
Minimal Classial Logi and Control OperatorsZena M. Ariola1 and Hugo Herbelin21 University of Oregon, Eugene, OR 97403, USAariola�s.uoregon.edu2 INRIA-Futurs, Par Club Orsay Universit�e, 91893 Orsay Cedex, FraneHugo.Herbelin�inria.frAbstrat. We give an analysis of various lassial axioms and harater-ize a notion of minimal lassial logi that enfores Peire's law withoutenforing Ex Falso Quodlibet. We show that a \natural" implementationof this logi is Parigot's lassial natural dedution. We then move onto the omputational side and emphasize that Parigot's �� orrespondsto minimal lassial logi. A ontinuation onstant must be added to�� to get full lassial logi. We then map the extended �� to a newtheory of ontrol, �-C�-top, whih extends Felleisen's redution theory.�-C�-top allows one to distinguish between aborting and throwing to aontinuation. It is also in orrespondene with the proofs of a re�nementof Prawitz's natural dedution.1 IntrodutionTraditionally, lassial logi is de�ned by extending intuitionisti logi with ei-ther Piere's law, exluded middle or the double negation law. We show thatthese laws are not equivalent and de�ne minimal lassial logi, whih validatesPeire's law but not Ex Falso Quodlibet (EFQ), i.e. the law ? ! A. The no-tion is interesting from a omputational point of view sine it orresponds toa alulus with a notion of ontrol (suh as all) whih however does notallow one to abort a omputation. We point out that losed typed terms ofParigot's �� [Par92℄ orrespond to tautologies of minimal lassial logi and notof (full) lassial logi. We de�ne a new alulus alled ��-top. Tautologies oflassial natural dedution orrespond to losed typed ��-top terms. We showthe orrespondene of ��-top with a new theory of ontrol, �-C�-top. The alu-lus �-C�-top is interesting in its own right, sine it extends Felleisen's theory ofontrol (�-C) [FH92℄. The study of �-C�-top leads to the development of a re�ne-ment of Prawitz natural dedution [Pra65℄ in whih one an distinguish betweenaborting a omputation and throwing to a ontinuation (aborting orresponds tothrowing to the top-level ontinuation). This logi provides a solution to the mis-math between the operational and proof-theoretial interpretation of Felleisen's�-C redution theory.More spei�ally, we devote Setion 2 to the de�nition of the various log-is onsidered in this paper. Setions 3 through 5 explain their omputationalounterparts. We disuss related work in Setion 6 and onlude in Setion 7.



�;A `M A Ax �;A `M B� `M A! B !i � `M A! B � `M A� `M B !eFig. 1. Minimal Natural Dedution2 Minimal, Intuitionisti and Classial LogiIn this paper, we restrit our attention to propositional logi. We assume a set offormulas, denoted by roman upperase letters A, B, et. , whih are built from anin�nite set of propositional atoms (ranged over by X;Y , et. ), a distinguishedformula ? denoting false, and impliation written !. We de�ne negation as:A � A! ?. A named formula is a pair of a formula and a name taken from anin�nite set of names. We write Ax, B�, et. for named formulas. A ontext is aset of named formulas3. We use Greek upperase letters � , �, et. for ontexts.We generally omit the names, unless there is an ambiguity. We will onsidersequents of the form � ` A, � `, � `;�, and � ` A;�. The formulas in �are the hypotheses and the formulas on the right-hand side of the symbol ` arethe onlusions. In eah ase, the intuitive meaning is that the onjuntion ofthe hypotheses implies the disjuntion of the onlusions. Espeially, a sequentwith no onlusion means the negation of the onjuntion of the hypotheses. Asinitially shown by Gentzen [Gen69℄ in his sequent alulus LK, lassial logi anbe obtained by onsidering sequents with several onlusions. Parigot extendedthis approah to natural dedution [Par92℄. We will see that using sequents withseveral onlusions allows for a uniform presentation of di�erent logis.In the rest of the paper, we suessively reall the de�nition of minimal,intuitionisti and lassial logi. We onsider only formulas built from ! and? and we de�ne :A as A ! ?. We state simple fats about various lassialaxioms from whih the de�nition of minimal lassial logi emerges. We usenatural dedution to formalize the di�erent logis, but we ould have used asequent alulus instead (then the Curry-Howard orrespondene would be withHerbelin's alulus [Her94℄). If S is a shemati axiom or rule, we denote byS; � ` A the fat that � ` A is derivable using an arbitrary number of instanesof S.Minimal Logi. Minimal natural dedution implements minimal logi [Joh36℄.It is de�ned by the set of (shemati) inferene rules given in Figure 1. In minimallogi, ? is neutral and has no spei� rule assoiated to it.Intuitionisti logi. Intuitionisti natural dedution is desribed in Figure 2.The rule ?e introdues a sequent with no onlusion, thus allowing the ap-pliation of a weakening rule named Ativate. This logi is stritly stronger3 If interested only in provability, one ould have de�ned ontexts just as sets offormulas (not as sets of named formulas). But to assign terms to proofs, one needsto be able to distinguish between di�erent ourrenes of the same formula. Thisis the role of names. Otherwise, e.g. the two distint normal proofs of A;A ` A(representable by the �-terms �x:�y:x and �x:�y:y) would have been identi�ed.



�;A `I A Ax � `I� `I A Ativate� `I ?� `I ?e �;A `I B� `I A! B !i � `I A! B � `I A� `I B !eFig. 2. Intuitionisti Natural Dedutionthan minimal logi4 but obviously equivalent to minimal logi extended withthe shemati axiom ?! A.Proposition 1. � `I A i� EFQ; � `M A, but 6`M EFQ.Classial axioms.We now give an analysis in minimal logi of di�erent axiomshemes5 leading to lassial logi.(:A! A)! A Weak Peire's law (PL?):A _A Exluded middle (EM)((A! B)! A)! A Peire's law (PL)(A! B) _A Generalized exluded-middle (GEM)::A! A Double negation law (DN)We lassify the axioms in three ategories: we all PL? and EM weak lassialaxioms, PL and GEM minimal lassial axioms, and DN a full lassial axiom.The main results of this setion are that none of the lassial axioms are indeedderivable in minimal logi and that the weak lassial axioms are weaker inminimal logi than the minimal lassial axioms, whih themselves are weakerthan DN. Together with EFQ, weak and minimal lassial axioms are howeverequivalent to DN.Proposition 2. In minimal logi, we have1. neither PL?, PL, EM, GEM nor DN is derivable.2. PL? and EM are equivalent (as shemes).3. GEM and PL are equivalent (as shemes).4. GEM and PL imply EM and PL? but not onversely.5. DN implies GEM and PL but not onversely.6. DN, EM+EFQ, GEM+EFQ, PL?+EFQ and PL+EFQ are all equivalent.The previous result suggests that there is spae for a lassial logi whihdoes validate Peire's law (or GEM) but not EFQ. Let us all this logi minimallassial logi. In ontrast, EM and PL? without EFQ are weaker than PL, andtheir addition to minimal logi seems uninteresting. We will investigate a weakerform of EFQ at the end of this setion.4 This holds for propositional or �rst-order logi but not for seond-order logi, sinethe seond-order formula 8X:X enjoys 8X:X ! A. However, the rule ?e is still notvalid for 8X:X.5 To reason about exluded-middle, we enrih the set of formulas with disjuntion andthe usual inferene rules.



�;A `MC A;� Ax � `MC ;A;�� `MC A;� Ativate � `MC A;A;�� `MC ;A;� Passivate�;A `MC B;�� `MC A! B;� !i � `MC A! B;� � `MC A;�� `MC B;� !eFig. 3. Minimal Classial Natural DedutionMinimal Classial Logi. An axiom-free implementation of minimal lassiallogi is atually Parigot's lassial natural dedution [Par92℄ (with no speial rulefor ?). The inferene rules are shown in Figure 3. Parigot's onvention is to havetwo kinds of sequents, one with only named formulas on the right, written � `;�,and one with exatly one unnamed formula on the right, written � ` A;�.We now state that minimal Parigot lassial natural dedution is equivalent tominimal logi extended with Peire's law, i.e. it implements minimal lassiallogi6.Proposition 3. � `MC A i� PL; � `M ANote that in minimal lassial logi, DN is not provable but `MC ::A ! A;?is. �;A `C A;� Ax � `C ;A;�� `C A;� Ativate � `C A;A;�� `C ;A;� Passivate� `C ?;�� `C ;� ?e �;A `C B;�� `C A! B;� !i � `C A! B;� � `C A;�� `C B;� !eFig. 4. Classial Natural DedutionClassial Logi. To obtain full lassial logi from minimal Parigot's lassialnatural dedution7 and thus derive DN, we expliitly add the elimination rulefor ?. The (full) Parigot's lassial natural dedution is desribed in Figure 4.From Propositions 1, 2 and 3, we diretly have:Proposition 4. � `C A i� PL; � `I A i� DN;� `M A i� EFQ; � `MC A.6 The proof proeeds by replaing eah instane of Ativate on A by as many instanesof PL as the number of Passivate applied on A7 Parigot's original formulation of lassial natural dedution [Par92℄ does not inludethe ?e-rule but gives diret rules for negation whih are easily derivable from theelimination rule of ?.



As expeted, full lassial logi is onservative over minimal lassial logifor formulas not mentioning the ? formula, as stated by the following:Proposition 5. If ? does not our in A then `C A i� `MC A .Remark 1. Minimal lassial natural dedution without the Passivate rule yieldsminimal logi, sine the ontext� is inert and an only remain empty in a deriva-tion for whih the end sequent has the form � ` A; (even the Ativate rule an-not be applied). Similarly, lassial natural dedution without the Passivate ruleyields intuitionisti logi. As a onsequene, minimal and intuitionisti naturaldedution an both be seen as subsystems of lassial natural dedution.�;A `RAA A Ax � `RAA ?� `RAA A Ativate �;:A `RAA ?� `RAA A RAA� `RAA ?� `RAA ? ?e �;A `RAA B� `RAA A! B !i � `RAA A! B � `RAA A� `RAA B !eFig. 5. Natural Dedution with RAAMinimal Prawitz Classial Logi. Prawitz de�nes lassial logi as minimallogi plus the Redutio Ad Absurdum rule (RAA) [Pra65℄: from �;:A ` ?dedue � ` A. This rule implies EFQ (as DN implies EFQ) and hene yieldsfull lassial logi. In this setion, we are interested in exploring the possibilityof de�ning minimal lassial logi from minimal logi and RAA but withoutderiving EFQ. Equivalently, we would like to devise a restrited version of EFQthat would allow one to prove PL from PL?. This alternative formulation of(minimal) lassial logi is obtained by distinguishing two di�erent notions of ?:? for ommands (written as ?) and ? for terms, see Figure 5, where :Astands for A ! ?. If the ontext � is the set of formulas A1; � � � ; An, then wewrite :� for the set :A1; � � � ;:An. Sequents are of the form �;:� ` A or�;:� ` ? and ? is not allowed to our in � , � and A. The minimal subsetdoes not ontain the ?e rule and is denoted by `MRAA.Proposition 6. Given a formula A and ontexts � and �, all with no our-renes of ?, we have (1) � `MC A;� i� �;:� `MRAA A; (2) � `C A;� i��;:� `RAA A.3 Computational Content of Minimal Logi + DNTo reason about Sheme programs, Felleisen et al. [FH92℄ introdued the �-Calulus. C provides abortive ontinuations: the invoation of a ontinuation re-instates the aptured ontext in plae of the urrent one. GriÆn was the �rstto observe that C is typable with ::A ! A. This extended the Curry-Howardisomorphism to lassial logi [Gri90℄.



Proposition 7 (GriÆn). A formula A is provable in lassial logi i� thereexists a losed �-C term M suh that ` M : A is provable, where ` M : A issimple typability in � alulus.Felleisen also developed the �-K alulus whih axiomatizes the all (i.e.all-with-urrent-ontinuation) ontrol operator. In ontrast to C, K leaves theurrent ontext intat as expliitly desribed in its usual enoding: K(M) =C(�k:k(Mk)). K is not as powerful as C [Fel90℄. In order to de�ne C (of typeDN) we need the abort primitive A (of type EFQ): C(M) = K(�k:A(Mk)). Analternative enoding K(M) = C(�k:k(M�x:A(kx))) obeys the same redutionrules and shows that K an be typed with PL. Following Proposition 3, we have:Proposition 8. A formula A is provable in minimal lassial logi i� thereexists a losed �-K term M suh that `M : A is provable.The all-by-value and all-by-name redution semantis of �-C are presentedin Figure 6. An important point to larify is the presene of the abort operationsin the right-hand sides of the redution rules. As far as evaluation is onerned,they are not neessary. They are important in order to obtain a satisfying or-respondene between the operational and redution semantis. For example, theterm C(�k:(k �x:x)N) evaluates to �x:x. However, the absene of the abort fromthe redution rules makes impossible to get rid of the ontrol ontext �f:f N .The abort steps signal that k is not a normal funtion but is an abortive on-tinuation. As we explain in Setion 5, these abort steps are di�erent from theabort used in de�ning C in terms of all: C(M) = all(�k:A(Mk)). Theaborts in the redution rules orrespond to throwing to a user de�ned ontinua-tion (i.e. a Passivate step), whereas the abort in the de�nition of C orrespondsto throwing to the prede�ned top-level ontinuation (i.e. a ?e step).�n-C 8>>><>>>:� : (�x:M)N ! M [x := N ℄CL : (CM)N ! C(�k:M(�f:A(k(fN))))Ctop : CM ! C(�k:M(�f:A(kf)))Cidem : C(�k:CM) ! C(�k:M(�x:A(x)))Celim : C(�k:kM) ! M k 62 FV (M)�v-CV ::= x j �x:M 8>>><>>>:� : (�x:M)V ! M [x := V ℄CL : (CM)N ! C(�k:M(�f:A(k(fN))))CR : V (CM) ! C(�k:M(�x:A(k(V x))))Ctop : CM ! C(�k:M(�f:A(kf)))Cidem : C(�k:CM) ! C(�k:M(�x:A(x)))Fig. 6. �n-C and �v-C redution rulesRemark 2. Parigot in [Par92℄ ritiized GriÆn's work beause the proposed C-typing did not �t the operational semantis. Atually, the only rule that breakssubjet redution is the top-level omputation rule (i.e. CM 7!M(�x:A(x)) (not



t :: x j �x:t j tt j ��:  ::= [�℄t j [top℄t�; Ax ` x : A;� Ax  : � `;A�; �� ` ��: : A;� Ativate � ` t : A;A�; �[�℄t : � `;A�; � Passivate� ` t : ?;�[top℄t : � `;� ?e � ` t :A! B;� � ` s : A;�� ` ts :B;� !e �;Ax ` t : B;�� ` �x:t : A! B;� !iFig. 7. �� and ��-top alulimentioned on Figure 6) whih fores a onversion from? to the top-level type. Tosolve the problem, instead of reduingM , GriÆn proposed to redue C(��:�M),where �M is of type ?. As detailed in the next setion, the lassial version ofParigot's �� requires a similar intervention (a free ontinuation onstant { thatwe all top { is needed).4 Computational Content of Classial Natural DedutionFigure 7 desribes Parigot's �� alulus [Par92℄ whih is a term assignmentfor his lassial natural dedution. The Passivate rule reads as follows: given aterm produing a value of type A, if � is a ontinuation variable waiting forsomething of type A (i.e. A ont), then by invoking the ontinuation variablewe leave the urrent ontext. Terms of the form [�℄t are alled ommands. TheAtivate rule reads as follows: given a ommand (i.e. no formula is foused)we an selet whih result to get by apturing the assoiated ontinuation. IfA� is not present in the preondition then the rule orresponds to weakening.Note that the rule ?e di�ers from Parigot's version. In [Par92℄, the eliminationrule for ? is interpreted by an unnamed term [℄t, where  is any ontinuationvariable (not always the same for every instane of the rule). In ontrast, therule is here systematially assoiated to the same primitive ontinuation variabletop onsidered as a onstant. This was also observed by Streiher et al. [SR98℄.Parigot would represent DN as the term �y:��:[℄(y�x:�Æ:[�℄x) whereas ourrepresentation is �y:��:[top℄(y�x:�Æ:[�℄x). We use ��-top to denote the wholealulus with ?e and �� to denote the alulus without ?e. The need for anextra ontinuation onstant to interpret the elimination of ? an be emphasizedby the following statement:Proposition 9. A formula A is provable in minimal lassial logi (resp. lassi-al logi) i� there exists a losed �� term (resp. ��-top term) t suh that ` t : Ais provable.We write ��n and ��v (resp. ��n-top and ��v-top) for the �� alulus(resp. ��-top alulus) equipped with all-by-name and all-by-value redu-tion rules, respetively. The redution rules are given in Figure 8 (substitutions[[�℄(ws)=[�℄w℄ and [[�℄(sw)=[�℄w℄ are de�ned as in [Par92℄). Note that the rules



��nand��n-top 8><>:Logial rule: (�x:t)s ! t[x := s℄Strutural rule: (��:t)s ! (��:t[[�℄(ws)=[�℄w℄)Renaming rule: ��:[�℄�:u ! ��:u[�=℄Simpli�ation rule: ��:[�℄u ! u � 62 FV (u)��vand��v-top(v ::= x j �x:t) 8>>><>>>:Logial rule: (�x:t)v ! t[x := v℄Left strutural rule: (��:t)s ! (��:t[[�℄(ws)=[�℄w℄)Right strutural rule: v(��:t) ! (��:t[[�℄(vw)=[�℄w℄)Renaming rule: ��:[�℄�:u ! ��:u[�=℄Simpli�ation rule: ��:[�℄u ! u � 62 FV (u)Fig. 8. Call-by-name and all-by-value �� and ��-top redution rulesare the same for the �� and ��-top aluli. ��n is Parigot's original alulus,while our presentation of ��v is similar to Ong and Stewart [OS97℄. Both setsof redution rules are well-typed and enjoy subjet redution.Instead of showing a orrespondene between the ��-top aluli and the �-Caluli, as in [dG94℄, we have searhed for an isomorphi alulus, whih turnsout to be interesting in its own right sine it extends the expressive power ofFelleisen �-C and provides a term assignment for Prawitz lassial logi.5 Computational Content of Prawitz Classial DedutionM ::= x jMM j �x:M j C�(�k:N) N ::= k0M j topM�; x : A ` x : A Ax � ` N : ?� ` C�(�q:N) : A Ativate �; k : :A ` N : ?� ` C�(�k:N) : A RAA� `M : ?� ` topM : ? ?e � `M :A! B � `M 0 :A� `MM 0 : B !e �; x : A `M : B� ` �x:M :A! B !iFig. 9. �-C� and �-C�-top aluliWe onsider a restrited form of �-C, alled �-C�-top. Its typing system isgiven in Figure 9. In �-C�-top, we distinguish between apturing a ontinuationand expressing where to go next. We assume the existene of a top-level ontinua-tion alled top. The ontrol operator C� an only be applied to a lambda abstra-tion. Moreover, the body of a C�-lambda abstration is always of the form kMfor a ontinuation variable k. In �-C�-top, K and C are expressed as C�(�k:k M)and C�(�k:top M), respetively. In �-C�-top, it is possible to distinguish betweenaborting a omputation and throwing to a ontinuation. For example, one wouldwrite C�(�d:top M) to abort the omputationM and C�(�d:k M) to invoke on-tinuation k with M (d not free in M). Variables and ontinuation variables are



kept distint. The translation from �-C to �-C�-top is expressed as follows: x = x,�x:M = �x:M , MN = M N , and CM = C�(�k:top(M (�x:C�(�Æ:kx)))). Theall-by-name and all-by-value �-C�-top redution rules are given in Figure 10.Note that one does not need the Ctop-rule, whose ation is to wrap up an applia-tion of a ontinuation with a throw operation. C�idem is a generalization of Cidem,whih is obtained by instantiating the ontinuation variable k0 to top (i.e. theontinuation �x:A(x)): C�(�k:top C(�q:M)) ! C�(�k:M [top=q℄). C�idem is sim-ilar to the rule proposed by Barbanera et al. [BB93℄: M(CN) ! N(�a:(Ma)),where M has type :A. Felleisen proposed in [FH92℄ the following additionalrules for �v-C: CE : E[CM ℄ ! C(�k:M(�x:A(k E[x℄))) (where E stands for aall-by-value evaluation ontext) and Celim : C(�k:k M) ! M , where k is notfree in M . The �rst rule is a generalization of CL, CR, and Ctop whih adds ex-pressive power to the alulus. The seond rule, whih also appears in [Hof95℄,leads to better simulation of evaluation. However, both rules destroy onueneof �v-C. Felleisen left unresolved the problem of �nding an extended theory thatwould inlude CE or Celim and still satisfy the lassial properties of redutiontheories. Celim is already present in our aluli and CE is derivable. Thus onemay onsider our aluli as a solution.Proposition 10. 1. �v-C�-top and �n-C�-top are onuent and strongly nor-malizing.2. Subjet redution: Given �v-C�-top (�n-C�-top) terms M;N , if � ` M : Aand M!!N then � ` N : A.Soundness and ompleteness of �v-C�-top with respet to �v-C are stated be-low, where ' denotes operational equivalene as de�ned in [FH92℄. A �v-C�-topterm M is translated into a �v-C term M by simply replaing C� with C and byerasing the referenes to the top ontinuation.Proposition 11. 1. Given �v-C terms M and N , if M!!N then M!!N .2. Given �v-C�-top terms M and N , if M!!N then M ' N .Relation between the ��-top and the �-C�-top aluli. The �-C�-top al-ulus has been designed in suh a way that it is in one-to-one orrespondenewith the ��-top alulus: �x:t = �x:t, ts = ts, ��:[℄t = C�(��:t). The orre-spondene extends to the redution rules: Figure 10 mathes Figure 8. This isexpressed by the following statement:Proposition 12. Let t; s be ��-top-terms, then t!��n-top s i� t!�n-C�-top sand t!��v-top s i� t!�v-C�-top s .Proposition 13. A formula A is provable in Prawitz lassial logi i� thereexists a losed �C�-top term M suh that `M : A is provable.We de�ne a subset of �-C�-top, whih does not allow one to abort a ompu-tation, i.e. terms of the form C�(�k:topM) are not allowed. We all this subset,whih is isomorphi to ��, �-C� .



�n-C�and�n-C�-top 8><>:� : (�x:M)N ! M [x := N ℄C�L : C�(�k:M)N ! C�(�k:M [k (PN)=k P ℄)C�idem : C�(�k:k0C�(�q:N)) ! C�(�k:N [k0=q℄)C�elim : C�(�k:kM) ! M k 62 FV (M)�v-C�and�v-C�-top(V ::= x j �x:M) 8>>><>>>:� : (�x:M)V ! M [x := V ℄C�elim : C�(�k:kM) ! M k 62 FV (M)C�L : C�(�k:M)N ! C�(�k:M [k (PN)=k P ℄)C�R : V C�(�k:M) ! C�(�k:M [k (V P )=k P ℄)C�idem : C�(�k:k0C�(�q:N)) ! C�(�k:N [k0=q℄)Fig. 10. �-C� and �-C�-top redution rulesProposition 14. A formula A is provable in minimal Prawitz lassial logi i�there exists a losed �-C� term M suh that `M : A is provable.Remark 3. The �-C� term representing PL is �y:C�(�k:k(y(�x:C�(�q:kx)))),whih an be written in ML as :- fun PL y = all (fn k => (y (fn x => throw k x)));val PL = fn : (('a -> 'b) -> 'a) -> 'aNotie how the throw onstrut orresponds to a weakening step. By Proposi-tions 6, 8 and 14, �-C� is equivalent to �-K, assuming all is typed with PL,say allpl. However, it might not be at all obvious how to use a ontinua-tion in di�erent ontexts, sine we do not have weakening available. Consider forexample the following ML term (with all and throw typable as in [DHM91℄):- all (fn k => if (throw k 1) then 7 else (throw k 99));We use the ontinuation in both boolean and integer ontexts. How an we writethe above expression without making use of weakening or throw? The proof ofProposition 3 gives the answer:- all_pl (fn k => all_pl (fn q => if q 1 then 7 else k 99));We de�ne a subset of �-C�, alled �-A�, in whih expressions of the formC�(�d:qM) are only allowed when d is not free in M and q is top, that is,we only allow throwing to the top-level ontinuation.Proposition 15. A formula A is provable in intuitionisti logi i� there existsa losed �-A� term M suh that `I M : A is provable.6 Related WorkThe relation between Parigot �� and �-C has been investigated by de Groote[dG94℄, who only onsiders the �� strutural rule but not renaming and sim-pli�ation. As for �-C, he only onsiders CL and Ctop. However, these rules are



not the original rules of Felleisen, sine they do not ontain abort. For example,Ctop is CM ! C(�k:M(�f:kf)) whih is in fat a redution rule for �-F [Fel88℄.This work fails in relating �� to �-C in an untyped framework, sine it does notexpress ontinuations as abortive funtions. It says in fat that F behaves as Cin the simply-typed ase. Ong and Stewart [OS97℄ also do not onsider the abortstep in Felleisen's rules. This ould be justi�ed beause in a simply-typed settingthese steps are of type ? ! ?. Therefore, it seems we have a mismath. Whilethe aborts are essential in the redution semantis, they are irrelevant in theorresponding proof. We are the �rst to provide a proof theoreti justi�ationfor those abort steps, they orrespond to the step ? ! ?. In addition to Ongand Stewart, Py [Py98℄ and Bierman [Bie98℄ have pointed out the peuliarity ofhaving an open �� term orresponding to a tautology. Their solution is to abolishthe distintion between ommands and terms. A ommand is a term returning?. The body of a �-abstration is not restrited to a ommand, but an be of theform ��:t, where t is of type ?. Thus, one has �y:��:(y �x:[�℄x) : ::A ! A.We would then represent the term C(�k:(kI)x) (where I is �x:x) as ��:(�I)x.Whereas C(�k:kIx) would redue to C(�k:kI) aording to �n-C and to I in��n-top, it would be in normal form in their alulus. Thus, their work in re-lating �� to �-C only applies to typed �-C, whereas our work also applies tothe untyped ase. Crolard [Cro99℄ studied the relation between Parigot's ��and a alulus with a ath and throw mehanism. He showed that ontrationorresponds to the ath operator (i.e. ��:[�℄t = ath � t) and weakeningorresponds to the throw operator (i.e. �Æ:[�℄t = throw � t for Æ not free in t).He only onsiders terms of the form ��:[�℄t and ��:[�℄t, where � does not ourfree in t. This property is not preserved by the renaming rule, therefore redutionis restrited. We do not require suh restritions on redution. We an simulateOng and Stewart's �� and the Crolard alulus via this simple translation: ��:tbeomes ��:[top℄t and [�℄t beomes �Æ:[�℄t, where Æ is not free in t.7 Conlusions
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Our analysis of the logial strength of EFQ, PL (or EM) and DN has lednaturally to a restrited form of lassial logi, alled minimal lassial logi.Depending on whether EFQ, PL or both are assumed in minimal logi, we getintuitionisti, minimal lassial or lassial logi. Depending on whether we ad-mit the Passivate (RAA8) and ?e (?e) in full lassial natural dedution (on8 with restritions on the use of ?
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