Minimal Classical Logic and Control Operators

Zena M. Ariola' and Hugo Herbelin?

! University of Oregon, Eugene, OR 97403, USA
ariola@cs.uoregon.edu
2 INRIA-Futurs, Parc Club Orsay Université, 91893 Orsay Cedex, France
Hugo.Herbelin@inria.fr

Abstract. We give an analysis of various classical axioms and character-
ize a notion of minimal classical logic that enforces Peirce’s law without
enforcing Ex Falso Quodlibet. We show that a “natural” implementation
of this logic is Parigot’s classical natural deduction. We then move on
to the computational side and emphasize that Parigot’s Ay corresponds
to minimal classical logic. A continuation constant must be added to
Ap to get full classical logic. We then map the extended Ap to a new
theory of control, A-C™ -top, which extends Felleisen’s reduction theory.
A-C™ -top allows one to distinguish between aborting and throwing to a
continuation. It is also in correspondence with the proofs of a refinement
of Prawitz’s natural deduction.

1 Introduction

Traditionally, classical logic is defined by extending intuitionistic logic with ei-
ther Pierce’s law, excluded middle or the double negation law. We show that
these laws are not equivalent and define minimal classical logic, which validates
Peirce’s law but not Ex Falso Quodlibet (EFQ), i.e. the law L — A. The no-
tion is interesting from a computational point of view since it corresponds to
a calculus with a notion of control (such as callcc) which however does not
allow one to abort a computation. We point out that closed typed terms of
Parigot’s Au [Par92] correspond to tautologies of minimal classical logic and not
of (full) classical logic. We define a new calculus called Au-top. Tautologies of
classical natural deduction correspond to closed typed Au-top terms. We show
the correspondence of Au-top with a new theory of control, \-C~-top. The calcu-
lus A-C~-top is interesting in its own right, since it extends Felleisen’s theory of
control (A-C) [FH92]. The study of A\-C~-top leads to the development of a refine-
ment of Prawitz natural deduction [Pra65] in which one can distinguish between
aborting a computation and throwing to a continuation (aborting corresponds to
throwing to the top-level continuation). This logic provides a solution to the mis-
match between the operational and proof-theoretical interpretation of Felleisen’s
A-C reduction theory.

More specifically, we devote Section 2 to the definition of the various log-
ics considered in this paper. Sections 3 through 5 explain their computational
counterparts. We discuss related work in Section 6 and conclude in Section 7.

A.’IZ EEE————— —e

I'NAby A r-yvA—B I'-uw B

Fig. 1. Minimal Natural Deduction

2 Minimal, Intuitionistic and Classical Logic

In this paper, we restrict our attention to propositional logic. We assume a set, of
formulas, denoted by roman uppercase letters A, B, etc. , which are built from an
infinite set of propositional atoms (ranged over by X, Y, etc.), a distinguished
formula L denoting false, and implication written —. We define negation as
-A=A— L. A named formula is a pair of a formula and a name taken from an
infinite set of names. We write A*, B¢, etc. for named formulas. A contezt is a
set of named formulas®. We use Greek uppercase letters I', A, etc. for contexts.
We generally omit the names, unless there is an ambiguity. We will consider
sequents of the form I' - A, ' -, I' H; A, and I' + A; A. The formulas in I
are the hypotheses and the formulas on the right-hand side of the symbol - are
the conclusions. In each case, the intuitive meaning is that the conjunction of
the hypotheses implies the disjunction of the conclusions. Especially, a sequent
with no conclusion means the negation of the conjunction of the hypotheses. As
initially shown by Gentzen [Gen69] in his sequent calculus LK, classical logic can
be obtained by considering sequents with several conclusions. Parigot extended
this approach to natural deduction [Par92]. We will see that using sequents with
several conclusions allows for a uniform presentation of different logics.

In the rest of the paper, we successively recall the definition of minimal,
intuitionistic and classical logic. We consider only formulas built from — and
1 and we define =4 as A — L. We state simple facts about various classical
axioms from which the definition of minimal classical logic emerges. We use
natural deduction to formalize the different logics, but we could have used a
sequent calculus instead (then the Curry-Howard correspondence would be with
Herbelin’s calculus [Her94]). If S is a schematic axiom or rule, we denote by
S, '+ A the fact that I' F A is derivable using an arbitrary number of instances
of S.

Minimal Logic. Minimal natural deduction implements minimal logic [Joh36].
It is defined by the set of (schematic) inference rules given in Figure 1. In minimal
logic, L is neutral and has no specific rule associated to it.

Intuitionistic logic. Intuitionistic natural deduction is described in Figure 2.
The rule L. introduces a sequent with no conclusion, thus allowing the ap-
plication of a weakening rule named Activate. This logic is strictly stronger

3 If interested only in provability, one could have defined contexts just as sets of
formulas (not as sets of named formulas). But to assign terms to proofs, one needs
to be able to distinguish between different occurrences of the same formula. This
is the role of names. Otherwise, e.g. the two distinct normal proofs of 4, A - A
(representable by the A-terms Az.Ay.z and Az.\y.y) would have been identified.

I'k;
- Az Activate
F,AI—[A I_‘l_IA
Ik L I''A+; B I'cktA—B TI'kH A
J—E R —e
I'k; 't A— B '+ B

Fig. 2. Intuitionistic Natural Deduction

than minimal logic* but obviously equivalent to minimal logic extended with
the schematic axiom L — A.

Proposition 1. I'F; A iff EFQ, ' by A, but Yy EFQ.

Classical axioms. We now give an analysis in minimal logic of different axiom
schemes® leading to classical logic.

(rA—>A)—> A Weak Peirce’s law (PL)

—AV A Excluded middle (EM)
(A=-B)—-A) - A Peirce’s law (PL)

(A—>B)VA Generalized excluded-middle (GEM)
-—A— A Double negation law (DN)

We classify the axioms in three categories: we call PL ;| and EM weak classical
azxioms, PL and GEM minimal classical axioms, and DN a full classical aziom.
The main results of this section are that none of the classical axioms are indeed
derivable in minimal logic and that the weak classical axioms are weaker in
minimal logic than the minimal classical axioms, which themselves are weaker
than DN. Together with EFQ, weak and minimal classical axioms are however
equivalent to DN.

Proposition 2. In minimal logic, we have

. neither PL, , PL, EM, GEM nor DN is derivable.

. PL, and EM are equivalent (as schemes).

GEM and PL are equivalent (as schemes).

GEM and PL imply EM and PL, but not conversely.

DN implies GEM and PL but not conversely.

. DN, EM+EFQ, GEM+EFQ, PL, +EFQ and PL+EFQ are all equivalent.

S G te do N

The previous result suggests that there is space for a classical logic which
does validate Peirce’s law (or GEM) but not EFQ. Let us call this logic minimal
classical logic. In contrast, EM and PL; without EFQ are weaker than PL, and
their addition to minimal logic seems uninteresting. We will investigate a weaker
form of EFQ at the end of this section.

* This holds for propositional or first-order logic but not for second-order logic, since
the second-order formula VX.X enjoys VX.X — A. However, the rule L. is still not
valid for VX.X.

® To reason about excluded-middle, we enrich the set of formulas with disjunction and
the usual inference rules.

'ty A A I'kFuc A;A A
- Az _ Activate — Passivate
Abye A A I'kFuc A A I'tye; A A
I''Abtye B A I'Fye A— B A I'kFue A; A
—i —e
I'tye A= By A I'tye B A

Fig. 3. Minimal Classical Natural Deduction

Minimal Classical Logic. An axiom-free implementation of minimal classical
logic is actually Parigot’s classical natural deduction [Par92] (with no special rule
for 1). The inference rules are shown in Figure 3. Parigot’s convention is to have
two kinds of sequents, one with only named formulas on the right, written I" F; A,
and one with exactly one unnamed formula on the right, written I" - A; A.
We now state that minimal Parigot classical natural deduction is equivalent to
minimal logic extended with Peirce’s law, i.e. it implements minimal classical
logic®.

Proposition 3. I'Fyc A iff PL, Ty A

Note that in minimal classical logic, DN is not provable but k¢ =——A4 — A; L
is.

I'ka; A A I'kc AJA A
N V — Activate _ Passivate
INAkc A A 'Fc A A 'kFe;AA
Fl—(;J_;A F,Al—cB;A F"()A—)B;A Fl—cA;A
S T N
T'ke A I'ec A— B; A I'ke B; A

Fig. 4. Classical Natural Deduction

Classical Logic. To obtain full classical logic from minimal Parigot’s classical
natural deduction” and thus derive DN, we explicitly add the elimination rule
for L. The (full) Parigot’s classical natural deduction is described in Figure 4.
From Propositions 1, 2 and 3, we directly have:

Proposition 4. I'tc A iff PL, I’ A iff DN, I" -y A Giff EFQ, T F e A.

% The proof proceeds by replacing each instance of Activate on A by as many instances
of PL as the number of Passivate applied on A

" Parigot’s original formulation of classical natural deduction [Par92] does not include
the L.-rule but gives direct rules for negation which are easily derivable from the
elimination rule of L.

As expected, full classical logic is conservative over minimal classical logic
for formulas not mentioning the 1 formula, as stated by the following;:

Proposition 5. If 1 does not occur in A then Fc A iff Fye A .

Remark 1. Minimal classical natural deduction without the Passivate rule yields
minimal logic, since the context A is inert and can only remain empty in a deriva-
tion for which the end sequent has the form I' + A; (even the Activate rule can-
not be applied). Similarly, classical natural deduction without the Passivate rule
yields intuitionistic logic. As a consequence, minimal and intuitionistic natural
deduction can both be seen as subsystems of classical natural deduction.

I'FRraa L€ I''—-:Atpraa L€
- Az _ Activate __ RAA,
INAFgraa A I'Fran A I'Frana A
I'Fgaa L I''AFRraa B I'traa A— B I'btraa A
_— Ls _— —)i _>e
I_'l—RAA 1° Fl—RAA A— B Fl—RAA B

Fig. 5. Natural Deduction with RAA,

Minimal Prawitz Classical Logic. Prawitz defines classical logic as minimal
logic plus the Reductio Ad Absurdum rule (RAA) [Pra65]: from I',-A F L
deduce I' + A. This rule implies EFQ (as DN implies EFQ) and hence yields
full classical logic. In this section, we are interested in exploring the possibility
of defining minimal classical logic from minimal logic and RAA but without
deriving EFQ. Equivalently, we would like to devise a restricted version of EFQ
that would allow one to prove PL from PL,. This alternative formulation of
(minimal) classical logic is obtained by distinguishing two different notions of L:
1 for commands (written as 1¢) and L for terms, see Figure 5, where —.A
stands for A — L°. If the context A is the set of formulas Ay, .-, A,, then we
write =.A for the set = Ay, ---,—-.A,. Sequents are of the form I',-.AF A or
I''-.AF 1.and L°is not allowed to occur in I', A and A. The minimal subset
does not contain the L¢ rule and is denoted by Fayrraa.

Proposition 6. Given a formula A and contexts I' and A, all with no occur-
rences of L€, we have (1) I' bpre A A iff Ty = Abpraa A; (2) T'Ee A A Gff

3 Computational Content of Minimal Logic + DN

To reason about Scheme programs, Felleisen et al. [FH92] introduced the A-C
calculus. C provides abortive continuations: the invocation of a continuation re-
instates the captured context in place of the current one. Griffin was the first
to observe that C is typable with -=—A — A. This extended the Curry-Howard
isomorphism to classical logic [Gri90].

Proposition 7 (Griffin). A formula A is provable in classical logic iff there
exists a closed \-C term M such that = M : A is provable, where & M : A is
simple typability in X calculus.

Felleisen also developed the A-KC calculus which axiomatizes the callcc (i.e.
call-with-current-continuation) control operator. In contrast to C, K leaves the
current context intact as explicitly described in its usual encoding: K(M) =
C(Ak.k(ME)). K is not as powerful as C [Fel90]. In order to define C (of type
DN) we need the abort primitive A (of type EFQ): C(M) = K(\k.A(ME)). An
alternative encoding K(M) = C(Ak.k(MAx.A(kx))) obeys the same reduction
rules and shows that X can be typed with PL. Following Proposition 3, we have:

Proposition 8. A formula A is provable in minimal classical logic iff there
exists a closed A\-K term M such that & M : A is provable.

The call-by-value and call-by-name reduction semantics of A\-C are presented
in Figure 6. An important point to clarify is the presence of the abort operations
in the right-hand sides of the reduction rules. As far as evaluation is concerned,
they are not necessary. They are important in order to obtain a satisfying cor-
respondence between the operational and reduction semantics. For example, the
term C(Ak.(k Az.z)N) evaluates to Az.z. However, the absence of the abort from
the reduction rules makes impossible to get rid of the control context Af.f N.
The abort steps signal that k is not a normal function but is an abortive con-
tinuation. As we explain in Section 5, these abort steps are different from the
abort used in defining C in terms of callcc: C(M) = callcc(Ak.A(Mk)). The
aborts in the reduction rules correspond to throwing to a user defined continua-
tion (i.e. a Passivate step), whereas the abort in the definition of C corresponds
to throwing to the predefined top-level continuation (i.e. a L, step).

(8: (\@.M)N - Mz = N]|
C:i (CM)N — CORMOAFAR(FN)))
MnC Ciop: CM = CORMOALA(KS)))

Cidem : C(AE.CM) — C(Ak.M (A\z.A(x)))
Cotim : COREM) = M k¢ FV(M)

(3 : Az.M)V — Mz :=V]
Cr: (CM)N — CAk.MOfAK(fN))))
Cr: V(€M) —CAe.M(Az.A(k(Vz))))
Ciop: CM — COAE.-M(Af.AKF)))
Cidem : C(A.CM) — C(Ak.M (Az.A(x)))

A-C
Vi=z| e M

Fig. 6. \,-C and \,-C reduction rules

Remark 2. Parigot in [Par92] criticized Griffin’s work because the proposed C-
typing did not fit the operational semantics. Actually, the only rule that breaks
subject reduction is the top-level computation rule (i.e. CM — M (Az.A(x)) (not

tex|Axt|tt| pac c == [B]t | [top]t
0 Az c¢:THA"A Aeti FI—t:A;A",AP vt
A"z A A I'kpac: A A ctivate [a]t : ' A% A assrvate

I't:A—-B;A I'kFs:AA I'A*Ft:B; A
I'Ht: LA | e s
[toplt : I+, A ~° I'ts:B; A I'FXxt:A— B A

Fig. 7. Ap and Ap-top calculi

mentioned on Figure 6) which forces a conversion from L to the top-level type. To
solve the problem, instead of reducing M, Griffin proposed to reduce C'(Aa.aM),
where aM is of type L. As detailed in the next section, the classical version of
Parigot’s Au requires a similar intervention (a free continuation constant that
we call top is needed).

4 Computational Content of Classical Natural Deduction

Figure 7 describes Parigot’s Ap calculus [Par92] which is a term assignment
for his classical natural deduction. The Passivate rule reads as follows: given a
term producing a value of type A, if « is a continuation variable waiting for
something of type A (i.e. A cont), then by invoking the continuation variable
we leave the current context. Terms of the form [a]t are called commands. The
Activate rule reads as follows: given a command (i.e. no formula is focused)
we can select which result to get by capturing the associated continuation. If
A% is not present in the precondition then the rule corresponds to weakening.
Note that the rule L, differs from Parigot’s version. In [Par92], the elimination
rule for L is interpreted by an unnamed term [v]¢, where v is any continuation
variable (not always the same for every instance of the rule). In contrast, the
rule is here systematically associated to the same primitive continuation variable
top considered as a constant. This was also observed by Streicher et al. [SR98].
Parigot would represent DN as the term Ay.uc.[v](yAz.ud.Ja]z) whereas our
representation is Ay.ua.[top](yAz.pd.[a)z). We use Ap-top to denote the whole
calculus with L, and Ay to denote the calculus without L.. The need for an
extra continuation constant to interpret the elimination of L can be emphasized

by the following statement:

Proposition 9. A formula A is provable in minimal classical logic (resp. classi-
cal logic) iff there exists a closed Au term (resp. Au-top term) t such that -t : A
is provable.

We write A, and Ap, (resp. Aup-top and Au,-top) for the Ap calculus
(resp. Au-top calculus) equipped with call-by-name and call-by-value reduc-
tion rules, respectively. The reduction rules are given in Figure 8 (substitutions
[[o](ws)/[a]w] and [[e](sw)/[a]w] are defined as in [Par92]). Note that the rules

\ Logical rule: (Az.t)s — t[z =]
Hn Structural rule: (pa.t)s = (pa.t[[a](ws)/[a]w])
and -
ot Renaming rule: poBlpy.u — poulB/7]
Hn-toP Simplification rule: pa.faJu — u ad FV(u)
\ Logical rule: (Az.t)v = t[z = v]
arlfgl Left structural rule: (pa.t)s = (pot[a](ws)/[a]w])
Right structural rule: v(uo.t) = (pa.t[a](vw)/[a]w])
Aby-top .
(0= 3 | Aa.t) Renaming rule: pa[Blpy.u = pa.u[B/7]
R Simplification rule: pa.joju — u a & FV(u)

Fig. 8. Call-by-name and call-by-value Ay and Ap-top reduction rules

are the same for the Ay and Ap-top calculi. Au, is Parigot’s original calculus,
while our presentation of Ay, is similar to Ong and Stewart [OS97]. Both sets
of reduction rules are well-typed and enjoy subject reduction.

Instead of showing a correspondence between the Au-top calculi and the A-C
calculi, as in [dG94], we have searched for an isomorphic calculus, which turns
out to be interesting in its own right since it extends the expressive power of
Felleisen A-C and provides a term assignment for Prawitz classical logic.

5 Computational Content of Prawitz Classical Deduction

Mi=x|MM|Xx.M|C (Ak.N) N:u=FkM|topM

. lc rk:-,AFN:1°
x % Activate — RAA,
I'-C (A\g.N): A I'-C~(MAk.N): A

l_',.T,:AI—.T:AA

I'-M: 1 . 'M:A—-B I'EM:A >, Ix: A+ M:B
I'-topM : 1°¢ ¢ I'-MM' :B - I'FXx.M:A—B

i

Fig. 9. A-C~ and A-C™ -top calculi

We consider a restricted form of A-C, called A-C~-top. Its typing system is
given in Figure 9. In A-C ™ -top, we distinguish between capturing a continuation
and expressing where to go next. We assume the existence of a top-level continua-
tion called top. The control operator C~ can only be applied to a lambda abstrac-
tion. Moreover, the body of a C~-lambda abstraction is always of the form kM
for a continuation variable k. In A-C~-top, K and C are expressed as C~ (\k.k M)
and C~ (A\k.top M), respectively. In A\-C~-top, it is possible to distinguish between
aborting a computation and throwing to a continuation. For example, one would
write C~ (Ad.top M) to abort the computation M and C~(A\d.k M) to invoke con-
tinuation k with M (d not free in M). Variables and continuation variables are

kept distinct. The translation from A-C to A-C™ -top is expressed as follows

T
Ar.M = Ax.M, MN = M N, and CM = C~ (Mk.top(M (Az.C~ (\6.kx)))). The
call-by-name and call-by-value A-C~-top reduction rules are given in Figure 10.
Note that one does not need the C;,,-rule, whose action is to wrap up an applica-
tion of a continuation with a throw operation. C,,,,. is a generalization of C;qem,
which is obtained by instantiating the continuation variable k' to top (i.e. the
continuation Az.A(z)): C~ (Ak.top C(Ag.M)) — C~(Ak.M[top/q]). C,,.,, is sim-
ilar to the rule proposed by Barbanera et al. [BB93]: M(CN) — N(Aa.(Ma)),
where M has type —A. Felleisen proposed in [FH92] the following additional
rules for A\,-C: Cp : E[CM] — C(Ak.M(A\z.A(k E[z]))) (where E stands for a
call-by-value evaluation context) and Cejjm : C(Ak.k M) — M, where k is not
free in M. The first rule is a generalization of Cr,, Cgr, and Ct,, which adds ex-
pressive power to the calculus. The second rule, which also appears in [Hof95],
leads to better simulation of evaluation. However, both rules destroy confluence
of \,-C. Felleisen left unresolved the problem of finding an extended theory that
would include Cg or Ceim and still satisfy the classical properties of reduction
theories. Cepim is already present in our calculi and Cg is derivable. Thus one
may consider our calculi as a solution.

:,’L‘,

Proposition 10. 1. \,-C~ -top and \,-C~-top are confluent and strongly nor-
malizing.

2. Subject reduction: Given \,-C~ -top (A,-C~-top) terms M, N, if '+ M : A
and M—»N then I'F N : A.

Soundness and completeness of A,-C ™ -top with respect to A\,-C are stated be-
low, where ~, denotes operational equivalence as defined in [FH92]. A \,-C~-top
term M is translated into a A,-C term M by simply replacing C~ with C and by
erasing the references to the top continuation.

Proposition 11. 1. Given A,-C terms M and N, if M—N then M—sN.
2. Given \,-C~ -top terms M and N, if M—»N then M ~. N.

Relation between the A\u-top and the A\-C~-top calculi. The A-C~-top cal-
culus has been designed in such a way that it is in one-to-one correspondence
with the Au-top calculus: Az.t = Az, Is = 15, pa.[y]t = C~(Aa.yt). The corre-
spondence extends to the reduction rules: Figure 10 matches Figure 8. This is
expressed by the following statement:

Proposition 12. Let t,s be Au-top-terms, then t =, -top 8 iff t =5, -c—-1op 3
and t — Ay -top S Zﬁt X, -C—-top s .

Proposition 13. A formula A is provable in Prawitz classical logic iff there
ezists a closed AC~ -top term M such that - M : A is provable.

We define a subset of \-C~-top, which does not allow one to abort a compu-
tation, i.e. terms of the form C~(Ak.topM) are not allowed. We call this subset,
which is isomorphic to Ay, A-C™ .

e B: (Ax.M)N — M|z := N]
”'d C;: C (M.M)N — C~(MAk.M[k (PN)/k P))
\ aclit Crverr : C- (ALK C™ (Ag.N)) = C~ (Ak.N[K' /q))
e Thop it C(AREM) — M k¢ FV(M)
O B (Az. M)V — Mz :=V]
od Corim t C~(Ak.EM) - M k¢ FV(M)
N c,: C (Me.M)N — ¢~ (Ak.M[k (PN)/k P])
v o e ve o - C~(Me.M[k (VP)/k P])
(V= | Ae.M) Cover - C-(AEE'C™ (Aq.N)) = C~ (AK.N[K' /q])

Fig.10. A-C™ and A-C™ -top reduction rules

Proposition 14. A formula A is provable in minimal Prawitz classical logic iff
there exists a closed \-C~ term M such that & M : A is provable.

Remark 3. The A-C~ term representing PL is Ay.C~(Ak.k(y(Az.C~ (Aq.kx))))
which can be written in ML as :

- fun PL y = callcc (fn k => (y (fn x => throw k x)));
val PL = fn : ((’a -> ’b) -> ’a) -> ’a

Notice how the throw construct corresponds to a weakening step. By Proposi-
tions 6, 8 and 14, A-C~ is equivalent to A-X, assuming callcc is typed with PL,
say callccp. However, it might not be at all obvious how to use a continua-
tion in different contexts, since we do not have weakening available. Consider for
example the following ML term (with callcc and throw typable as in [DHM91]):

- callcc (fn k => if (throw k 1) then 7 else (throw k 99));

We use the continuation in both boolean and integer contexts. How can we write
the above expression without making use of weakening or throw? The proof of
Proposition 3 gives the answer:

- callcc_pl (fn k => callcc_pl (fn q => if q 1 then 7 else k 99));

We define a subset of A\-C~, called A\-A~, in which expressions of the form
C~(Ad.qM) are only allowed when d is not free in M and ¢ is top, that is,
we only allow throwing to the top-level continuation.

Proposition 15. A formula A is provable in intuitionistic logic iff there exists
a closed \-A~ term M such that -7 M : A is provable.

6 Related Work

The relation between Parigot Au and A-C has been investigated by de Groote
[dG94], who only considers the Au structural rule but not renaming and sim-
plification. As for A-C, he only considers C;, and C;,,. However, these rules are

not the original rules of Felleisen, since they do not contain abort. For example,
Ctop 18 CM — C(Ak.M (Af.kf)) which is in fact a reduction rule for A-F [Fel88].
This work fails in relating Ay to A-C in an untyped framework, since it does not
express continuations as abortive functions. It says in fact that F behaves as C
in the simply-typed case. Ong and Stewart [0S97] also do not consider the abort
step in Felleisen’s rules. This could be justified because in a simply-typed setting
these steps are of type L — L. Therefore, it seems we have a mismatch. While
the aborts are essential in the reduction semantics, they are irrelevant in the
corresponding proof. We are the first to provide a proof theoretic justification
for those abort steps, they correspond to the step L — L.. In addition to Ong
and Stewart, Py [Py98] and Bierman [Bie98] have pointed out the peculiarity of
having an open Ay term corresponding to a tautology. Their solution is to abolish
the distinction between commands and terms. A command is a term returning
L. The body of a p-abstraction is not restricted to a command, but can be of the
form pa.t, where t is of type L. Thus, one has \y.pa.(y Az.[a]z) : =——A — A.
We would then represent the term C(Ak.(kI)z) (where I is Az.z) as pa.(al)z.
Whereas C(Ak.kIz) would reduce to C(Ak.kI) according to A,-C and to I in
Ain-top, it would be in normal form in their calculus. Thus, their work in re-
lating Ap to A-C only applies to typed A-C, whereas our work also applies to
the untyped case. Crolard [Cro99] studied the relation between Parigot’s Au
and a calculus with a catch and throw mechanism. He showed that contraction
corresponds to the catch operator (i.e. pa.[a]t = catch a t) and weakening
corresponds to the throw operator (i.e. ud.[a]t = throw « t for § not free in t).
He only considers terms of the form pa.[a]t and pB.[a]t, where 8 does not occur
free in ¢. This property is not preserved by the renaming rule, therefore reduction
is restricted. We do not require such restrictions on reduction. We can simulate
Ong and Stewart’s Ay and the Crolard calculus via this simple translation: pa.t
becomes pa.[top]t and [G]t becomes pd.[S]t, where 4 is not free in ¢.

7 Conclusions

LS EFQe FALS, RAA: F

A-AT A-C ™ -top 7
| &, |
| N ' 'é’
At u-top =
op | T ! Fc
| |
| |
> N x-c™ L S S RAA: Fpp
DA &
, @,\Q
X Xjp oo . Mo TMC

Our analysis of the logical strength of EFQ, PL (or EM) and DN has led
naturally to a restricted form of classical logic, called minimal classical logic.
Depending on whether EFQ, PL or both are assumed in minimal logic, we get
intuitionistic, minimal classical or classical logic. Depending on whether we ad-
mit the Passivate (RAA8) and L. (L) in full classical natural deduction (on

e

8 with restrictions on the use of 1.

top of minimal natural deduction), we get the correspondences with the A-calculi
considered in the paper, as shown above’. Among these systems, A\-C -top is a
confluent extension of Felleisen’s theory of control.

Acknowledgements. We thank Matthias Felleisen for the numerous discus-
sions about his theory of control. Miley Semmelroth helped us to improve the
presentation of the paper. We also thank the anonymous referees for their com-
ments. The first author has been supported by NSF grant 0204389.

References

[BB93] F. Barbanera and S. Berardi. Extracting constructive content from classical
logic via control-like reductions. In TLCA’93, LNCS 66/, pages 45—-59. 1993.

[Bie98] G.M. Bierman. A computational interpretation of the lambda-mu calculus.
In MFCS’98, LNCS 1450, pages 336 345, 1998.

[Cro99] T. Crolard. A confluent lambda-calculus with a catch/throw mechanism.
Journal of Functional Programming, 9(6):625 647, 1999.

[dG94] P. de Groote. On the relation between the lambda-mu calculus and the

syntactic theory of sequential control. In LPAR’94, pages 31 43. 1994.

[DHMO91] B. F. Duba, R. Harper, and D. MacQueen. Typing first-class continuations

[Fel88]
[Fel90]

[FH92]

[Gen69]
[Gri90]

[Her94]
[Hof95]
[Joh36]
[0S97]

[Par92]
[Pra65]

[Py98]
[SR98]

in ML. In POPL’91, pages 163 173, 1991.

M. Felleisen. The theory of practice of first-class prompt. In POPL ’88, pages
180 190, 1988.

M. Felleisen. On the expressive power of programming languages. In ESOP
90, LNCS 432, pages 134 151. 1990.

M. Felleisen and R. Hieb. A revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2):235 271,
1992.

G. Gentzen. Investigations into logical deduction. In M.E. Szabo, editor,
Collected papers of Gerhard Gentzen, pages 68 131. North-Holland, 1969.
T. G. Griffin. The formulae-as-types notion of control. In POPL’90, pages
47 57, 1990.

H. Herbelin. A lambda-calculus structure isomorphic to Gentzen-style se-
quent calculus structure. In CSL’94, LNCS 933, 1994.

M. Hofmann. Sound and complete axiomatization of call-by-value control
operators. Mathematical Structures in Computer Science, 5:461 482, 1995.
I. Johansson. Der Minimalkalkiil, ein Reduzierter Intuitionistischer Formal-
ismus. Compositio Mathematica, 4:119 136, 1936.

C.-H. Luke Ong and C. A. Stewart. A Curry-Howard foundation for func-
tional computation with control. In POPL’97, pages 215 227. 1997.

M. Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction. In LPAR ’92, pages 190 201, 1992.

D. Prawitz. Natural Deduction, a Proof-Theoretical Study. Almquist and
Wiksell, Stockholm, 1965.

W. Py. Confluence en Ap-calcul. PhD thesis, Université de Savoie, 1998.

T. Streicher and B. Reus. Classical logic: Continuation semantics and ab-
stract machines. Journal of Functional Programming, 8(6):543-572, 1998.

9 A-top is the subset of Au-top in which expressions of the form péd.[a]t are only allowed
when 4 is not free in ¢ and « is top. EFQ. is the rule I' - L. implies I' - A (the
restriction of RAA. when —.A is not used in the proof).

