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eHugo.Herbelin�inria.frAbstra
t. We give an analysis of various 
lassi
al axioms and 
hara
ter-ize a notion of minimal 
lassi
al logi
 that enfor
es Peir
e's law withoutenfor
ing Ex Falso Quodlibet. We show that a \natural" implementationof this logi
 is Parigot's 
lassi
al natural dedu
tion. We then move onto the 
omputational side and emphasize that Parigot's �� 
orrespondsto minimal 
lassi
al logi
. A 
ontinuation 
onstant must be added to�� to get full 
lassi
al logi
. We then map the extended �� to a newtheory of 
ontrol, �-C�-top, whi
h extends Felleisen's redu
tion theory.�-C�-top allows one to distinguish between aborting and throwing to a
ontinuation. It is also in 
orresponden
e with the proofs of a re�nementof Prawitz's natural dedu
tion.1 Introdu
tionTraditionally, 
lassi
al logi
 is de�ned by extending intuitionisti
 logi
 with ei-ther Pier
e's law, ex
luded middle or the double negation law. We show thatthese laws are not equivalent and de�ne minimal 
lassi
al logi
, whi
h validatesPeir
e's law but not Ex Falso Quodlibet (EFQ), i.e. the law ? ! A. The no-tion is interesting from a 
omputational point of view sin
e it 
orresponds toa 
al
ulus with a notion of 
ontrol (su
h as 
all

) whi
h however does notallow one to abort a 
omputation. We point out that 
losed typed terms ofParigot's �� [Par92℄ 
orrespond to tautologies of minimal 
lassi
al logi
 and notof (full) 
lassi
al logi
. We de�ne a new 
al
ulus 
alled ��-top. Tautologies of
lassi
al natural dedu
tion 
orrespond to 
losed typed ��-top terms. We showthe 
orresponden
e of ��-top with a new theory of 
ontrol, �-C�-top. The 
al
u-lus �-C�-top is interesting in its own right, sin
e it extends Felleisen's theory of
ontrol (�-C) [FH92℄. The study of �-C�-top leads to the development of a re�ne-ment of Prawitz natural dedu
tion [Pra65℄ in whi
h one 
an distinguish betweenaborting a 
omputation and throwing to a 
ontinuation (aborting 
orresponds tothrowing to the top-level 
ontinuation). This logi
 provides a solution to the mis-mat
h between the operational and proof-theoreti
al interpretation of Felleisen's�-C redu
tion theory.More spe
i�
ally, we devote Se
tion 2 to the de�nition of the various log-i
s 
onsidered in this paper. Se
tions 3 through 5 explain their 
omputational
ounterparts. We dis
uss related work in Se
tion 6 and 
on
lude in Se
tion 7.



�;A `M A Ax �;A `M B� `M A! B !i � `M A! B � `M A� `M B !eFig. 1. Minimal Natural Dedu
tion2 Minimal, Intuitionisti
 and Classi
al Logi
In this paper, we restri
t our attention to propositional logi
. We assume a set offormulas, denoted by roman upper
ase letters A, B, et
. , whi
h are built from anin�nite set of propositional atoms (ranged over by X;Y , et
. ), a distinguishedformula ? denoting false, and impli
ation written !. We de�ne negation as:A � A! ?. A named formula is a pair of a formula and a name taken from anin�nite set of names. We write Ax, B�, et
. for named formulas. A 
ontext is aset of named formulas3. We use Greek upper
ase letters � , �, et
. for 
ontexts.We generally omit the names, unless there is an ambiguity. We will 
onsidersequents of the form � ` A, � `, � `;�, and � ` A;�. The formulas in �are the hypotheses and the formulas on the right-hand side of the symbol ` arethe 
on
lusions. In ea
h 
ase, the intuitive meaning is that the 
onjun
tion ofthe hypotheses implies the disjun
tion of the 
on
lusions. Espe
ially, a sequentwith no 
on
lusion means the negation of the 
onjun
tion of the hypotheses. Asinitially shown by Gentzen [Gen69℄ in his sequent 
al
ulus LK, 
lassi
al logi
 
anbe obtained by 
onsidering sequents with several 
on
lusions. Parigot extendedthis approa
h to natural dedu
tion [Par92℄. We will see that using sequents withseveral 
on
lusions allows for a uniform presentation of di�erent logi
s.In the rest of the paper, we su

essively re
all the de�nition of minimal,intuitionisti
 and 
lassi
al logi
. We 
onsider only formulas built from ! and? and we de�ne :A as A ! ?. We state simple fa
ts about various 
lassi
alaxioms from whi
h the de�nition of minimal 
lassi
al logi
 emerges. We usenatural dedu
tion to formalize the di�erent logi
s, but we 
ould have used asequent 
al
ulus instead (then the Curry-Howard 
orresponden
e would be withHerbelin's 
al
ulus [Her94℄). If S is a s
hemati
 axiom or rule, we denote byS; � ` A the fa
t that � ` A is derivable using an arbitrary number of instan
esof S.Minimal Logi
. Minimal natural dedu
tion implements minimal logi
 [Joh36℄.It is de�ned by the set of (s
hemati
) inferen
e rules given in Figure 1. In minimallogi
, ? is neutral and has no spe
i�
 rule asso
iated to it.Intuitionisti
 logi
. Intuitionisti
 natural dedu
tion is des
ribed in Figure 2.The rule ?e introdu
es a sequent with no 
on
lusion, thus allowing the ap-pli
ation of a weakening rule named A
tivate. This logi
 is stri
tly stronger3 If interested only in provability, one 
ould have de�ned 
ontexts just as sets offormulas (not as sets of named formulas). But to assign terms to proofs, one needsto be able to distinguish between di�erent o

urren
es of the same formula. Thisis the role of names. Otherwise, e.g. the two distin
t normal proofs of A;A ` A(representable by the �-terms �x:�y:x and �x:�y:y) would have been identi�ed.



�;A `I A Ax � `I� `I A A
tivate� `I ?� `I ?e �;A `I B� `I A! B !i � `I A! B � `I A� `I B !eFig. 2. Intuitionisti
 Natural Dedu
tionthan minimal logi
4 but obviously equivalent to minimal logi
 extended withthe s
hemati
 axiom ?! A.Proposition 1. � `I A i� EFQ; � `M A, but 6`M EFQ.Classi
al axioms.We now give an analysis in minimal logi
 of di�erent axioms
hemes5 leading to 
lassi
al logi
.(:A! A)! A Weak Peir
e's law (PL?):A _A Ex
luded middle (EM)((A! B)! A)! A Peir
e's law (PL)(A! B) _A Generalized ex
luded-middle (GEM)::A! A Double negation law (DN)We 
lassify the axioms in three 
ategories: we 
all PL? and EM weak 
lassi
alaxioms, PL and GEM minimal 
lassi
al axioms, and DN a full 
lassi
al axiom.The main results of this se
tion are that none of the 
lassi
al axioms are indeedderivable in minimal logi
 and that the weak 
lassi
al axioms are weaker inminimal logi
 than the minimal 
lassi
al axioms, whi
h themselves are weakerthan DN. Together with EFQ, weak and minimal 
lassi
al axioms are howeverequivalent to DN.Proposition 2. In minimal logi
, we have1. neither PL?, PL, EM, GEM nor DN is derivable.2. PL? and EM are equivalent (as s
hemes).3. GEM and PL are equivalent (as s
hemes).4. GEM and PL imply EM and PL? but not 
onversely.5. DN implies GEM and PL but not 
onversely.6. DN, EM+EFQ, GEM+EFQ, PL?+EFQ and PL+EFQ are all equivalent.The previous result suggests that there is spa
e for a 
lassi
al logi
 whi
hdoes validate Peir
e's law (or GEM) but not EFQ. Let us 
all this logi
 minimal
lassi
al logi
. In 
ontrast, EM and PL? without EFQ are weaker than PL, andtheir addition to minimal logi
 seems uninteresting. We will investigate a weakerform of EFQ at the end of this se
tion.4 This holds for propositional or �rst-order logi
 but not for se
ond-order logi
, sin
ethe se
ond-order formula 8X:X enjoys 8X:X ! A. However, the rule ?e is still notvalid for 8X:X.5 To reason about ex
luded-middle, we enri
h the set of formulas with disjun
tion andthe usual inferen
e rules.



�;A `MC A;� Ax � `MC ;A;�� `MC A;� A
tivate � `MC A;A;�� `MC ;A;� Passivate�;A `MC B;�� `MC A! B;� !i � `MC A! B;� � `MC A;�� `MC B;� !eFig. 3. Minimal Classi
al Natural Dedu
tionMinimal Classi
al Logi
. An axiom-free implementation of minimal 
lassi
allogi
 is a
tually Parigot's 
lassi
al natural dedu
tion [Par92℄ (with no spe
ial rulefor ?). The inferen
e rules are shown in Figure 3. Parigot's 
onvention is to havetwo kinds of sequents, one with only named formulas on the right, written � `;�,and one with exa
tly one unnamed formula on the right, written � ` A;�.We now state that minimal Parigot 
lassi
al natural dedu
tion is equivalent tominimal logi
 extended with Peir
e's law, i.e. it implements minimal 
lassi
allogi
6.Proposition 3. � `MC A i� PL; � `M ANote that in minimal 
lassi
al logi
, DN is not provable but `MC ::A ! A;?is. �;A `C A;� Ax � `C ;A;�� `C A;� A
tivate � `C A;A;�� `C ;A;� Passivate� `C ?;�� `C ;� ?e �;A `C B;�� `C A! B;� !i � `C A! B;� � `C A;�� `C B;� !eFig. 4. Classi
al Natural Dedu
tionClassi
al Logi
. To obtain full 
lassi
al logi
 from minimal Parigot's 
lassi
alnatural dedu
tion7 and thus derive DN, we expli
itly add the elimination rulefor ?. The (full) Parigot's 
lassi
al natural dedu
tion is des
ribed in Figure 4.From Propositions 1, 2 and 3, we dire
tly have:Proposition 4. � `C A i� PL; � `I A i� DN;� `M A i� EFQ; � `MC A.6 The proof pro
eeds by repla
ing ea
h instan
e of A
tivate on A by as many instan
esof PL as the number of Passivate applied on A7 Parigot's original formulation of 
lassi
al natural dedu
tion [Par92℄ does not in
ludethe ?e-rule but gives dire
t rules for negation whi
h are easily derivable from theelimination rule of ?.



As expe
ted, full 
lassi
al logi
 is 
onservative over minimal 
lassi
al logi
for formulas not mentioning the ? formula, as stated by the following:Proposition 5. If ? does not o

ur in A then `C A i� `MC A .Remark 1. Minimal 
lassi
al natural dedu
tion without the Passivate rule yieldsminimal logi
, sin
e the 
ontext� is inert and 
an only remain empty in a deriva-tion for whi
h the end sequent has the form � ` A; (even the A
tivate rule 
an-not be applied). Similarly, 
lassi
al natural dedu
tion without the Passivate ruleyields intuitionisti
 logi
. As a 
onsequen
e, minimal and intuitionisti
 naturaldedu
tion 
an both be seen as subsystems of 
lassi
al natural dedu
tion.�;A `RAA A Ax � `RAA ?
� `RAA A A
tivate �;:
A `RAA ?
� `RAA A RAA
� `RAA ?� `RAA ?
 ?
e �;A `RAA B� `RAA A! B !i � `RAA A! B � `RAA A� `RAA B !eFig. 5. Natural Dedu
tion with RAA
Minimal Prawitz Classi
al Logi
. Prawitz de�nes 
lassi
al logi
 as minimallogi
 plus the Redu
tio Ad Absurdum rule (RAA) [Pra65℄: from �;:A ` ?dedu
e � ` A. This rule implies EFQ (as DN implies EFQ) and hen
e yieldsfull 
lassi
al logi
. In this se
tion, we are interested in exploring the possibilityof de�ning minimal 
lassi
al logi
 from minimal logi
 and RAA but withoutderiving EFQ. Equivalently, we would like to devise a restri
ted version of EFQthat would allow one to prove PL from PL?. This alternative formulation of(minimal) 
lassi
al logi
 is obtained by distinguishing two di�erent notions of ?:? for 
ommands (written as ?
) and ? for terms, see Figure 5, where :
Astands for A ! ?
. If the 
ontext � is the set of formulas A1; � � � ; An, then wewrite :
� for the set :
A1; � � � ;:
An. Sequents are of the form �;:
� ` A or�;:
� ` ?
 and ?
 is not allowed to o

ur in � , � and A. The minimal subsetdoes not 
ontain the ?
e rule and is denoted by `MRAA.Proposition 6. Given a formula A and 
ontexts � and �, all with no o

ur-ren
es of ?
, we have (1) � `MC A;� i� �;:
� `MRAA A; (2) � `C A;� i��;:
� `RAA A.3 Computational Content of Minimal Logi
 + DNTo reason about S
heme programs, Felleisen et al. [FH92℄ introdu
ed the �-C
al
ulus. C provides abortive 
ontinuations: the invo
ation of a 
ontinuation re-instates the 
aptured 
ontext in pla
e of the 
urrent one. GriÆn was the �rstto observe that C is typable with ::A ! A. This extended the Curry-Howardisomorphism to 
lassi
al logi
 [Gri90℄.



Proposition 7 (GriÆn). A formula A is provable in 
lassi
al logi
 i� thereexists a 
losed �-C term M su
h that ` M : A is provable, where ` M : A issimple typability in � 
al
ulus.Felleisen also developed the �-K 
al
ulus whi
h axiomatizes the 
all

 (i.e.
all-with-
urrent-
ontinuation) 
ontrol operator. In 
ontrast to C, K leaves the
urrent 
ontext inta
t as expli
itly des
ribed in its usual en
oding: K(M) =C(�k:k(Mk)). K is not as powerful as C [Fel90℄. In order to de�ne C (of typeDN) we need the abort primitive A (of type EFQ): C(M) = K(�k:A(Mk)). Analternative en
oding K(M) = C(�k:k(M�x:A(kx))) obeys the same redu
tionrules and shows that K 
an be typed with PL. Following Proposition 3, we have:Proposition 8. A formula A is provable in minimal 
lassi
al logi
 i� thereexists a 
losed �-K term M su
h that `M : A is provable.The 
all-by-value and 
all-by-name redu
tion semanti
s of �-C are presentedin Figure 6. An important point to 
larify is the presen
e of the abort operationsin the right-hand sides of the redu
tion rules. As far as evaluation is 
on
erned,they are not ne
essary. They are important in order to obtain a satisfying 
or-responden
e between the operational and redu
tion semanti
s. For example, theterm C(�k:(k �x:x)N) evaluates to �x:x. However, the absen
e of the abort fromthe redu
tion rules makes impossible to get rid of the 
ontrol 
ontext �f:f N .The abort steps signal that k is not a normal fun
tion but is an abortive 
on-tinuation. As we explain in Se
tion 5, these abort steps are di�erent from theabort used in de�ning C in terms of 
all

: C(M) = 
all

(�k:A(Mk)). Theaborts in the redu
tion rules 
orrespond to throwing to a user de�ned 
ontinua-tion (i.e. a Passivate step), whereas the abort in the de�nition of C 
orrespondsto throwing to the prede�ned top-level 
ontinuation (i.e. a ?e step).�n-C 8>>><>>>:� : (�x:M)N ! M [x := N ℄CL : (CM)N ! C(�k:M(�f:A(k(fN))))Ctop : CM ! C(�k:M(�f:A(kf)))Cidem : C(�k:CM) ! C(�k:M(�x:A(x)))Celim : C(�k:kM) ! M k 62 FV (M)�v-CV ::= x j �x:M 8>>><>>>:� : (�x:M)V ! M [x := V ℄CL : (CM)N ! C(�k:M(�f:A(k(fN))))CR : V (CM) ! C(�k:M(�x:A(k(V x))))Ctop : CM ! C(�k:M(�f:A(kf)))Cidem : C(�k:CM) ! C(�k:M(�x:A(x)))Fig. 6. �n-C and �v-C redu
tion rulesRemark 2. Parigot in [Par92℄ 
riti
ized GriÆn's work be
ause the proposed C-typing did not �t the operational semanti
s. A
tually, the only rule that breakssubje
t redu
tion is the top-level 
omputation rule (i.e. CM 7!M(�x:A(x)) (not



t :: x j �x:t j tt j ��:
 
 ::= [�℄t j [top℄t�; Ax ` x : A;� Ax 
 : � `;A�; �� ` ��:
 : A;� A
tivate � ` t : A;A�; �[�℄t : � `;A�; � Passivate� ` t : ?;�[top℄t : � `;� ?e � ` t :A! B;� � ` s : A;�� ` ts :B;� !e �;Ax ` t : B;�� ` �x:t : A! B;� !iFig. 7. �� and ��-top 
al
ulimentioned on Figure 6) whi
h for
es a 
onversion from? to the top-level type. Tosolve the problem, instead of redu
ingM , GriÆn proposed to redu
e C(��:�M),where �M is of type ?. As detailed in the next se
tion, the 
lassi
al version ofParigot's �� requires a similar intervention (a free 
ontinuation 
onstant { thatwe 
all top { is needed).4 Computational Content of Classi
al Natural Dedu
tionFigure 7 des
ribes Parigot's �� 
al
ulus [Par92℄ whi
h is a term assignmentfor his 
lassi
al natural dedu
tion. The Passivate rule reads as follows: given aterm produ
ing a value of type A, if � is a 
ontinuation variable waiting forsomething of type A (i.e. A 
ont), then by invoking the 
ontinuation variablewe leave the 
urrent 
ontext. Terms of the form [�℄t are 
alled 
ommands. TheA
tivate rule reads as follows: given a 
ommand (i.e. no formula is fo
used)we 
an sele
t whi
h result to get by 
apturing the asso
iated 
ontinuation. IfA� is not present in the pre
ondition then the rule 
orresponds to weakening.Note that the rule ?e di�ers from Parigot's version. In [Par92℄, the eliminationrule for ? is interpreted by an unnamed term [
℄t, where 
 is any 
ontinuationvariable (not always the same for every instan
e of the rule). In 
ontrast, therule is here systemati
ally asso
iated to the same primitive 
ontinuation variabletop 
onsidered as a 
onstant. This was also observed by Strei
her et al. [SR98℄.Parigot would represent DN as the term �y:��:[
℄(y�x:�Æ:[�℄x) whereas ourrepresentation is �y:��:[top℄(y�x:�Æ:[�℄x). We use ��-top to denote the whole
al
ulus with ?e and �� to denote the 
al
ulus without ?e. The need for anextra 
ontinuation 
onstant to interpret the elimination of ? 
an be emphasizedby the following statement:Proposition 9. A formula A is provable in minimal 
lassi
al logi
 (resp. 
lassi-
al logi
) i� there exists a 
losed �� term (resp. ��-top term) t su
h that ` t : Ais provable.We write ��n and ��v (resp. ��n-top and ��v-top) for the �� 
al
ulus(resp. ��-top 
al
ulus) equipped with 
all-by-name and 
all-by-value redu
-tion rules, respe
tively. The redu
tion rules are given in Figure 8 (substitutions[[�℄(ws)=[�℄w℄ and [[�℄(sw)=[�℄w℄ are de�ned as in [Par92℄). Note that the rules



��nand��n-top 8><>:Logi
al rule: (�x:t)s ! t[x := s℄Stru
tural rule: (��:t)s ! (��:t[[�℄(ws)=[�℄w℄)Renaming rule: ��:[�℄�
:u ! ��:u[�=
℄Simpli�
ation rule: ��:[�℄u ! u � 62 FV (u)��vand��v-top(v ::= x j �x:t) 8>>><>>>:Logi
al rule: (�x:t)v ! t[x := v℄Left stru
tural rule: (��:t)s ! (��:t[[�℄(ws)=[�℄w℄)Right stru
tural rule: v(��:t) ! (��:t[[�℄(vw)=[�℄w℄)Renaming rule: ��:[�℄�
:u ! ��:u[�=
℄Simpli�
ation rule: ��:[�℄u ! u � 62 FV (u)Fig. 8. Call-by-name and 
all-by-value �� and ��-top redu
tion rulesare the same for the �� and ��-top 
al
uli. ��n is Parigot's original 
al
ulus,while our presentation of ��v is similar to Ong and Stewart [OS97℄. Both setsof redu
tion rules are well-typed and enjoy subje
t redu
tion.Instead of showing a 
orresponden
e between the ��-top 
al
uli and the �-C
al
uli, as in [dG94℄, we have sear
hed for an isomorphi
 
al
ulus, whi
h turnsout to be interesting in its own right sin
e it extends the expressive power ofFelleisen �-C and provides a term assignment for Prawitz 
lassi
al logi
.5 Computational Content of Prawitz Classi
al Dedu
tionM ::= x jMM j �x:M j C�(�k:N) N ::= k0M j topM�; x : A ` x : A Ax � ` N : ?
� ` C�(�q:N) : A A
tivate �; k : :
A ` N : ?
� ` C�(�k:N) : A RAA
� `M : ?� ` topM : ?
 ?
e � `M :A! B � `M 0 :A� `MM 0 : B !e �; x : A `M : B� ` �x:M :A! B !iFig. 9. �-C� and �-C�-top 
al
uliWe 
onsider a restri
ted form of �-C, 
alled �-C�-top. Its typing system isgiven in Figure 9. In �-C�-top, we distinguish between 
apturing a 
ontinuationand expressing where to go next. We assume the existen
e of a top-level 
ontinua-tion 
alled top. The 
ontrol operator C� 
an only be applied to a lambda abstra
-tion. Moreover, the body of a C�-lambda abstra
tion is always of the form kMfor a 
ontinuation variable k. In �-C�-top, K and C are expressed as C�(�k:k M)and C�(�k:top M), respe
tively. In �-C�-top, it is possible to distinguish betweenaborting a 
omputation and throwing to a 
ontinuation. For example, one wouldwrite C�(�d:top M) to abort the 
omputationM and C�(�d:k M) to invoke 
on-tinuation k with M (d not free in M). Variables and 
ontinuation variables are



kept distin
t. The translation from �-C to �-C�-top is expressed as follows: x = x,�x:M = �x:M , MN = M N , and CM = C�(�k:top(M (�x:C�(�Æ:kx)))). The
all-by-name and 
all-by-value �-C�-top redu
tion rules are given in Figure 10.Note that one does not need the Ctop-rule, whose a
tion is to wrap up an appli
a-tion of a 
ontinuation with a throw operation. C�idem is a generalization of Cidem,whi
h is obtained by instantiating the 
ontinuation variable k0 to top (i.e. the
ontinuation �x:A(x)): C�(�k:top C(�q:M)) ! C�(�k:M [top=q℄). C�idem is sim-ilar to the rule proposed by Barbanera et al. [BB93℄: M(CN) ! N(�a:(Ma)),where M has type :A. Felleisen proposed in [FH92℄ the following additionalrules for �v-C: CE : E[CM ℄ ! C(�k:M(�x:A(k E[x℄))) (where E stands for a
all-by-value evaluation 
ontext) and Celim : C(�k:k M) ! M , where k is notfree in M . The �rst rule is a generalization of CL, CR, and Ctop whi
h adds ex-pressive power to the 
al
ulus. The se
ond rule, whi
h also appears in [Hof95℄,leads to better simulation of evaluation. However, both rules destroy 
on
uen
eof �v-C. Felleisen left unresolved the problem of �nding an extended theory thatwould in
lude CE or Celim and still satisfy the 
lassi
al properties of redu
tiontheories. Celim is already present in our 
al
uli and CE is derivable. Thus onemay 
onsider our 
al
uli as a solution.Proposition 10. 1. �v-C�-top and �n-C�-top are 
on
uent and strongly nor-malizing.2. Subje
t redu
tion: Given �v-C�-top (�n-C�-top) terms M;N , if � ` M : Aand M!!N then � ` N : A.Soundness and 
ompleteness of �v-C�-top with respe
t to �v-C are stated be-low, where '
 denotes operational equivalen
e as de�ned in [FH92℄. A �v-C�-topterm M is translated into a �v-C term M by simply repla
ing C� with C and byerasing the referen
es to the top 
ontinuation.Proposition 11. 1. Given �v-C terms M and N , if M!!N then M!!N .2. Given �v-C�-top terms M and N , if M!!N then M '
 N .Relation between the ��-top and the �-C�-top 
al
uli. The �-C�-top 
al-
ulus has been designed in su
h a way that it is in one-to-one 
orresponden
ewith the ��-top 
al
ulus: �x:t = �x:t, ts = ts, ��:[
℄t = C�(��:
t). The 
orre-sponden
e extends to the redu
tion rules: Figure 10 mat
hes Figure 8. This isexpressed by the following statement:Proposition 12. Let t; s be ��-top-terms, then t!��n-top s i� t!�n-C�-top sand t!��v-top s i� t!�v-C�-top s .Proposition 13. A formula A is provable in Prawitz 
lassi
al logi
 i� thereexists a 
losed �C�-top term M su
h that `M : A is provable.We de�ne a subset of �-C�-top, whi
h does not allow one to abort a 
ompu-tation, i.e. terms of the form C�(�k:topM) are not allowed. We 
all this subset,whi
h is isomorphi
 to ��, �-C� .



�n-C�and�n-C�-top 8><>:� : (�x:M)N ! M [x := N ℄C�L : C�(�k:M)N ! C�(�k:M [k (PN)=k P ℄)C�idem : C�(�k:k0C�(�q:N)) ! C�(�k:N [k0=q℄)C�elim : C�(�k:kM) ! M k 62 FV (M)�v-C�and�v-C�-top(V ::= x j �x:M) 8>>><>>>:� : (�x:M)V ! M [x := V ℄C�elim : C�(�k:kM) ! M k 62 FV (M)C�L : C�(�k:M)N ! C�(�k:M [k (PN)=k P ℄)C�R : V C�(�k:M) ! C�(�k:M [k (V P )=k P ℄)C�idem : C�(�k:k0C�(�q:N)) ! C�(�k:N [k0=q℄)Fig. 10. �-C� and �-C�-top redu
tion rulesProposition 14. A formula A is provable in minimal Prawitz 
lassi
al logi
 i�there exists a 
losed �-C� term M su
h that `M : A is provable.Remark 3. The �-C� term representing PL is �y:C�(�k:k(y(�x:C�(�q:kx)))),whi
h 
an be written in ML as :- fun PL y = 
all

 (fn k => (y (fn x => throw k x)));val PL = fn : (('a -> 'b) -> 'a) -> 'aNoti
e how the throw 
onstru
t 
orresponds to a weakening step. By Proposi-tions 6, 8 and 14, �-C� is equivalent to �-K, assuming 
all

 is typed with PL,say 
all

pl. However, it might not be at all obvious how to use a 
ontinua-tion in di�erent 
ontexts, sin
e we do not have weakening available. Consider forexample the following ML term (with 
all

 and throw typable as in [DHM91℄):- 
all

 (fn k => if (throw k 1) then 7 else (throw k 99));We use the 
ontinuation in both boolean and integer 
ontexts. How 
an we writethe above expression without making use of weakening or throw? The proof ofProposition 3 gives the answer:- 
all

_pl (fn k => 
all

_pl (fn q => if q 1 then 7 else k 99));We de�ne a subset of �-C�, 
alled �-A�, in whi
h expressions of the formC�(�d:qM) are only allowed when d is not free in M and q is top, that is,we only allow throwing to the top-level 
ontinuation.Proposition 15. A formula A is provable in intuitionisti
 logi
 i� there existsa 
losed �-A� term M su
h that `I M : A is provable.6 Related WorkThe relation between Parigot �� and �-C has been investigated by de Groote[dG94℄, who only 
onsiders the �� stru
tural rule but not renaming and sim-pli�
ation. As for �-C, he only 
onsiders CL and Ctop. However, these rules are



not the original rules of Felleisen, sin
e they do not 
ontain abort. For example,Ctop is CM ! C(�k:M(�f:kf)) whi
h is in fa
t a redu
tion rule for �-F [Fel88℄.This work fails in relating �� to �-C in an untyped framework, sin
e it does notexpress 
ontinuations as abortive fun
tions. It says in fa
t that F behaves as Cin the simply-typed 
ase. Ong and Stewart [OS97℄ also do not 
onsider the abortstep in Felleisen's rules. This 
ould be justi�ed be
ause in a simply-typed settingthese steps are of type ? ! ?. Therefore, it seems we have a mismat
h. Whilethe aborts are essential in the redu
tion semanti
s, they are irrelevant in the
orresponding proof. We are the �rst to provide a proof theoreti
 justi�
ationfor those abort steps, they 
orrespond to the step ? ! ?
. In addition to Ongand Stewart, Py [Py98℄ and Bierman [Bie98℄ have pointed out the pe
uliarity ofhaving an open �� term 
orresponding to a tautology. Their solution is to abolishthe distin
tion between 
ommands and terms. A 
ommand is a term returning?. The body of a �-abstra
tion is not restri
ted to a 
ommand, but 
an be of theform ��:t, where t is of type ?. Thus, one has �y:��:(y �x:[�℄x) : ::A ! A.We would then represent the term C(�k:(kI)x) (where I is �x:x) as ��:(�I)x.Whereas C(�k:kIx) would redu
e to C(�k:kI) a

ording to �n-C and to I in��n-top, it would be in normal form in their 
al
ulus. Thus, their work in re-lating �� to �-C only applies to typed �-C, whereas our work also applies tothe untyped 
ase. Crolard [Cro99℄ studied the relation between Parigot's ��and a 
al
ulus with a 
at
h and throw me
hanism. He showed that 
ontra
tion
orresponds to the 
at
h operator (i.e. ��:[�℄t = 
at
h � t) and weakening
orresponds to the throw operator (i.e. �Æ:[�℄t = throw � t for Æ not free in t).He only 
onsiders terms of the form ��:[�℄t and ��:[�℄t, where � does not o

urfree in t. This property is not preserved by the renaming rule, therefore redu
tionis restri
ted. We do not require su
h restri
tions on redu
tion. We 
an simulateOng and Stewart's �� and the Crolard 
al
ulus via this simple translation: ��:tbe
omes ��:[top℄t and [�℄t be
omes �Æ:[�℄t, where Æ is not free in t.7 Con
lusions
M

in

In
tui

t

M
in 

Clas
s

Clas
s� �� �-C��-A���-top `M `MC RAA
 `M`M ?
e; RAA
 `M`I��-top `C?
e; EFQ
 `M�-C�-top

Our analysis of the logi
al strength of EFQ, PL (or EM) and DN has lednaturally to a restri
ted form of 
lassi
al logi
, 
alled minimal 
lassi
al logi
.Depending on whether EFQ, PL or both are assumed in minimal logi
, we getintuitionisti
, minimal 
lassi
al or 
lassi
al logi
. Depending on whether we ad-mit the Passivate (RAA
8) and ?e (?
e) in full 
lassi
al natural dedu
tion (on8 with restri
tions on the use of ?




top of minimal natural dedu
tion), we get the 
orresponden
es with the �-
al
uli
onsidered in the paper, as shown above9. Among these systems, �-C�-top is a
on
uent extension of Felleisen's theory of 
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