xs Join ys) Join zsThat is, Joinmust have Nil as a (left) identity and be associative. The programmer mustverify that every de�nition containing Join is consistent with these conditions. It is alsodesirable that de�nitions be consistent with the conditionxs Join Nil = xsbut this is not required by the view.An example of a satisfactory de�nition islength Nil = 0length (Unit x ) = 1length (xs Join ys) = length xs + length ysThis de�nition establishes a homomorphism mapping Join onto + and Nil onto 0. It isvalid because + has 0 as an identity and is associative, and so the desired properties arepreserved. (For further discussion of homomorphisms and operations on lists, the readeris referred to [Mee84, Bir86].)An example of an unsatisfactory de�nition issilly Nil = 1silly (Unit x ) = 2silly (xs Join ys) = silly xs + silly ysThis de�nition does not preserve the desired properties, because 1 is not a right identityof +. Thus, from the condition that xs = Nil Join xs we could derive2 = silly (Unit `a') = silly (Nil Join (Unit `a')) = 313



It is impossible to reason equationally about a program containing this de�nition, whichis just as well since it is a silly de�nition indeed.A further example of an unsatisfactory de�nition isnothead ((Unit x ) Join xs) = xThis de�nition won't do, because we have(Unit `a') Join (Unit `b') = Nil Join ((Unit `a') Join (Unit `b'))but applying nothead to the left of this equation yields `a', while applying nothead to theright yields an unde�ned value.One should consider it a bonus that views reveal an additional condition that de�ni-tions involving Join must be checked for. On the other hand, it is useful to be able tolimit the portions of the program that must be so checked. This can be done in the usualway, by encapsulating Join within an abstract data type. Further, it is completely safe toexport the cons and snoc views of lists outside of this type, because they are guaranteedto enforce the necessary conditions. For example, the de�nitionhead (x Cons xs) = xis completely satisfactory, because the cons view necessarily respects the equivalencesamong various join representations of the same list.11 InductionIt is also essential that induction should work over views. For example, in order todemonstrate that a property P(xs) holds for every �nite list xs, it is su�cient to show1. P(Nil ) holds, and2. P(xs Snoc x ) holds, assuming P(xs) holds.Similarly, one can prove properties of the natural numbers by inducting over Zero andSucc.In general, induction over a view is valid to demonstrate properties that hold for allelements generated by the viewing type. For example, every �nite list can be generatedusing Nil and Snoc, so induction over these serves to prove properties of �nite lists.Similarly, every natural number can be generated using Zero and Succ, so induction overthese serves to prove properties of natural numbers. Here the induction only demonstratesproperties of a subset (natural numbers) of the viewed type (integers).A more problematic example is the unusual view of even and odd integers presented inSection 9. The set of values that can be generated using just the two constructors EvenPand OddP is empty, and so induction is not appropriate over this view.14



12 ImplementationAs explained in Section 2, each view can be expanded out into the de�nition of a new type,viewtype , and applications of conversion functions, viewin and viewout . This is workable,but not ideal. Constructors of the viewed type (such as Zero and Succ) appear only as theresult of viewin or the argument to viewout . At run-time, such constructors are alwaysallocated storage and then immediately examined and never referenced again. It wouldbe preferable to use a scheme that avoided allocating such constructors altogether.Such a scheme is possible. Instead of introducing a new type and two conversion func-tions, in the modi�ed scheme a view with k constructors introduces k + 1 new functions(and no new types). One function acts as the equivalent of viewin and the associatedcase expression, while the remaining k functions provide an equivalent of viewout foreach constructor.For example, the view of integers in Section 2 translates into the following threefunctions: viewcase z s n = z if n = 0= s (n � 1) if n > 0zero = 0succ n = n + 1Note that viewcase is designed so that if n corresponds to Zero then z is returned, andif n corresponds to Succ n 0 then s n 0 is returned. Since s is itself a function, viewcasecan be de�ned only in a higher-order language, where functions may be passed to otherfunctions.Under this scheme, the de�nition of �b now translates as follows:�b m = viewcasezero(�m 0:viewcase(succ zero)(�n: n + �b (succ n))m 0)mIt is left to the reader to verify that this translation is equivalent to the one described inSection 2.The new translation scheme has the desired property that it introduces no new con-structors (like Succ and Zero) and hence requires no extra allocation operations at run-time. However, it has the disadvantage that application of viewcase may be more di�cultto evaluate e�ciently than the corresponding case expressions. The exact nature of thisproblem will depend on the evaluation method used. Here the problem will be consideredin the context of a G-machine style compiler, and a solution suggested. Some familiaritywith the G-machine is assumed; see [Aug84, Joh85, Pey87] for an introduction.15



As an example, consider the following de�nition (which happens to provide a fastmethod for calculating Fibonacci numbers):�bx a b Zero = a�bx a b (Succ n) = �bx b (a + b) nTranslated using the above scheme, this becomes�bx a b m = viewcase a (�n:�bx b (a + b) n) mAfter lambda-lifting, this de�nition in turn becomes�bx a b m = viewcase a (�bx 0 a b) m�bx 0 a b n = �bx b (a + b) nAt run-time, the code implementing the body of �bx will need to allocate heap storage torepresent the application (�bx 0 a b). Thus, we have saved the allocation of a constructorZero or Succ only to replace it by a potentially larger allocation (since in general storagewill need to be allocated for each free variable in each argument to viewcase).Fortunately, this problem can be solved by simply rearranging the way free variablesare passed into arguments to viewcase . In the rearranged method, all free variables ofthe function containing the viewcase are lambda-abstracted from each argument to theviewcase (and in the same order); these variables are then passed into the result returnedby the viewcase . Thus, the de�nition of �bx now translates to�bx a b m =viewcase (�a:�b:�m:a) (�n:�a:�b:�m:�bx b (a + b) n) m a b mAfter lambda-lifting this becomes�bx a b m = viewcase �bx 1 �bx 2 m a b m�bx 1 a b m = a�bx 2 n a b m = �bx b (a + b) nNow the body of �bx need merely push pointers to �bx 1 and �bx 2 onto the stack, copythe parameter m onto the top of the stack, and perform a tail-call (that is, a jump) toviewcase . In turn, viewcase will examine the argument m; if it is zero it will performa tail-call (jump) to �bx 1, and if it is positive it will push m � 1 onto the stack andperform a tail-call (jump) to �bx 2. By passing the free variables in the body of �bx toeach argument in the same order, the rearrangement of the stack necessary at run-timeis minimised. (Given the above de�nition of �bx , the current G-machine compiler wouldnot produce quite the sequence of steps described here, but it could be modi�ed to doso.)This is quite acceptably e�cient. Further e�ciency might be gained by expandingout non-recursive function applications at compile time. (The compilers described by16



[HK84, FW86] perform expansion of this kind.) For example, performing expansion onthe above de�nition of �bx yields�bx a b m = a; if m = 0= �bx b (a + b) (m � 1); if m > 0which resembles the code one would write if a view had not been used. However, it isdi�cult to see how to perform an equivalent expansion of a recursive viewcase , such asthe one associated with the snoc view of lists.13 ConclusionsDesigners of software are continually faced with trade-o�s. Some of these trade-o�s arenecessary, but others can be avoided by careful design. It is particularly worrying whenwe are forced to choose between valuable methods such as pattern matching and dataabstraction. Views move this trade-o� from the \necessary" to the \avoidable" category.After the views mechanism was de�ned, several unexpected uses of it emerged. Theseincluded the list-of-pairs to pair-of-lists view discussed in Section 7 and the two unusualviews discussed in Section 9. No doubt many other uses of views are waiting to bediscovered.Programming languages are awash with features, and new features must be approachedwith caution. Views are worth consideration because they address an important need|reconciling pattern matching with data abstraction. In doing so, they also bring a newperspective. Instead of thinking of an abstract data type as hiding a representation, withviews we can think of it as exporting as many representations as convenient.Acknowledgements. I am grateful to Tony Hoare for pointing out how views shouldsupport equational reasoning; Joseph Goguen for providing useful comments on an earlierdraft of this report; Bernard Sufrin and John Hughes for acting as sounding boards forthese ideas; S�oren Holmstr�om for noting that the original de�nition of the cartesian/polarview did not specify an isomorphism; and Thomas Johnsson for his careful proofreading.This research was performed while on a fellowship supported by ICL.References[Aug84] L. Augustsson. A compiler for lazy ML. In Proceedings of the 1984 ACM Sym-posium on Lisp and Functional Programming, pages 218{227, Austin, 1984.[Aug85] L. Augustsson. Compiling pattern matching. In Proceedings of the Conferenceon Functional Programming Languages and Computer Architecture, Springer-Verlag, September 1985.[BD77] R. M. Burstall and J. Darlington. A transformation system for developingrecursive programs. Journal of the ACM, 24(1):44{67, January 1977.17



[Bir86] R. S. Bird. An introduction to the theory of lists. In Marktoberdorf Workshopon Logics of Programming, August 1986.[BMS80] R. Burstall, D. MacQueen, and D. Sanella. Hope: An experimental applicativelanguage. Technical Report Report CSR-62-80, Edinburgh University, Com-puter Science Dept., 1980.[Bur69] R. M. Burstall. Proving properties of programs by structural induction. TheComputer Journal, 12(1), February 1969.[FGJM85] K. Futasagi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principlesof OBJ2. In ACM Symposium on Principles of Programming Languages,pages 52{66, January 1985.[FW86] J. Fairbairn and S. C. Wray. Code generation techniques for functional lan-guages. In Proceedings of the 1986 ACM Symposium on Lisp and FunctionalProgramming, pages 94{104, Boston, 1986.[HK84] P. Hudak and D. Kranz. A combinator-based compiler for a functionallanguage. In ACM Symposium on Principles of Programming Languages,pages 121{132, January 1984.[Joh85] T. Johnsson. Lambda lifting: transforming programs to recursive equations.In Proceedings 1985 Conference on Functional Programming Languages andComputer Architecture, Nancy, France, 1985.[Mee84] L. Meertens. Algorithmics: Towards programming as a mathematical activity.In J. W. de Bakker, et. al., editors,Mathematics and Computer Science, North-Holland, 1984.[Pey87] S. L. Peyton-Jones. Implementing Functional Languages using Graph Reduc-tion. Prentice-Hall, 1987.[SH82] M. R. Sleep and S. Holmstr�om. A short note concerning lazy reduction rulesof append. Software Practice and Experience, 12(11):1082{4, November 1982.[Tho86] S. Thompson. Laws in miranda. In ACM Symposium on Lisp and FunctionalProgramming, pages 1{12, August 1986.[Tur81] D. A. Turner. Recursion equations as a programming language. In J. Darling-ton, P. Henderson, and D. Turner, editors, Functional Programming and ItsApplications, Cambridge University Press, 1981.[Tur85] D. A. Turner. Miranda: A non-strict functional language with polymorphictypes. In Proceedings of the Conference on Functional Programming Languagesand Computer Architecture, Springer-Verlag, September 1985.[Wad87] P. L. Wadler. Compiling pattern matching; List comprehensions. In [Pey87].18


