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Abstract

In the recent years, homotopy type theory has become the subject of much study.
Homotopy type theory studies the correspondence between the (propositional)
equality in Martin-Löf’s type theory and the concept of homotopy from topol-
ogy. The correspondence roughly means that inhabitants of a type can be seen
as points of a space and that a propositional equality x ⌘ y can be seen as a
path x  y . At the time of writing, virtually all material on the subject is of
a rather mathematical nature and focuses on its use in formalising mathemat-
ics. This thesis aims to provide an introduction to homotopy type theory geared
toward programmers familiar with dependently typed programming, but unfa-
miliar with topology. We will present applications of homotopy type theory to
programming, such as quotient types and dealing with views on abstract types.
Furthermore, we will discuss the use of h-propositions to identify parts of a pro-
gram that are not needed at run-time, compare it to existing methods present in
Coq and Agda and discuss whether this can be used to optimise programs. Such
an approach works in plain Martin-Löf’s type theory. In homotopy type theory
however, it does not work in general, but we can identify cases in which it still
works.
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Chapter 1

Introduction

One of the tricky things that comes up sooner or later when one designs a type
system or a logic, is the defining a right notion of equality. When type check-
ing a term, one needs a suitable concept of equality, e.g. when one type checks
an application f a and we know that f : A ! B and we know that a : X , we
have to check that A and X are equal in some way. In Martin-Löf’s type theory
[Martin-Löf, 1985], A and X need to be definitionally equal (denoted in this thesis
by A

�
= X ): if we reduce both A and X to their normal forms, they need to be

syntactically equal.

We also want to be able to reason about equality in the type theory itself: we want
to use it in our programs (or proofs) written in the type theory language, e.g. to
show that two programs behave in the same way, when given the same input. If
we have a version of a meta-theoretical concept, such as definitional equality, that
can be expressed in the language of type theory itself, we call such a version of
the concept internal. The notion of equality internal to a type theory is called a
propositional equality (in this thesis denoted by ⌘ ). In Martin-Löf’s type theory,
propositional equality is defined using the so called identity types: an inductive
family with refl as its only constructor. This construction essentially imports def-
initional equality into the type theory. However, the resulting structure is not
exactly definitional equality: as we will see at various points in this thesis, it is
valid to add as axioms extra propositional equalities between terms that are not
definitionally equal.

We can force the two notions to coincide by adding an equality reflection rule, i.e.
a rule that states that if we have a proof p : x ⌘ y are propositionally equal, then
x

�
= y also holds. Since type checking makes use of definitional equality, to show

that two terms are definitionally equal, we may need to produce a proof of propo-
sitional equality first. This proof search means that type checking becomes un-
decidable. Even though it is undecidable in general, it still works out for enough
cases to be useful, as is exemplified by Nuprl [Constable et al., 1986]. One ad-
vantage of adding equality reflection is that we can prove useful things such as
function extensionality (((x : A) ! f x ⌘ g x ) ! f ⌘ g), something that we can-
not prove if we leave the equality reflection rule out.
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The study of intensional type theory, i.e. type theory without the equality reflection
rule, involves finding out why we cannot prove certain properties about propo-
sitional equality that are deemed to be natural properties for a notion of equality,
such as function extensionality and uniqueness of identity proofs. This eventu-
ally led to the discovery of homotopy type theory, an interpretation of types and
their identity types in the language of homotopy theory:

type theory homotopy theory
A is a type A is a space
x , y : A x and y are points in A
p, q : x ⌘ y p and q are paths from x to y
w : p ⌘ q w is a homotopy between paths p and q

...
...

The discovery was that propositional equality behaves just like the homotopy we
know from topology. This discovery spawned a lot of interest, as it meant that the
language of type theory can be used to prove theorems about homotopy theory. It
is also regarded as an interesting foundation of mathematics, as it makes working
with isomorphic structures a lot more convenient than is the case when working
with foundations based on set theory. There are already several introductions on
the subject (e.g. Awodey [2012], Pelayo and Warren [2012] and Rijke [2012]). There
has been a special year in 2012–2013 on the subject at the Institute of Advance
Study in Princeton, which has culminated in a book [The Univalent Foundations
Program, 2013], giving a very complete overview of the results. The focus of these
materials is on homotopy type theory as a foundation of mathematics and its use
in formalising mathematics.

The materials mentioned above assume the reader to have experience with homo-
topy theory and none with type theory. In this thesis instead assumes the reader
to have experience with using a dependently typed language such as Agda as a
programming language for certified programs, but have no background in ho-
motopy theory. This leads us to the main research question of this thesis:

What is homotopy type theory and why is it interesting to do pro-
gramming in it?

In chapter 2 we give an introduction and overview of some of the main concepts
of homotopy type theory. In this chapter we will also provide a very short intro-
duction into topology and homotopy theory, to give a bit of intuition behind the
terminology and where the concepts come from. In chapter 3 we discuss several
applications of homotopy type theory to programming. In particular we look
at how we can implement quotient types in homotopy type theory and contrast
this to other ways to work with quotient types. Another application we consider
is the use of univalence to deal with views on abstract types. We work out the
examples given by Licata [2012] and extend the result to non-isomorphic views,
using quotient types.

Homotopy type theory provides us with a notion of propositions, the so called
h-propositions. In chapter 4 we compare this to similar notions found in Coq,
Agda and Epigram. We investigate whether we can formulate an optimisation
based on h-propositions in the spirit of the collapsibility optimisation proposed
in Brady et al. [2004].
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In the final chapter, chapter 5, we will discuss our answers to our research ques-
tions and propose directions of future research.

Since the focus of this thesis is on the programming aspects of homotopy type
theory, as opposed to doing homotopy theory, we will not do any diagram chas-
ing and instead will use Agda syntax throughout the thesis. As such, we will
expect the reader to be familiar with this language.

Notation We will use Agda syntax for most of the code in this thesis, except for
some parts in chapter 4. The code will not always be valid Agda syntax. We will
use the notation A : Type instead of A : Set , in order to avoid confusion between
types and the homotopy type theory notion of h-sets. We will also refrain from
mentioning levels and essentially assume that these are automatically inferred.
For ⌃-types, we will sometimes use the notation ⌃ (x : A) . B x instead of
⌃ A (�x ! B x ), for brevity.

Code The accompanying code can be found in the appropriate GitHub repos-
itory1. The file index.agda lists for each chapter the modules that contain code
relevant to the chapter.

1
https://github.com/gdijkstra/hprop-erasibility and for a browsable variant with syntax

colouring: http://gdijkstra.github.io/hprop-erasibility/
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Chapter 2

Homotopy type theory

As was briefly mentioned in chapter 1, homotopy type theory studies the corre-
spondence between homotopy theory and type theory. As such, we will start out
with a very brief sketch of the basic notions of topology and homotopy theory
(section 2.1). After that, we will describe the notion of propositional equality in
Martin-Löf’s type theory using identity types (section 2.2). Having defined the
identity types, we can explain the interpretation of Martin-Löf’s type theory in
homotopy theoretic terms, relating propositional equality to paths (section 2.3).
In section 2.4 we describe how the idea of classifying spaces along their homo-
topic structure can be used in type theory to classify types. Section 2.5 and sec-
tion 2.6 describe two extensions to Martin-Löf’s type theory inspired by homo-
topy theory. This chapter is concluded by a discussion on the implementation
issues of homotopy type theory (section 2.7).

2.1 Topology and homotopy theory

Topology is the study of shapes (called spaces) and continuous functions between
spaces. It generalises the familiar notion of continuity from calculus. In homotopy
theory we are interested in studying continuous deformations . The simplest case
of this is continuously deforming one point into another point, which is called a
path. A path in a spaceX from point x to y is a continuous function p : [0, 1] ! X ,
such that p 0 = x and p 1 = y , also notated as p : x  y . The set of all paths in
X can be also considered as a space. In this space, called the path space of X , we
again can look at the paths. Suppose we have two paths p, q : [0, 1] ! X with
the same begin and end points, then a path between p and q , called a homotopy,
is a continuous function � : [0, 1] ! [0, 1] ! X where � 0 = p and � 1 = q
(see fig. 2.1). Of course, we can also look at homotopies in these path spaces, and
homotopies between these higher homotopies, ad infinitum.

These paths have an interesting structure: we can define operations acting on
paths that satisfy certain laws: paths form a groupoid-like structure. If we have
a path p : a  b and a path q : b  c, we can compose these to form a path
p � q : a  c. For every path p : a  b, there is a reversed path p �1 : b  a .
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Figure 2.1: A homotopy between paths p and q

For every point a , there is the constant path ra : a  a . One might wonder
whether reversing a path acts as an inverse operation with ra being the unit of
path composition, i.e. whether we the following equations are satisfied:

• p � (q � s) = (p � q) � s

• p � p �1 = ra

• p �1 � p = rb

• p � rb = p

• ra � p = p

This happens to not be the case: the equations do not hold in the strict sense.
However, both sides of the equations are homotopic to each other. These op-
erations can also be defined on homotopies between paths, for which the same
equations can be shown to hold up to higher homotopy. What we get is a tower
of homotopies for which we have these groupoid-like structure at every level,
in which the equations hold up to homotopy one level higher. This structure is
called a 1-groupoid structure. It was proposed in Grothendieck [1983] that ho-
motopy theory should be the study of these 1-groupoids, as these should cap-
ture all the interesting homotopy properties of a space.

2.2 Identity types of Martin-Löf’s type theory

Martin-Löf [1985] introduced a notion of equality internal to his type theory, de-
fined using identity types. These types can be formulated in Agda syntax as fol-
lows:

data Id (A : Type) : A!A! Type where

refl : (x : A)! Id A x x

In order to type check refl x : Id A x y , the type checker needs to verify that
x and y are definitionally equal. The refl constructor can be seen as a rule that
definitional equality implies propositional equality. The converse does not need
to hold: type theories (such as Martin-Löf’s type theory) in which we do not have
the equality reflection rule, that states that propositional equality implies defini-
tional equality, are called intensional type theories. Extensional type theories are
theories in which the equality reflection rule does hold.
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If we want to do something with the inhabitants of an inductive type, other than
passing them around or ignoring them, we must use the induction principle (or
elimination operator) of the inductive type. The induction principle of the Id type
is usually called J and has the following type:

J : (A : Type)
! (P : (x y : A) ! (p : Id A x y) ! Type)
! (c : (x : A) ! P x x (refl x ))
! (x y : A) ! (p : Id A x y)
! P x y p

Along with this type, we have the following computation rule:

J A P c x x (refl x )
�
= c x

We will make use of a slightly di�erent, but equivalent formulation of these types,
due to Paulin-Mohring [1993], where the x is a parameter as opposed to an index,
yielding a more convenient elimination principle:

data Id 0 (A : Type) (x : A) : A! Type where

refl : Id 0 A x x

with induction principle:

J 0 : (A : Type)
! (x : A)
! (P : (y : A) ! (p : Id 0 A x y) ! Type)
! (c : P x x refl)
! (y : A) ! (p : Id 0 A x y)
! P x y p

and computation rule:

J 0 A P c x refl
�
= c

Since the x is a fixed base point, this elimination principle is also called based path
induction [The Univalent Foundations Program, 2013].

To make things look more like the equations we are used to, we will for the most
part use infix notation, leaving the type parameter implicit: Id A x y becomes
x ⌘ y . In some cases we will fall back to the Id A x y notation, when it is a bit
harder to infer the type parameter.

Using the identity types and their induction principles, we can show that propo-
sitional equality is an equivalence relation, i.e. given A : Type and x y z : A, we
can find inhabitants of the following types:

• refl : Id A x x

• symm : Id A x y ! Id A y x

• trans : Id A x y ! Id A y z ! Id A x z
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Another important property of propositional equality is that it is a congruence
relation, i.e. we have a term with the following type:

ap : {A B : Type} ! (f : A ! B) ! {x y : A} ! x ⌘ y ! f x ⌘ f y

ap f can be read as the (functorial) action on paths induced by f or the application
of f on paths. If we want to generalise ap to also work on dependent functions
f : (a : A) ! B a , we notice that we get something that does not type check:
f x ⌘ f y does not type check because f x : B x and f y : B y . However, if
we have an equality between x and y , then B x ⌘ B y , so we should be able
to somehow transform something of type B x to something of type B y . This
process is called transporting:

transport : {A : Type} {B : A ! Type} {x y : A} ! x ⌘ y ! B x ! B y

transport is sometimes also called subst , as transport witnesses the fact that if we
have x ⌘ y , we can substitute any occurrence of x in context B with y .

Using transport we can now formulate the dependent version of ap:

apd : {A : Type} {B : A! Type} {x y : A}
! (f : (a : A)! B a)! (� : x ⌘ y)
! transport � (f x ) ⌘ f y

The resulting equality is an equality of between points in B y . Of course it does
not matter if we transport to B x or B y , as propositional equalities are symmet-
ric.

2.2.1 Di�culties of identity types

Even though at first glance the identity types have the right structure: they form
equivalence relations on types, there are still some properties that cannot be proven,
things that can be useful or seem to be natural properties of a notion of equal-
ity.

Function extensionality When doing certified programming, we sometimes
want to show one (more optimised) function to be equal to another (naively im-
plemented) function. In these cases it is often necessary to have the principle of
function extensionality:

functionExtensionality : (A B : Type) ! (f g : A ! B)
! ((x : A) ! f x ⌘ g x )
! f ⌘ g
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However, in Martin-Löf’s type theory there is no term of that type. The theory
satisfies the so called canonicity property: if we have a judgement ` p : ⌧ , where
⌧ is some inductive type, p normalises to a term built up solely of constructors.
This means that if we have a propositional equality in the empty context, i.e. `
p : x ⌘ y , we know that p must be canonical: it is definitionally equal to refl .
In order for ` refl : x ⌘ y to type check, we then know that x and y must be
definitionally equal. Now consider the functions f = �n ! n + 0 and g = �n !
0 + n , with the usual definition of + : N ! N ! N by recursion on the first
argument, we can prove that (n : N) ! f n ⌘ g n , but not that f ⌘ g , since that
would imply they are definitionally equal, which they are not: one reduces to
�n ! n , whereas the other reduces to �n ! n + 0.

Uniqueness of identity proofs The canonicity property implies that if we have
` p : Id A x y and ` q : Id A x y , these proofs are both refl , hence they are
equal to one another: p ⌘ q . One would expect that it is possible to prove this
inside Martin-Löf’s type theory. Using dependent pattern matching [Coquand,
1992], we can easily prove this property in Agda, called uniqueness of identity
proofs:

UIP : (A : Type) (x y : A) (p q : Id A x y) ! Id (Id A x y) p q
UIP A x .x refl refl = refl

Proving this using J instead of dependent pattern matching has remained an
open problem for a long time and has eventually been shown to be impossible
[Hofmann and Streicher, 1996] by constructing a model of Martin-Löf’s type the-
ory in which there is a type that violates uniqueness of identity proofs. This tells
us that dependent pattern matching is a non-conservative extension over Martin-
Löf’s type theory1.

As a complement to J , Streicher introduced the induction principle K :

K : (A : Type) (x : A) (P : Id A x x ! Type)
! P refl
! (c : Id A x x )
! P c

Using K we can prove the UIP property, and the other way around. We have
also seen that dependent pattern matching implies K . The converse of this has
also been established: we can rewrite definitions written with dependent pattern
matching to ones that use only the induction principles and axiom K [Goguen
et al., 2006].

In homotopy type theory, we give upK (and essentially dependent pattern match-
ing), to allow for a more interesting structure of propositional equalities.

1This actually means that all the code we write, should be written using the elimination principles.
Agda provides a --without-K flag that limits pattern matches to those cases that should be safe. The
assumption is that every definition given by pattern matching that passes the --without-K check,
can be rewritten using the elimination principles. As such, we will sometimes use pattern matching
for our definition.
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2.3 Homotopy interpretation

In the introduction (chapter 1), it was mentioned that homotopy type theory con-
cerns itself with the following correspondence:

type theory homotopy theory
A is a type A is a space
x , y : A x and y are points in A
p, q : x ⌘ y p and q are paths from x to y
w : p ⌘ q w is a homotopy between paths p and q

...
...

In section 2.1 we noted that homotopies have a 1-groupoid structure. It is this
structure that leads us to the correspondence between the identity types from
Martin-Löf’s type theory and homotopy theory. In Hofmann and Streicher [1996],
the authors note that types have a groupoid structure. We have a notion of com-
position of proofs of propositional equality: the term trans : Id A x y ! Id A y z !
Id A x z , as such we will use the notation � instead of trans . The same goes
for symm : Id A x y ! Id A y x , which we will denote as �1. We can prove that
this gives us a groupoid, i.e. we can prove the following laws hold:

Given a, b, c, d : A and p : a ⌘ b, p : b ⌘ c and q : c ⌘ d we have:

• Associativity: p � (q � r) ⌘ (p � q) � r

• Left inverses: p �1 � p ⌘ refl

• Right inverses: p � p �1 ⌘ refl

• Left identity: refl � p ⌘ p

• Right identity: p � refl ⌘ p

The important thing to note is what kind of equalities we are talking about: the
equations given above all hold up to propositional equality one level higher. The
identity type Id A x y is of course a type and therefore has a groupoid struc-
ture of its own. Every type gives rise to a tower of groupoids that can interact
with each other: the presence of equations at one level can imply the presence of
equations at a higher level. This is exactly the same as the way homotopies form
an 1-groupoid, hence we have the correspondence between types and spaces as
mentioned earlier.

Having such an interpretation of type theory brings us several things. Since every
proof we write in type theory corresponds to a proof of a statement in homotopy
theory, we can use it to proof theorems of homotopy theory.

It also means that the intuition about homotopy theory can be applied to type
theory. As such, we can use it to explain why one cannot prove K using J (sec-
tion 2.3.1), using a couple of illustrations.
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2.3.1 Interpreting uniqueness of identity proofs and K

Recall the elimination principle of identity types, J :

J : (A : Type)
! (x : A)
! (P : (y : A) ! (p : Id A x y) ! Type)
! (c : P x x refl)
! (y : A) ! (p : Id A x y)
! P x y p

Interpreting propositional equalities as paths, we see that it tells us that if we
want to prove that a predicate P on paths holds, we only have to show that it is
satisfied for the constant path refl . Homotopically this can be motivated by the
fact that P is a predicate on paths with a fixed starting point x and a y that can
be chosen freely (see fig. 2.2). Any path p : x ⌘ y can be contracted along this
path to the constant path refl : x ⌘ x , so there is a homotopy between these two
paths.

x x x

Figure 2.2: With J we have the freedom to move the end point around.

In the case of axiom K , both the beginning and the end point are fixed:

K : (A : Type) (x : A) (P : Id A x x ! Type)
! P refl
! (p : Id A x x )
! P c

Homotopically this means that we are restricted to loops. If we want to contract a
given path p : x ⌘ x to refl : x ⌘ x , we cannot use the same trick as with J , as the
end point is fixed. Contracting a loop to refl does not always work, as can be seen
in fig. 2.3. If we have a hole in our space, then we can distinguish between loops
that go around the hole and those that do not. This shows that because we can
interpret type theory in homotopy theory, we can sometimes use our geometric
intuition to answer problems from type theory.
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x x x

Figure 2.3: With K , we are restricted to loops

2.4 n-types

The tower of iterated identity types of a type can tell us all sorts of things about
the type. For example, we can have a tower in which the identity types in a sense
become simpler every iteration, until they reach a fixpoint, in which the identity
types are isomorphic to the unit type, >. In homotopy theory, spaces isomor-
phic (or rather, homotopic) to the “unit space”, i.e. the space consisting of one
point, are called contractible. One way to formulate this in type theory is with
the following definition:

isContractible : Type ! Type
isContractible A = ⌃ (center : A) . ((x : A) ! Id A center x )

This can be interpreted as having a point center such that there is a path from
center to any point x . Such an interpretation sounds more like the definition
of path connectedness. In homotopy theory these two definitions do not coincide:
contractibility implies path connectedness, but not the other way around. An
example of this is the circle, which is path connected, but not contractible: going
around the circle once is not homotopic to the constant loop. The key here is that
the only functions that we can define in type theory are continuous functions, so
isContractible should really be interpreted as there being a point center such that
we can construct paths from center to any point x in a continuous manner.

If the structure of the identity types peters out after n iterations, we call such a
type an (n� 2)-type, or (n� 2)-truncated2:

is-truncated : N�2 ! Type ! Type
is-truncated (�2) A = isContractible A
is-truncated (S n) A = (x y : A) ! is-truncated n (Id A x y)

These truncation levels have the property that every n-type is also an (n+1)-type,
i.e. is-truncated defines a filtration on the universe of types.

2The somewhat strange numbering, starting at �2 comes from homotopy theory, where they first
considered groupoids without any higher structure to be 0-truncated and then generalised back-
wards.
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The contractible types are the types that are isomorphic to > in the sense that a
contractible type has an inhabitant that is unique up to propositional equality. In
section section 2.5 we will see examples of contractible types that have more than
one constructor.

Types of truncation level �1 are called h-propositions. (�1)-types are either
empty (?) or, if they are inhabited, contractible, hence isomorphic to >. They
can be interpreted as false and true propositions. One can easily prove that h-
propositions satisfy the principle of proof irrelevance:

proofIrrelevance : Type ! Type
proofIrrelevance A = (x y : A) ! Id A x y

The converse also holds: if a type satisfies proof irrelevance, it is an h-proposition.
Showing this is a bit more involved, but it is a nice example of how one can proof
things about equalities between equalities.

proofIrrelevance)is-proposition : (A : Type)
! (p : proofIrrelevance A) ! is-hProp A

We need to show that for every x y : A, x ⌘ y is contractible: we need to find a
proof c : x ⌘ y and show that any other proof of x ⌘ y is equal to c. An obvious
candidate for c is p x y . To show that c ⌘ p x y , we use based path induction
on c, fixing the y , so we need to prove that refl ⌘ p y y . Instead of doing this
directly, we first prove something more general:

lemma : (x y : A) (q : x ⌘ y) ! p x y ⌘ q � p y y

This can be done by based path induction on q , fixing y . The goal then reduces to
showing that p y y ⌘ p y y . Using the lemma we can show that p y y ⌘ p y y �
p y y . Combining this with p y y � refl and the fact that �q ! p � q is injective
for any p, we get that p y y ⌘ refl .

The definition of h-proposition via proof irrelevance fits the traditional and clas-
sical (in the sense of classical logic) view of propositions and their proofs: we only
care about whether or not we have a proof of a proposition and do not distinguish
between two proofs of the same proposition.

Another important case are the 0-types, also called h-sets, which are perhaps the
most familiar to programmers. These are the types of which we have that any
two inhabitants x and y are either equal to each other in a unique way, or are
not equal, i.e. h-sets are precisely those types that satisfy uniqueness of identity
proofs. The simplest example of a type that is an h-set, but not an h-proposition
is the type Bool :

data Bool : Type where

True : Bool
False : Bool

In fact, most types one defines in Agda are h-sets. One characteristic of h-sets is
given by Hedberg’s theorem [Kraus et al., 2013], which states that every type that
has decidable equality (i.e. (x y : A) ! x ⌘ y+(x ⌘ y ! ?)) also is an h-set. The
only way to define a type that is not an h-set in Agda, is to add extra propositional
equalities to the type by adding axioms. This is the subject of section 2.5.
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Notation Sometimes we will use the notation A : hProp to indicate that A is
a type that is an h-proposition. In an actual implementation hProp would be
defined as ⌃ (A : Type) . (is-truncated (�1) A). When we refer to A, we are
usually not interested in an inhabitant of the ⌃-type, but in the first field of that
inhabitant, i.e. the A : Type. The same holds for the notation A : hSet .

2.4.1 Truncations

It may happen that we sometimes construct a type of which the identity types
have too much structure, e.g. it is a 2-type but we want it to be a 0-type. In homo-
topy type theory, we have a way to consider a type as though it were an n-type,
for some n we have chosen ourselves, the so called n-truncation of a type. Special
cases that are particularly interesting are the (�1)-truncation, i.e. we force some-
thing to be an h-proposition, which is particularly useful when we want to do
logic, and 0-truncation, i.e. we force something to be an h-set. The idea is that we
add enough extra equalities to the type such that the higher structure collapses.
This can be done using higher inductive types (section 2.5). The general construc-
tion is rather involved and not of much interest for the purposes of this thesis: we
will only encounter the (�1)-truncation and 0-truncation.

2.5 Higher inductive types

We have seen a counterexample of a space in which the interpretation of K and
uniqueness of identity proofs fails: a space with a hole in it. The question is
then if we can construct such counterexamples in the type theory itself. Since
we are asking for a type A : Type for which there is an inhabitant x : A with a
term p : Id A x x such that p ⌘ refl ! ?, we know that we cannot do this is
normal Martin-Löf’s type theory without adding axioms as this would violate
the canonicity property.

Higher inductive types extend inductive types with the possibility add path con-
structors to the definition of a type: instead of giving constructors for the points
of a space, we may also give constructors for paths between points, and paths
between paths, and so on. Using higher inductive types we can now describe
familiar spaces, such as the circle (see also fig. 2.4):

data Circle : Type where

base : Circle

loop : base ⌘ base

The above is of course not (yet) valid Agda syntax. We can simulate higher induc-
tive types by adding the extra path constructors (in this case loop) as postulates.
We can also hide the constructors in such a way, that we can use them (indirectly)
to construct terms of type Circle, but without allowing pattern matching.
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baseloop

Figure 2.4: The circle as a higher inductive type

Instead of pattern matching, we specify how we can eliminate inhabitants with
the principle presented below. Roughly speaking we need to ensure that all the
points get mapped in such a way that all the (extra) equalities are respected. In
the case of the circle this looks as follows:

Circle-rec : {B : Set }
! (b : B)
! (p : b ⌘ b)
! Circle ! B

with computation rule:

Circle-rec b p base
�
= b

We also need a computation rule for the paths, to witness that the loop indeed
gets mapped onto the specified path p : b ⌘ b by ap:

ap (Circle-rec b p) loop
�
= p

It might seem a bit silly that we need to provide a path b ⌘ b, as this type is always
inhabited by refl . However, we sometimes do want p to be di�erent from refl : in
order to write the identity function on Circle, we also want loop to be preserved
by this map.

Apart from a non-dependent elimination principle, we also need a dependent
version:

Circle-ind : {B : Circle ! Set }
! (b : B base)
! (p : transport B loop b ⌘ b)
! (x : Circle) ! B x

Using the dependent elimination principle, we can show that this type violates
uniqueness of identity proofs, i.e. we can prove that loop ⌘ refl does not hold. In
fact, the type Id Circle base base is isomorphic to the integers Z, where transitiv-
ity maps to addition on integers [Licata and Shulman, 2013]. This might seem a
bit strange, because at first glance Circle seems to be a contractible type: we have
only have one constructor base and an equality base ⌘ base, so it seems to fit the
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definition. However, trying to prove (x : Circle) ! x ⌘ base will not work, as the
only functions we can define in type theory are continuous functions. While it is
true in homotopy theory that for every point on the circle, we can find a path to
the base point, we cannot do so in a continuous way.

If we add a path constructor connecting two points x and y , we do not only get
that specific path, but all the paths that can be constructed from that path using
transitivity and symmetry. If we start out with a type with only two constructors
x and y , we get a type isomorphic to the booleans (see fig. 2.5), a 0-type. Adding
one path constructor p : x ⌘ y gives us the interval (see fig. 2.6 and section 2.5.2),
which is a contractible type (it is a (�2)-type) and hence isomorphic to the unit
type>. If we add yet another path constructor q : x ⌘ y , we get a type isomorphic
to Circle, which is a 1-type.

x y

Figure 2.5: Booleans

x y

p

Figure 2.6: Interval

x y

p

q

Figure 2.7: Circle

2.5.1 Coherence issues

Equalities at di�erent levels interact with each other: if we add equalities at one
level, e.g. paths between points, it may also generate new paths at other levels,
e.g. new homotopies between paths that previously did not exist. One example
of this is (�1)-truncation, or propositional truncation, via the following higher
inductive type:

data (�1)-truncation : (A : Type) : Type where

inhabitant : A ! (�1)-truncation A

all-paths : (x y : (�1)-truncation A) ! x ⌘ y

We have seen in section 2.4 that this type indeed yields a proposition, as it satisfies
proof irrelevance, since we have added paths between all points x and y . This
collapses all higher structure of the original type A : Type.

The converse can also happen: instead of collapsing the structure at higher lev-
els, we might gain new structure at those levels, which sometimes may be unde-
sirable. If this is the case, the resulting type is not coherent enough. Coherence
properties are properties that state that certain equalities between equalities must
hold. Suppose we want to consider words generated by some alphabet A : Set .
This can be done with the following type:

data FreeSemigroup (A : Set) : Type where

elem : A ! FreeSemigroup A
· : FreeSemigroup A ! FreeSemigroup A ! FreeSemigroup A
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Clearly, FreeSemigroup A is a set. Suppose we want · to be associative, so we
add the following path constructor:

assoc : {a b c : FreeSemigroup A} ! (a · b) · c ⌘ a · (b · c)

Adding these equalities breaks the h-set property. The coherence property that
we want to hold here is uniqueness of identity proofs. One example for which
this fails, is that the following diagram (the so called Mac Lane pentagon) does not
commute:

((a · b) · c) · d (a · (b · c)) · d a · ((b · c) · d)

(a · b) · (c · d) a · (b · (c · d))

ap (�x ! x · d) assoc assoc

assoc

assoc

ap (�x ! a · x ) assoc

This shows us that the interaction of propositional equalities at the di�erent levels
can be quite subtle. For this reason one often truncates a higher inductive type,
to be sure that it is coherent enough, e.g. that it is really an h-set.

2.5.2 Interval

Another example of a space from homotopy theory is the interval. At first glance
this might seem like a rather uninteresting space to study, as it is homotopy equiv-
alent to the space that consists of one point. The following presentation of the
interval as a higher inductive type has some interesting consequences.

The interval [0, 1] can be seen, from a homotopy theory perspective, as a space
with two points, 0 and 1, and a path between them. As a higher inductive type,
this can be presented as follows:

data Interval : Type where

zero : Interval
one : Interval

segment : zero ⌘ one

A map from Interval to some type B : Type must map zero and one to points in
a b : B such that a ⌘ b:

Interval-rec : {B : Type}
! (b0 b1 : B)
! (p : b0 ⌘ b1)
! Interval ! B
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with computation rules:

Interval-rec b0 b1 p zero
�
= b0

Interval-rec b0 b1 p one
�
= b1

ap (Interval-rec b0 b1 p) seg
�
= p

Having an interval type means that we have a di�erent way to talk about equali-
ties: any path p : Id A x y can be seen as a map Interval ! A:

⌘ )Interval : {A : Type} {x y : A} ! x ⌘ y ! Interval ! A
⌘ )Interval {A} {x } {y } p i = Interval-rec {A} x y p i

The other way around can also be done:

Interval) ⌘ : {A : Set } ! (p : Interval ! A) ! (p zero)⌘ (p one)
Interval) ⌘ p = ap p seg

Using this we can now manipulate propositional equalities in such a way that
we can prove function extensionality. Suppose two functions f g : A ! B and a
term ↵ : (x : A) ! f x ⌘ g x . To remove the dependency in the type, we can use
⌘ )Interval:

�a !⌘ )Interval (↵ a) : A ! Interval ! A

If we flip the arguments of that term, we get a function Interval ! A ! A, which
then can be turned into the desired f ⌘ g . The whole term looks as follows:

ext : (A B : Type) (f g : A ! B) (↵ : (x : A) ! f x ⌘ g x ) ! f ⌘ g
ext A B f g ↵ = Interval) ⌘ (flip (�a !⌘ )Interval (↵ a)))

2.6 Equivalence and univalence

Martin-Löf’s type theory satisfies the property that everything you construct in
the theory is invariant under isomorphism. Consider for example the definition
of a monoid:

Monoid : Type ! Type
Monoid A =
⌃ (unit : A) .
⌃ ( · : A ! A ! A) .
⌃ (assoc : (x y z : A) ! x · (y · z ) ⌘ (x · y) · z ) .
⌃ (unitleft : (x : A) ! unit · x ⌘ x ) .
⌃ (unitright : (x : A) ! x · unit ⌘ x ) . >
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If we have two types A B : Type with an isomorphism f : A ! B and a proof
ma : Monoid A, then it is straightforward to produce a Monoid B using only
Monoid A and the isomorphism f , by applying f and f �1 to the fields ofma : Monoid A.
The resulting instance of Monoid B can then also be shown to be isomorphic to
ma . This is similar to the situation with transport and apd : if we have a proof
p : A ⌘ B , then we can use transport to create an inhabitant of Monoid B using
ma and p. We can then prove that the resulting instance of Monoid B is propo-
sitionally equal to ma using apd . However, writing transport and apd functions
that works with isomorphisms instead of propositional equalities will not work
in Martin-Löf’s type theory. If we try to write the following functions:

transport-iso : {A : Type} {B : A ! Type} {x y : A}
! x ' y ! B x ! B y

apd-iso : {A : Type} {B : A! Type} {x y : A}
! (f : (a : A)! B a)! (� : x ' y)
! transport � (f x ) ' f y

we will find ourselves stuck. We want to write a type-generic program that ap-
plies the isomorphism at the right places, but we cannot access the information
about how the types are constructed.

Univalence gives us an internal account of the principle that everything we con-
struct is invariant under isomorphism. It roughly says that isomorphic types are
propositionally equal, so all the tools to manipulate propositional equalities now
also can be applied to isomorphisms. But before we can formulate the univalence
axiom, we need to introduce some new terminology. We can define the notion of
a function f : A ! B being an isomorphism as follows:

isIsomorphism : {A B : Type} (f : A ! B) ! Type
isIsomorphism f = ⌃ (g : B ! A) . ((x : B) ! f (g x ) ⌘ x ⇥
(x : A) ! g (f x ) ⌘ x )

' : (A B : Type) ! Type
A ' B = ⌃ (f : A ! B) (isIsomorphism f )

We want the type isIsomorphism f to be an h-proposition, which it is when A and
B are h-sets, but it can fail to be an h-proposition when A and B are n-types with
n > 0. Instead we introduce the notion of equivalence :

isEquivalence : {A B : Type} (f : A ! B) ! Type
isEquivalence f = ⌃ (g : B ! A) . ((x : B) ! f (g x ) ⌘ x )

⇥ ⌃ (g : B ! A) . ((x : A) ! h (f x ) ⌘ x )

This definition does satisfy the property that isEquivalence f can hold in at most
one way (up to propositional equality). We can also show that isIsomorphism f !
isEquivalence f and isEquivalence f ! isIsomorphism f , i.e. the two types are
coinhabited.

Using this definition of what it means to be an equivalence, we can define the
following relation on types, analogous to what we did with isomorphisms:

⇠= : (A B : Type) ! Type
A ⇠= B = ⌃ (f : A ! B) . (isEquivalence f )
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It is easy to show that if two types are propositional equal, then they are also
equivalent, by transporting along �X ! X :

⌘ ) ' : (A B : Type) ! A ⌘ B ! A ⇠= B

A universe of types is called a univalent universe if equivalences and propositional
equalities are equivalent, e.g. in the case of the universe Type, this would look as
follows:

(A B : Type) ! isEquivalence (⌘ ) ' A B)

It has been shown that in a popular model of homotopy theory, the category of
simplicial sets, the universe of spaces is indeed univalent [Kapulkin et al., 2012].
One important consequence of this property is that we have the following:

univalence : (A B : Type) ! A ⇠= B ! A ⌘ B

which should satisfy the following computation rule:

uacomp : {A B : Type}
{f : A ! B }
{eq : isEquivalence f }
{x : A}

! transport (�X ! X ) (univalence A B) x ⌘ f x

Univalence means that we can now generalise the Monoid example mentioned to
anyB : Type ! Type, since transport and apd can now be used for isomorphisms
as well.

If we have univalence, the universe of h-sets is not a h-set, as is exhibited by
the isomorphisms Bool ! Bool . There are two di�erent such isomorphisms:
id and not. Using univalence, these isomorphisms map to di�erent proofs of
Bool ⌘ Bool . id maps to refl and not to something that is not equal to refl . This
means that the universe of h-sets violates uniqueness of identity proofs. It can be
shown to be a 1-type instead. In fact, the universe of n-types is not an n-type but
an (n+ 1)-type [Kraus and Sattler, 2013].

2.7 Implementation

Currently, the way to “implement” homotopy type theory, i.e. Martin-Löf’s type
theory with univalence and higher inductive types, is to take an existing imple-
mentation of Martin-Löf’s type theory such as Agda or Coq and add univalence
and the computation rules for univalence as axioms. This approach is su�cient
when we want to do formal mathematics, since in that case we only are interested
in type checking our developments. If we want to run the program, terms that
make use of univalence then get stuck as soon as it hits an axiom.

20



The computational interpretation of univalence is one the biggest open problems
of homotopy type theory. Several attempts have been made at a computation
interpretation for truncated versions of homotopy type theory: Licata and Harper
[2012] show that if we restrict ourselves to a univalent universe of h-sets, we can
achieve canonicity. The article however does not present a decidability result for
type checking. Sozeau et al. [2013] internalise homotopy type theory in Coq and
also restrict themselves to the two-dimensional case, i.e. uniqueness of identity
proofs need not hold, but equalities between equalities are unique.

A question one might ask is why we cannot add an extra constructor to the defini-
tion of Id for univalence. Doing this means that we end up with a di�erent elim-
ination principle: if we want to prove something about propositional equalities,
we also need to account for the case when it was proven using univalence. Apart
from making it more di�cult to prove things about propositional equalities, it is
also has some undesirable properties. We can prove that a proof of equality con-
structed using the univalence constructor is never equal to refl . There are cases in
which we want this to be the case, e.g. when we apply univalence to the identity
isomorphism.

The conjecture is that full canonicity will probably not hold, but only canonicity
“up to propositional equality”: it is conjectured [Voevodsky, 2011] that there is
a terminating algorithm that takes an expression t : N and produces a canoni-
cal term t 0 : N along with a proof that t ⌘ t 0. The proof of equality may use the
univalence axiom.

Higher inductive types can also be implemented by adding axioms for the extra
paths. The elimination principles also can be implemented by adding the compu-
tation rules for paths as axioms. One then has to be careful not to pattern match
on higher inductive types. In Agda one can hide things in such a way that one
can export an elimination principle in which the computation rules for the points
hold definitionally and the other rules propositionally, while also making direct
pattern matching impossible from any other module that imports the module
containing the higher inductive type [Licata, 2011]. However, one still has to be
careful not to use the absurdity pattern, (), when dealing with higher inductive
types, as that can be used to prove ? [Danielsson, 2012].
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Chapter 3

Applications of homotopy
type theory

In chapter 2 we introduced homotopy type theory and the two extensions to
Martin-Löf’s type theory it brings us: univalence and higher inductive types. We
have seen how higher inductive types can be used to prove function extension-
ality and how univalence makes it a lot easier to deal with isomorphic types in
programs. This chapter is devoted to other applications of homotopy type theory
to programming. In section 3.1 we show how higher inductive types can be used
to define quotient types and argue whether we need such a construction and con-
trast this approach to the setoid approach. We consider some of the di�culties
that higher inductive types usually bring with them (so called coherence issues)
and show how to write binary operations on quotients as an example of how one
uses the elimination principles of quotients.

We also consider the application of univalence to views on abstract types (sec-
tion 3.2), as proposed by Licata [2012]. We work out the computations in detail
to show how this works out and extend the approach to also work with non-
isomorphic views. The resulting construction is a nice application of quotient
types.

3.1 Quotient types

In mathematics, one way to construct new sets is to take the quotient of a set X
by an equivalence relation R on that particular set. The new set is formed by
regarding all elements x, y 2 X such that xRy as equal. An example of a quotient
set is the set of rationals Q constructed from the integers as follows: we quotient
out Z ⇥ Z by the relation (a, b) ⇠ (c, d) if and only if ad = bc.

In programming, such a construction can also be very useful, as it often happens
that we have defined a data type that has more structure than we want to expose
via the interface. An example of this is encoding sets as lists: we want to regard
two lists as encoding the same set if they contain the same elements, no matter
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what the multiplicity of every element is or how the list is ordered. Other exam-
ples where quotient types can be useful are the situations in which we want to
encode our data in such a way that certain operations on the data can be imple-
mented more e�ciently. An example of this is implementing a dictionary with a
binary search tree: there are multiple binary search trees that represent the same
dictionary, i.e. contain the same key-value pairs. If we pass two di�erent trees
representing the same dictionary to an operation, we want the operation to yield
the same results.

To make the above more precise, suppose we have defined a data type of binary
search trees, BST : Type, along with a relation ⇠ : BST ! BST ! hProp such
that x ⇠ y ⌘ > if and only if x and y are comprised of the same key-value pairs,
and x ⇠ y ⌘ ? otherwise. Suppose we have an insertion operation insert of type
KeyValuePair ! BST ! BST and a lookup function lookup : Key ! BST !
Maybe Value . We can formulate the properties that should hold:

• (a : KeyValPair) (x y : BST ) ! x ⇠ y ! insert a x ⇠ insert a y

• (a : Key) (x y : BST ) ! x ⇠ y ! lookup a x ⌘ lookup a y

Note that for insertion, returning the same results means that we want them to
represent the same dictionary: it is perfectly allowed to return di�erently bal-
anced binary search trees. For lookup, we want the results to be propositionally
equal, as we do not have any other relation available that holds on the result type,
Maybe Value .

A type that comes equipped with an equivalence relation, such as BST along
with ⇠ , is called a setoid. Its disadvantages are that we have to formulate and
check the properties ourselves: there is no guarantee that a function out of a se-
toid respects the relation from the setoid. As can be seen in the binary search tree
example, we have to be careful to use the right relation (propositional equality
or the setoid’s equivalence relation) when we want to talk about two inhabitants
being the same. Homotopy type theory provides us with the machinery, namely
higher inductive types, to enrich the propositional equality of a type, so we can
actually construct a new type in which propositional equality and the provided
equivalence relation coincide.

3.1.1 Do we need quotients?

Before we look at the quotient type construction with higher inductive types,
we will determine whether we actually need such a thing. In the case of the
dictionary example, we might consider making the BST data type more precise
such that the only inhabitants are trees that are balanced in a certain way, e.g. by
using a cleverly indexed type, so we do have a unique representation for every
dictionary.

The question then is whether such a construction always exists: can we define
a type that is in some sense equal to the quotient? To be able to answer this
question, we need to define what it means to be a quotient and what notion of
equality we want.
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Altenkirch et al. define a quotient, given a setoid (A, ⇠ ) as a type Q : Type with
the following:

• a projection function [ ] : A ! Q

• a function sound : (x y : A) ! x ⇠ y ! [x ] ⌘ [y ]

• an elimination principle:

Q-elim : (B : Q ! Type)
(f : (x : A) ! B [x ])
((x y : A) (p : x ⇠ y) ! (transport (sound x y p) (f x )) ⌘ f y)
(q : Q) ! B q

A quotient is called definable if we have a quotient Q along with the follow-
ing:

• emb : Q ! A

• complete : (a : A) ! emb [a ] ⇠ a

• stable : (q : Q) ! [emb q ] ⌘ q

We can view these requirements as having a proof of [ ] being an isomorphism,
with respect to the relation ⇠ on A instead of propositional equality.

The result of Altenkirch et al. is that there exist quotients that are not definable
with one example being the real numbers constructed using the usual Cauchy
sequence method. Adding quotients as higher inductive types to our type theory,
does not make the real numbers definable. Adding quotients is still useful in that
we only have to work with propositional equality, as opposed to the confusion as
to what relation one should use that arises from the use of setoids.

3.1.2 Quotients as a higher inductive type

Using higher inductive types, we can define the quotient of a type by a relation
as follows:

data Quotient (A : Type) ( ⇠ : A ! A ! hProp) : Type where

[ ] : A ! Quotient A ⇠
sound : (x y : A) ! x ⇠ y ! [x ] ⌘ [y ]

To write a function Quotient A ⇠ ! B for some B : Type, we need to specify
what this function should do with values [x ] with x : A. This needs to be done
in such a way that the paths added by sound are preserved. Hence the recursion
principle lifts a function f : A ! B to ef : Quotient A ⇠ ! B given a proof that
it preserves the added paths:

Quotient-rec : (A : Type) ( ⇠ : A ! A ! hProp)
(B : Type)
(f : A ! B)
((x y : A) ! x ⇠ y ! f x ⌘ f y)
Quotient A ⇠ ! B

24



If we generalise this to the dependent case, we get something that fits perfectly
in the requirement of a type being a quotient given earlier:

Quotient-ind : (A : Type) ( ⇠ : A ! A ! hProp)
(B : Quotient A ⇠ ! Type)
(f : (x : A) ! B [x ])
((x y : A) (p : x ⇠ y) ! (transport (sound x y p) (f x )) ⌘ f y)
(q : Quotient A ⇠ ) ! B q

Note that we do not require a proof of ⇠ being an equivalence relation. Instead,
the quotient should be read as identifying inhabitants by the smallest equivalence
relation generated by ⇠ : adding the path constructor means we get x ⌘ y for
every x ⇠ y , but also paths constructed from these new paths using trans and
sym , possibly in combination with paths that already existed.

3.1.3 Coherence issues

One thing we glossed over is the question whether Quotient A ⇠ is actu-
ally an h-set, given the fact that A is an h-set. This need not be the case, as is
exhibited by the case where A is taken to be > and ⇠ is the trivial relation.
The resulting quotient is equivalent to the circle, which is not an h-set: the loop
sound tt tt tt : [tt ] ⌘ [tt ] is not equal to refl : [tt ] ⌘ [tt ].

In order to get an h-set, we therefore need to take the 0-truncation of the quotient,
which can be done with the following higher inductive type:

0-truncation (A : Type) : Type where

inhabitant : A ! 0-truncation A

uip : {x y : 0-truncation A} ! (p q : x ⌘ y) ! p ⌘ q

The elimination principle tells us that any function A ! B , with A B : Type can
be lifted to 0-truncation A ! B if it respects the additional paths of 0-truncation A.
If B happens to be an h-set, then these conditions are automatically satisfied. In
the dependent case, we have to supply a family of types B : 0-truncation A !
Type and a function f : (x : A) ! B (inhabitant x ) such that, again, the addi-
tional paths of 0-truncation A are respected. If we have that for every x : 0-truncation A,
B x is an h-set, then we are done. The precise formulations of the elimination
principles, both dependent and non-dependent, are rather technical and involved
and not of interest for our purposes. In the examples we consider, we eliminate
into h-sets, so we do not need to explicitly check the additional conditions.

If the relation ⇠ happens to be an equivalence relation, using the truncated
quotient also gives us that we have (using univalence) a ⇠ b ⌘ ([a ] ⌘ [b ]), for
every a b : A, supporting our previous statement that the propositional equality
of Quotient A ⇠ is the smallest equivalence relation generated by ⇠ .
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3.1.4 Binary operations on quotients

We have seen how to lift a function f : A ! B to ef : Quotient A ⇠ B given a
proof of (x y : A) ! x ⇠ y ! f x ⌘ f y , using Quotient-rec. Suppose we want to
write a binary operation on quotients, then we want to have a way to lift a function
f : A ! A ! B satisfying (x y x 0 y 0 : A) ! x ⇠ x 0 ! y ⇠ y 0 ! f x y ⌘ f x 0 y 0 to
ef : Quotient A ⇠ ! Quotient A ⇠ ! B .

Let us fix A, ⇠ and B , so that we do not have to pass them around explicitly.
Our goal is to write a term of the following type:

Quotient-rec-2 : (f : A ! A ! B)
(resp : (x y x 0 y 0 : A) ! x ⇠ x 0 ! y ⇠ y 0 ! f x y ⌘ f x 0 y 0)
Quotient A ⇠ ! Quotient A ⇠ ! B

We will first use Quotient-rec to lift the left argument, i.e. we want to produce a
function of type Quotient A ⇠ ! A ! B and then use Quotient-rec on this
function to achieve our goal. So let us try writing the function that lifts the left
argument:

lift-left : (f : A ! A ! B)
(resp : (x y x 0 y 0 : A) ! x ⇠ x 0 ! y ⇠ y 0 ! f x y ⌘ f x 0 y 0)
Quotient A ⇠ ! A ! B

lift-left f resp q = Quotient-rec f goal0 q

where goal0 : (x x 0 : A) ! x ⇠ x 0 ! f x ⌘ f x 0. Since we have quotient types, we
also have function extensionality1, hence we can solve this by proving (x x 0 y : A) !
x ⇠ x 0 ! f x y ⌘ f x 0 y . However, to be able to use resp, we also need a proof
of y ⇠ y , so if we assume that ⇠ is an equivalence relation, we can solve this
goal.

We can now fill in lift-left in the definition of Quotient-rec-2:

Quotient-rec-2 f resp q q 0 = Quotient-rec (lift-left f resp q) goal1 q 0

where goal1 : (y y 0 : A) ! y ⇠ y 0 ! lift-left f resp q y ⌘ lift-left f resp q y 0,
which can be proven using Quotient-ind. We then only have to consider the case
where q is of the form [a ] for some a : A. In that case, lift-left f resp q y reduces
to f a y and lift-left f resp q y 0 to f a y 0. Since we have y ⇠ y 0, we again need ⇠
to be reflexive to get a ⇠ a so we can use resp. We now have the following:

goal1 : (y y 0 : A)! y ⇠ y 0 ! lift-left f resp q y ⌘ lift-left f resp q y 0

goal1 = �y y 0 r !
Quotient-ind (�w ! lift-left f resp w y ⌘ lift-left f resp w y 0)

(�a ! resp a y a y 0 (⇠ -refl a) r)
goal2
q

1We can quotient Bool by the trivial relation. Using this, we can perform essentially the same
proof of function extensionality as the one that uses the interval type.
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Of course, we have still to prove that this respects the quotient structure on q :

goal2 : (p : x ⇠ x 0)
transport (sound x x 0 p) (resp x y x y 0 (⇠ -refl x ) r) ⌘
resp x 0 y x 0 y 0 (⇠ -refl x 0) r

Note that this equality is of type Id (Id B (f x y) (f x y 0)), which means that if
B happens to be an h-set, we can appeal to uniqueness of identity proofs and we
are done.

It is interesting to see that even though we do not need ⇠ to be an equiva-
lence relation for the definition of quotient to work, we do find ourselves in need
of properties such as reflexivity for ⇠ , in order to define operations on quo-
tients.

3.2 Views on abstract types

Consider the dictionary example of the previous section. Most languages provide
such a structure as an abstract type, e.g. in the Haskell Platform, a dictionary struc-
ture is provided by the Data.Map module. To the users importing this module,
the type Map is opaque: its constructors are hidden. The user may only use the
operations such as insert and lookup. The advantage of this approach is that we
can easily interchange an obvious but slow implementation (e.g. implementing
a dictionary as a list of tuples) with a more e�cient but more complex solution
(e.g. using binary search trees instead of lists), without having to change a single
line of code in the modules using the abstract type.

In dependently typed programming, such an approach often means that we have
hidden too much: as soon as we try to prove properties about our program that
uses some abstract type, we find ourselves having to add properties to the abstract
type specification, or even worse: we end up exporting everything so we can use
induction on the concrete type used in the actual implementation.

A solution to this problem is to supply the abstract type along with a concrete
implementation of the abstract type, called a view. This approach was introduced
by Wadler [1987] as a way to do pattern matching on abstract types.
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3.2.1 Specifying views

An implementation of an abstract type is a type along with a collection of oper-
ations on that type. An abstract type can then be described in type theory as a
nested ⌃-type [Mitchell and Plotkin, 1988], e.g. a sequence abstract type can be
described as follows:

Sequence = ⌃ (seq : Set ! Set) .
⌃ (empty : (A : Set) ! (seq A)) .
⌃ (single : (A : Set) ! A ! seq A) .
⌃ (append : (A : Set) ! seq A ! seq A ! seq A) .
(map : (A B : Set) ! (A ! B) ! seq A ! seq B)

An implementation of such an abstract type then is just an inhabitant of this
nested ⌃-type.

If we want to do more than just use the operations and prove properties about
our programs that make use of abstract types, we often find that we do not have
enough information in the abstract type specification available to prove the prop-
erty at hand. One way to address this problem is to add properties to the specifi-
cation, but it might not at all be clear a priori what properties are interesting and
expressive enough to add to the specification.

Another solution, proposed by Licata [2012], is to use views: along with nested
⌃-type, we also provide a concrete implementation, i.e. an inhabitant of said ⌃-
type, called a view on the abstract type. The idea is that the concrete view can be
used to prove theorems about the abstract type. However, for this to work, we
need to make sure that any implementation of the abstract type is also in some
sense compatible with the view: the types of both implementations need to be
isomorphic and the operations need to respect the isomorphism. To illustrate
this, consider we have two sequence implementations:

ListImpl : Sequence
ListImpl = (List , ([ ], (�x ! [x ], ( ++ ,map))))

OtherImpl : Sequence
OtherImpl = (Other , (otherEmpty , (otherSingle, (otherAppend , otherMap))))

We want List and Other to be “isomorphic”2, i.e. we need to write the following
terms:

• to : (A : Type) ! Other A ! List A

• from : (A : Type) ! List A ! Other A

• fromIsRightInverse : (A : Type) (xs : List A) ! to (from xs) ⌘ xs

• fromIsLeftInverse : (A : Type) (xs : Other A) ! from (to xs) ⌘ xs

2List and Other cannot be isomorphic, as they are not types but type constructors.
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We also want the operations onOther to behave in the same way as the operations
on Lists, i.e. the following properties should be satisfied:

• to otherEmpty ⌘ [ ]

• (x : A) ! to (otherSingle x ) ⌘ [x ]

• (xs ys : Other A) ! to (otherAppend xs ys) ⌘ to xs ++ to ys

• (f : A ! B) (xs : Other A) ! to (otherMap f xs) ⌘ map f (to xs)

These properties can be added to the original Sequence type. However, it is rather
tedious having to formulate these properties for every operation of the abstract
type. Since we have specified the abstract type as a ⌃-type, we can use proposi-
tional equality and univalence between these to guide us to the desired proper-
ties. The full specification predicate now becomes the following:

SequenceSpecification : Sequence ! Type
SequenceSpecification seqImpl = seqImpl ⌘ ListImpl

We know that in order to prove that two values a and b of type ⌃ (x : A) .B x
are propositionally equal, we need to show its fields are propositionally equal as
well:

⌃- ⌘ : {A : Type} {B : A ! Type}
{s s 0 : ⌃ (x : A) . B x }
(p : fst s ⌘ fst s 0)
(q : transport B p (snd s)⌘ snd s 0)

! s ⌘ s 0

If we want to prove that ListImpl ⌘ OtherImpl , using ⌃- ⌘, we first need to show
that List ⌘ Other . This can be done by showing that for every (A : Type), we
have an isomorphism to : Other A ! List A. Using the univalence axiom and
function extensionality, we can then prove our goal, List ⌘ Other . For the second
part of the outermost ⌃-type, we need to transport the snd of ListImpl along the
proof of List ⌘ Other we just gave and prove it to be propositionally equal to the
snd of OtherImpl . Rather than deal with the fully general Sequence where will
show how the transporting looks like for the case when we fix the type parameter.
This is done so we do not have to deal with function extensionality and only have
to use univalence directly once. We consider the following definitions where we
fix the type parameter A : Type:

SequenceA = ⌃ (seqA : Set) .
⌃ (emptyA : seqA) .
⌃ (singleA : A ! seqA) .
⌃ (appendA : seqA ! seqA ! seqA) .

(mapA : (A ! A) ! seqA ! seqA)

with ListImplA and OtherImplA defined from the previous definitions.
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To show thatListImplA andOtherImplA, we need to show using univalence that
List A ⌘ Other A, so the beginning of the proof looks like this:

spec :
(from : List A ! Other A)
(to : Other A ! List A)
! Iso (List A) (Other A) from to
! ListImplA ⌘ OtherImplA

spec from to iso = ⌃- ⌘ (univalence (List A) (Other A) iso)
(⌃- ⌘ goal0
(⌃- ⌘ goal1
(⌃- ⌘ goal2

goal3)))

The first goal, goal0, has type fst (transport (univalence (List A) (JoinList A) iso)
([ ], (�x ! [x ], ( ++ ,map)))) ⌘ otherEmpty . The left hand side of the equation is
stuck, as we made use of the univalence axiom. However, we can prove that the
first field of transport applied to the dependent pair, is transport applied to the
first field of the dependent pair:

⌃-transport :
{Ctx : Type}
{A : Ctx ! Type} {B : (ctx : Ctx ) ! A ctx ! Type}
{ctx ctx 0 : Ctx }
{x : A ctx } {y : B ctx x }
(pf : ctx ⌘ ctx 0) !
fst (transport (�c ! ⌃ (x : A c) . B c x )) pf (x , y)) ⌘ transport (�c ! A c) pf x

If we apply this to goal0, we now need to show that
transport (�c ! c) (univalence (List A) (JoinList A) iso) [ ] ⌘ otherEmpty ,
which we can further reduce using the “computation” rule for univalence:

univalence-comp :
{A B : Type}
{from : A ! B }
{to : B ! A}
{iso : Iso A B from to}
{x : A}

! transport (�X ! X ) (univalence A B iso) x ⌘ from x

We have reduced goal0 to the proof obligation from [ ] ⌘ otherEmpty . We can
apply the same steps to the other goals and recover the properties we formulated
earlier. As we have now seen, using this method, giving a specification of an
abstract type amounts to giving a nested ⌃-type specifying the interface and a
concrete view specifying the behaviour. We now get to prove properties of the
abstract type without having to add numerous properties to the interface.

With the current “implementation” of homotopy type theory done by adding
things such as univalence as axioms, we have to do all this rewriting by hand,
but if we have a version of univalence available that computes, we automatically
arrive at the desired properties.
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3.2.2 Reasoning with views

If we want to prove a property about our abstract type, we now only have to prove
that it holds for the concrete view. The resulting proof can then be used to show
that it also holds for any other implementation of the abstract type.

As an example of this, we will show that the empty operation of our sequence
type is the (left) unit of append . The case for lists is easy, assuming that ++ only
does induction on its left argument:

left-unit-append : (xs : List A) ! [ ] ++ xs ⌘ xs
left-unit-append xs = refl

The general case of this statement is:

(xs : Other A) ! otherAppend otherEmpty xs ⌘ xs

which can be established by the following equational reasoning:

xs
⌘ {isomorphism}
from (to xs)

⌘ {[ ] is left unit of ++}
from ([ ] ++ to xs)

⌘ {specification of otherImpl }
from (to otherEmpty ++ to xs)

⌘ {specification of otherAppend }
from (to (otherAppend otherEmpty xs))

⌘ {isomorphism}
otherAppend otherEmpty xs

3.2.3 Non-isomorphic views

An implementation of an abstract type sometimes does not turn out to be isomor-
phic to the concrete view. An example of this is an implementation of sequences
via join lists:

data JoinList (A : Type) : Type where

nil : JoinList A
unit : A ! JoinList A
join : JoinList A ! JoinList A ! JoinList A

Note that in this section we will fix an A : Type and use subscripts to emphasise
this and avoid the confusion between JoinList (A/⇠) and (JoinList A)/⇠.

We have a function to : JoinListA ! ListA that maps nil to nil , unit a to [a ] and
interprets join as concatenation of lists. The other way around, from : ListA !
JoinListA can be constructed by mapping every element a of the input list to
unit a and then using join to concatenate the resulting list of JoinLists.
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While we do have that (ls : ListA) ! to (from ls) ⌘ ls , it is not the case that
(js : JoinListA) ! from (to js) ⌘ js , as to is not injective: JoinList has a finer
structure than List . This means that to and from do not form an isomorphism.
If only the first equality holds (to (from ls) ⌘ ls)), but the second does not, to is
called a retraction with from as its section. It still makes sense to use JoinList as
an implementation of sequences. The properties that the operations on JoinLists
should respect, do not make use of the fact that from and to are isomorphisms;
they can still be used for non-isomorphic views.

Since we are only interested in using the JoinList as a sequence and do not care
how the inhabitants are balanced, we can take the quotient by the following rela-
tion:

⇠ : JoinListA ! JoinListA ! Type
x ⇠ y = to x ⌘ to y

The type Quotient (JoinListA) ⇠ is then isomorphic to ListA. This result can
be generalised to arbitrary section-retraction pairs between h-sets A and B : given
r : A ! B and s : B ! A such that (a : A) ! s (r a) ⌘ a , thenB is isomorphic to
A/⇠ where x ⇠ y is defined as r x ⌘ r y . We have a function A ! A/⇠, namely
the constructor box and can write a function A/⇠! A. If we use Quotient-rec
for this, we need to supply a function f : A ! A such that if r x ⌘ r y , then also
f x ⌘ f y . Choosing f to be �x ! s (r x ) works. The identity function need
not work: if it did, r would be injective and would be an isomorphism. Let us
name the functions between A and A/⇠ to-A/⇠ and from-A/⇠. Composing
these functions with r or s , we get functions between A/⇠ and B that give us
the desired isomorphism. Proving that this is an isomorphism mostly involves
applying the proof that r (s x ) ⌘ x in various ways. We also have to invoke
the uniqueness of identity proofs property that A/⇠ admits (thanks to the 0-
truncation) for the induction step on A/⇠. The fact that to-A/⇠ is a retraction
with from-A/⇠ as its section can be proved using the same techniques.

To lift the operations on A to operations on A/⇠ we simply apply to-A/⇠ and
from-A/⇠ in the right places. Showing that these lifted operations satisfy the
conditions that follow from the specification then boils down to conditions that
only refer to the operations on A in relation to those on B , as we will demonstrate
with the JoinList example. Let us define JoinListA/⇠ as Quotient A ⇠ with
x ⇠ y defined as to x ⌘ to y . We have the following functions:

• to : JoinListA ! ListA

• from : ListA ! JoinListA

• to : JoinListA ! JoinListA/⇠

• from : JoinListA/⇠! JoinListA
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The isomorphism between JoinListA/⇠ and ListA is witnessed by
to � from : JoinListA/ ⇠! ListA and to � from : ListA ! JoinListA.
The empty of JoinListA/ ⇠ is to nil , which means that we need to establish
to (from (to nil)) ⌘ [ ]. We can reduce this goal to to nil ⌘ [ ] via equational
reasoning:

to (from (to nil))
⌘ {definition to}
to (from (box nil))

⌘ {� reduction }
to (from (to nil))

⌘ {to / from is a retraction / section }
to nil

In general we have that from (to x ) ⌘ from (to x ) holds for any x : JoinListA.
Deriving the property for single goes analogously to the derivation above. The
rule for append is more interesting as we there also need from in other posi-
tions:

to (from (to (join (from xs) (from ys))))
⌘ {� reduction }
to (from (to (join (from xs) (from ys))))

⌘ {to / from is a retraction / section }
to (join (from xs) (from ys))

We end up with having to prove the following:

(xs ys : JoinListA/⇠) !
to (join (from xs) (from ys)) ⌘ to (from xs) ++ to (from ys)

which follows from (xs ys : JoinListA) ! to (join xs ys) ⌘ to xs ++ to ys .

The above derivation shows us that we might arrive at equations that are a bit
less general than the equations we get from if we were to pretend our retraction-
section pair is actually an isomorphism.

Non-isomorphic views via definable quotients

It so happens that the quotient A/⇠ is definable: it can be defined as the type
⌃ (x : A) . s (r x ) ⌘ x , i.e. restrict A to those inhabitants such that (the lifted
versions of) s and r become isomorphisms. The function box is then defined
by:

box : A ! ⌃ (x : A) . s (r x ) ⌘ x
box x = (s (r x )), ap s (is-retract (r x ))

where is-retract : (x : B) ! r (s x ) ⌘ x witnesses the fact that r and s form a
retraction-section pair.
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Notice that for the quotient type we have the �x ! s (r x ) in the “deconstructor”
(i.e. in the function from : JoinListA/⇠! JoinList A) and here we have it in the
constructor (i.e. the function box ). This stems from the fact that the soundness of
quotient types is enforced by the way they are eliminated. It is only there that
we have the obligation to show that we respect the relation on the type. With the
⌃-type it is more correctness by construction.

From a computational perspective, the first approach with the quotient types is
more desirable, as the values of the type do not carry around any correctness
proof.

3.3 Conclusion

Higher inductive types allow us to straightforwardly define quotient types. This
definition works better than the setoid method in that we no longer have to be
careful whether we use the custom equivalence relation or propositional equal-
ity: we only have to consider propositional equality. However, as is common with
higher inductive types, we have to take the 0-truncation in the definition of a quo-
tient type. This makes the elimination principle more complex to work with, but
since virtually any of the types we encounter in programming are h-sets, the ex-
tra conditions that the 0-truncation adds to the elimination principle are usually
trivially satisfied.

Univalence gives us a very clean way to define specifications of abstract types
using concrete views. Working with this specification, e.g. trying to prove that
a given implementation satisfies the specification, involves a lot of manual fid-
dling with the computation rules of ⌃-types and univalence. Having a compu-
tational interpretation of univalence would obviously be of great importance for
this method to be useful.

Using quotient types, we can also define a view on an abstract type that is not
isomorphic to the concrete type of the reference implementation, but only instead
we have a retraction-section pair between the two types. Any retraction-section
pair can be turned into an isomorphism, by quotienting out by the retraction.
Such a quotient happens to be definable, which means that we do not need the
quotient type construction using higher inductive types to do this. However, the
higher inductive type construction does yield a definition that is more amenable
to the optimisations that will be discussed in chapter 4, as the proofs that the
quotient structure is respected only occur in the calls to the elimination principle,
instead of occurring in all the terms of type, which is the case with the definable
quotient implementation.
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Chapter 4

Erasing propositions

When writing certified programs in a dependently typed setting, we can con-
ceptually distinguish between the program parts and the proof (of correctness)
parts. These are sometimes also referred to as the informative1 and logical parts,
respectively. In practice, these two seemingly separate concerns are often inter-
twined. Consider for example the sorting of lists of naturals: given some pred-
icate isSorted : List N ! List N ! Type that tells us whether the second list
is a sorted permutation of the first one, we can to write a term of the following
type:

sort : (xs : List N) ! ⌃ (ys : List N) . (isSorted xs ys)

To implement such a function, we need to provide for every list a sorted list along
with a proof that this is indeed a sorted version of the input list. At run-time the
type checking has been done, hence the proof of correctness has already been
verified: we want to erase these logical parts.

Types such as isSorted xs ys are purely logical: we care more about the presence
of an inhabitant than what kind of inhabitant we exactly have at our disposal.
In section 4.1 we will give more examples of such types, called propositions (com-
pare this with the definition of h-propositions via proof irrelevance (section 2.4),
and how they can occur in various places in certified programs. In section 4.2
and section 4.3 we review the methods Coq and Agda provide us to annotate
parts of our program as being propositions in such a way that those parts can
be erased after type checking and are absent at run-time. Section 4.4 reviews
the concept of collapsible families and how we can automatically detect whether
a type is a proposition, instead of annotating them ourselves. In section 4.5 we
internalise the concept of collapsible families and try to do the same with the op-
timisation in section 4.6. The internalised version of collapsibility looks like an
indexed version of the concept of h-propositions. In section 4.7 we investigate
if we can use this to devise an optimisation akin to the optimisation based on
collapsibility.

1Instead of “informative”, it is sometimes also called “computation”, but this is a bit of a mis-
nomer as the proof parts can be computational as well, but then only at compile time (i.e. during type
checking).
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4.1 Propositions

In the sort example, the logical part isSorted xs ys occurs in the result as part of
a ⌃-type. This means we can separate the proof of correctness from the sorting
itself, i.e. we can write a function sort 0 : List N ! List N and a proof of the
following:

sortCorrect : (xs : List N) ! isSorted xs (sort 0 xs)

The logical part here asserts properties of the result of the computation. If we
instead have assertions on our input, we cannot decouple this from the rest of
the function as easily as, if it is at all possible. For example, suppose we have a
function, safely selecting the n-th element of a list:

elem : (A : Type) (xs : List A) (i : N) ! i < length xs ! A

If we were to write elem without the bounds check i < length xs , we would get a
partial function. Since we can only define total functions in our type theory, we
cannot write such a function. However, at run-time, carrying these proofs around
makes no sense: type checking has already shown that all calls to elem are safe
and the proofs do not influence the outcome of elem . We want to erase terms of
types such as i < length xs , if we have established that they do not influence the
run-time computational behaviour of our functions.

4.1.1 Bove-Capretta method

The elem example showed us how we can use propositions to write functions
that would otherwise be partial, by asserting properties of the input. The Bove-
Capretta method [Bove and Capretta, 2005] generalises this and more: it provides
us with a way to transform any (possibly partial) function defined by general
recursion into a total, structurally recursive one. The quintessential example of a
definition that is not structurally recursive is quicksort2 :

qs : List N ! List N
qs [ ] = [ ]
qs (x :: xs) = qs (filter (gt x ) xs) ++ x :: qs (filter (le x ) xs)

The recursive calls are done on filter (gt x ) xs and filter (le x ) xs instead of
just xs , hence qs is not structurally recursive. To solve this problem, we create
an inductive family describing the call graphs of the original function for every
input. Since we can only construct finite values, being able to produce such a call
graph essentially means that the function terminates for that input. We can then
write a new function that structurally recurses on the call graph.

2In most implementations of functional languages, this definition will not have the same space
complexity as the usual in-place version. We are more interested in this function as an example of
non-structural recursion and are not too concerned with its complexity.
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In our quicksort case we get the following inductive family:

data qsAcc : List N ! Type where

qsAccNil : qsAcc [ ]
qsAccCons : (x : N) (xs : List N)

(h1 : qsAcc (filter (gt x ) xs))
(h2 : qsAcc (filter (le x ) xs))
! qsAcc (x :: xs)

with the following function definition3

qs : (xs : List N)! qsAcc xs ! List N
qs .nil qsAccNil = [ ]
qs .cons (qsAccCons x xs h1 h2) = qs (filter (gt x ) xs) h1 ++

x :: qs (filter (le x ) xs) h2

Pattern matching on the qsAcc xs argument gives us a structurally recursive ver-
sion of qs . Just as with the elem example, we need information from the proof to
be able to write this definition in our type theory. In the case of elem , we need
the proof of i < length xs to deal with the (impossible) case where xs is empty.
In the qs case, we need qsAcc xs to guide the recursion. Even though we actu-
ally pattern match on qsAcc xs and it therefore seemingly influences the compu-
tational behaviour of the function, erasing this argument yields the original qs
definition.

4.2 The Prop universe in Coq

In Coq we have have the Prop universe, apart from the Set universe. Both uni-
verses act as base sorts of the hierarchy of sorts,Type, i.e.Prop : Type (1), Set : Type (1)
and for every i , Type (i) : Type (i + 1). As the name suggests, by defining a
type to be of sort Prop, we “annotate” it to be a logical type, a proposition. Ex-
plicitly marking the logical parts like this, makes the development easier to read
and understand: we can more easily distinguish between the proof of correctness
parts and the actual program parts. More importantly, Coq’s extraction mecha-
nism [Letouzey, 2003] now knows what parts are supposed to be logical, hence
what parts are to be erased.

In the sort example, we would define isSorted to be a family of Props indexed
by List N. For the ⌃-type, Coq provides two options: sig and ex , defined as
follows:

Inductive sig (A : Type) (P : A ! Prop) : Type :=
exist : 8 x : A,P x ! sig P

Inductive ex (A : Type) (P : A ! Prop) : Prop :=
ex intro : 8 x : A,P x ! ex P

3This definition uses dependent pattern matching [Coquand, 1992], but can be rewritten directly
using the elimination operators instead. The important thing here is to notice that we are eliminating
the qsAcc xs argument.
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As can be seen above, sig di�ers from ex in that the latter is completely logical,
whereas sig has one informative and one logical field and in its entirety is infor-
mative. Since we are interested in the list N part of the ⌃-type that is the result
type of sort , but not the isSorted part, we choose the sig version.

The extracted version of sig consists of a single constructor exist , with a single
field of type A. Since this is isomorphic the type A itself, Coq optimises this away
during extraction. This means sort : (xs : List N) ! ⌃ (ys : List N) . (isSorted xs ys)
gets extracted to a function sort 0 : List N ! List N.

When erasing all the Prop parts from our program, we do want to retain the
computational behaviour of the remaining parts. Every function that takes an
argument of sort Prop, but whose result type is not in Prop, needs to be invariant
under choice of inhabitant for the Prop argument. To force this property, Coq
restricts the things we can eliminate a Prop into. The general rule is that pattern
matching on something of sort Prop is allowed if the result type of the function
happens to be in Prop.

4.2.1 Singleton elimination and homotopy type theory

There are exceptions to this rule: if the argument we are pattern matching on hap-
pens to be an empty or singleton definition of sort Prop, we may also eliminate into
Type. An empty definition is an inductive definition without any constructors.
A singleton definition is an inductive definition with precisely one constructor,
whose fields are all in Prop. Examples of such singleton definitions are conjunc-
tion on Prop (/\) and the accessibility predicate Acc used to define functions us-
ing well-founded recursion.

Another important example of singleton elimination is elimination on Coq’s equal-
ity eq (where a = b is special notation for eq a b), which is defined to be in Prop.
The inductive family eq is defined in the same way as we have defined identity
types, hence it is a singleton definition, amenable to singleton elimination. Con-
sider for example the transport function:

Definition transport : 8 A, 8 (P : A ! Type),
8 (x y : A),
8 (path : x = y),
P x ! P y .

Singleton elimination allows us to pattern match on path and and eliminate into
something of sort Type. In the extracted version, the path argument gets erased
and the P x argument is returned. In homotopy type theory, we know that the
identity types need not be singletons and can have other inhabitants than just the
canonical refl , so throwing away the identity proof is not correct. As has been
discovered by Schulman [2012], singleton elimination leads to some sort of in-
consistency, if we assume the univalence axiom: we can construct a value x : bool
such that we can prove x = false , even though in the extracted version x nor-
malises to true . Assuming univalence, we have two distinct proofs of bool = bool ,
namely refl and the proof we get from applying univalence to the isomorphism
not : bool ! bool . Transporting a value along a path we have obtained from using
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univalence, is the same as applying the isomorphism. Defining x to be true trans-
ported along the path obtained from applying univalence to the isomorphism
not, yields something that is propositionally equal to false . If we extract the de-
velopment, we get a definition of x that ignores the proof of bool = bool and just
returns true .

In other words, Coq does not enforce or check proof irrelevance of the types we
define to be of sort Prop, which internally is fine: it does not allow us to de-
rive falsity using this fact. The extraction mechanism however, does assume that
everything admits proof irrelevance. The combination of this along with single-
ton elimination means that we can prove properties about our programs that no
longer hold in the extracted version. It also goes to show that the design decision
to define the identity types to be in Prop is not compatible with homotopy type
theory.

4.2.2 Quicksort example

In the case of qs defined using the Bove-Capretta method, we actually want to
pattern match on the logical part: qsAcc xs . Coq does not allow this if we define
the family qsAcc to be in Prop. However, we can do the pattern matching “man-
ually”, as described in Bertot and Castéran [2004]. We know that we have exactly
one inhabitant of qsAcc xs for each xs , as they represent the call graph of qs for
the input xs , and the pattern matches of the original definition do not overlap,
hence each xs has a unique call graph. We can therefore easily define and prove
the following inversion theorems, that roughly look as follows:

qsAccInv0 : (x : N) (xs : List N) (qsAcc (x :: xs)) ! qsAcc (filter (le x ) xs)

qsAccInv1 : (x : N) (xs : List N) (qsAcc (x :: xs)) ! qsAcc (filter (gt x ) xs)

We define the function qs just as we originally intended to and add the qsAcc xs
argument to every pattern match. We then call the inversion theorems for the
appropriate recursive calls. Coq still notices that there is a decreasing argument,
namely qsAcc xs . If we follow this approach, we can define qsAcc to be a family in
Prop and recover the original qs definition without the qsAcc xs argument using
extraction.

In the case of partial functions, we still have to add the missing pattern matches
and define impossibility theorems: if we reach that pattern match and we have
a proof of our Bove-Capretta predicate for that particular pattern match, we can
prove falsity, hence we can useFalse rect do deal with the missing pattern match.
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4.2.3 Impredicativity

So far we have seen how Prop di�ers from Set with respect to its restricted elimi-
nation rules and its erasure during extraction, but Prop has another property that
sets it apart from Set : impredicativity. Impredicativity means that we are able to
quantify over something which contains the thing currently being defined. In
set theory unrestricted use of this principle leads us to being able to construct
Russell’s paradox: the set R = {x|x 2 x} is an impredicative definition, we quan-
tify over x, while we are also defining x. Using this definition we can prove that
R 2 R if and only if R 62 R. Impredicativity is also a necessary ingredient for
the Burali-Forti paradox: constructing the set of all ordinal numbers yields an in-
consistency. It is this paradox that can be expressed in impredicative Martin-Löf’s
type theory (i.e. Type : Type holds), where it is called Girard’s paradox. However,
impredicative definitions are sometimes very useful and benign, in particularly
when dealing with propositions: we want to be able to write propositions that
quantify over propositions, for example:

Definition demorgan : Prop := 8 P Q : Prop,
⇠ (P /\Q) ! ⇠ P \/ ⇠ Q .

Coq allows for such definitions as the restrictions on Prop prevent us from con-
structing paradoxes such as Girard’s. For details on these limitations, the reader
is referred to the Coq FAQ4.

4.3 Irrelevance in Agda

In Coq, we put the annotations of something being a proposition in the definition
of our inductive type, by defining it to be of sort Prop. With Agda’s irrelevance
mechanism, we instead put the annotations at the places we use the proposition,
by placing a dot in front of the corresponding type. For example, the type of the
elem becomes:

elem : (A : Type) (xs : List A) (i : N)! .(i < length xs)!A

We can also mark fields of a record to be irrelevant. In the case of sort , we want
something similar to the sig type from Coq, where second field of the ⌃-type is
deemed irrelevant. In Agda this can be done as follows:

record ⌃-irr (A : Type) (B : A! Type) : Type where

constructor ,
field
fst : A
.snd : B fst

4
http://coq.inria.fr/V8.1/faq.html#htoc49
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To ensure that irrelevant arguments are indeed irrelevant to the computation at
hand, Agda has several criteria that it checks. First of all, no pattern matching
may be performed on irrelevant arguments, just as is the case with Prop. (How-
ever, the absurd pattern may be used, if applicable.) Contrary to Coq, singleton
elimination is not allowed. Secondly, we need to ascertain that the annotations
are preserved: irrelevant arguments may only be passed on to irrelevant contexts.
This prevents us from writing a function of type (A : Type) ! .A ! A.

Another, more important, di�erence with Prop is that irrelevant arguments are
ignored by the type checker when checking equality of terms. This can be done
safely, even though the terms at hand may in fact be definitionally di�erent, as
we never need to appeal to the structure of the value: we cannot pattern match
on it. The only thing that we can do with irrelevant arguments is either ignore
them or pass them around to other irrelevant contexts.

The reason why the type checker ignoring irrelevant arguments is important, is
that it allows us to‘ prove properties about irrelevant arguments in Agda, inter-
nally. For example: any function out of an irrelevant type is constant:

irrelevantConstantFunction : {A : Type} {B : Type}
! (f : .A! B)! (x y : A)! f x ⌘ f y

irrelevantConstantFunction f x y = refl

There is no need to use the congruence rule for ⌘ , since the x and y are ignored
when the type checker compares f x to f y , when type checking the refl . The
result can be easily generalised to dependent functions:

irrelevantConstantDepFunction : {A : Type} {B : .A! Type}
! (f : .(x : A)! B x )! (x y : A)! f x ⌘ f y

irrelevantConstantDepFunction f x y = refl

Note that we do not only annotate (x : A) with a dot, but also occurrence of A
in the type B : A ! Type, otherwise we are not allowed to write B x as we
would use an irrelevant argument in a relevant context. When checking the term
irrelevantConstantDepFunction , the term f x ⌘ f y type checks, without having
to transport one value along some path, because the types B x and B y are re-
garded as definitionally equal by the type checker, ignoring the x and y . Just
as before, there is no need to use the (dependent) congruence rule; a refl suf-
fices.

We would also like to show that we have proof irrelevance for irrelevant argu-
ments, i.e. we want to prove the following:

irrelevantProofIrrelevance : {A : Type} .(x y : A)! x ⌘ y

Agda does not accept this, because the term x ⌘ y uses irrelevant arguments in
a relevant context: x ⌘ y . If we instead package the irrelevant arguments in an
inductive type, we can prove that the two values of the packaged type are propo-
sitionally equal.
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Consider the following record type with only one irrelevant field:

record Squash (A : Type) : Type where

constructor squash
field

.proof : A

Using this type, we can now formulate the proof irrelevance principle for irrele-
vant arguments and prove it:

squashProofIrrelevance : {A : Type} (x y : Squash A)! x ⌘ y
squashProofIrrelevance x y = refl

The name “squash type” comes from Nuprl [Constable et al., 1986]: one takes
a type and identifies (or “squashes”) all its inhabitants into one unique (up to
propositional equality) inhabitant. In homotopy type theory the process of squash-
ing a type is called (�1)-truncation (section 2.4.1) and can also be achieved by
defining the following higher inductive type:

data (�1)-truncation : (A : Type) : Type where

inhabitant : A ! (�1)-truncation A

all-paths : (x y : (�1)-truncation A) ! x ⌘ y

4.3.1 Quicksort example

If we want to mark the qsAcc xs argument of the qs function as irrelevant, we
run into the same problems as we did when we tried to define qsAcc as a fam-
ily in Prop: we can no longer pattern match on it. In Coq, we did have a way
around this, by using inversion and impossibility theorems to do the pattern
matching “manually”. However, if we try such an approach in Agda, its termina-
tion checker cannot see that qsAcc xs is indeed a decreasing argument and refuses
the definition.

4.4 Collapsible families

The approaches we have seen so far let the user indicate what parts of the pro-
gram are the logical parts and are amenable for erasure. Brady et al. [2004] show
that we can let the compiler figure that out by itself instead. The authors propose
a series of optimisations for the Epigram system, based on the observation that
one often has a lot of redundancy in well-typed terms. If it is the case that one part
of a term has to be definitionally equal to another part in order to be well-typed,
we can leave out (presuppose) the latter part if we have already established that
the term is well-typed.
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The authors describe their optimisations in the context of Epigram. In this sys-
tem, the user writes programs in a high-level language that gets elaborated to
programs in a small type theory language. This has the advantage that if we can
describe a translation for high-level features, such as dependent pattern match-
ing, to a simple core type theory, the metatheory becomes a lot simpler. The
smaller type theory also allows us to specify optimisations more easily, because
we do not have to deal with the more intricate, high-level features.

As such, the only things we need to look at, if our goal is to optimise a certain
inductive family, are its constructors and its elimination principle. Going back to
the elem example, we had the i < length xs argument. The smaller-than relation
can be defined as the following inductive family (in Agda syntax):

data < : N! N! Type where

ltZ : (y : N) ! Z < S y
ltS : (x y : N)! x < y ! S x < S y

with elimination operator

< -elim : (P : (x y : N)! x < y ! Type)
(mZ : (y : N)! P 0 (S y) (ltZ y))
(mS : (x y : N)! (pf : x < y)! P x y pf ! P (S x ) (S y) (ltS x y pf ))
(x y : N)
(pf : x < y)

! P x y pf

and computation rules

< -elim P mZ mS 0 (S y) (ltZ y)
�
= mZ y

< -elim P mZ mS (S x ) (S y) (ltS x y pf )
�
= mS x y pf (< -elim P mZ mS x y pf )

If we look at the computation rules, we see that we can presuppose several things.
The first rule has a repeated occurrence of y , so we can presuppose the latter
occurrence, the argument of the constructor. In the second rule, the same can be
done for x and y . The pf argument can also be erased, as it is never inspected: the
only way to inspect pf is via another call the < -elim, so by induction it is never
inspected. Another thing we observe is that the pattern matches on the indices
are disjoint, so we can presuppose the entire target: everything can be recovered
from the indices given to the call of < -elim.

We have to be careful when making assumptions about values, given their in-
dices. Suppose we have written a function that takes p : 1 < 1 as an argument
and contains a call to < -elim on p. If we look at the pattern matches on the in-
dices, we may be led to believe that p is of form ltS 0 0 p0 for some p0 : 0< 0 and
reduce accordingly. The presupposing only works for canonical values, hence we
restrict our optimisations to the run-time (evaluation in the empty context), as we
know we do not perform reductions under binders in that case and every value is
canonical after reduction. The property that every term that is well-typed in the
empty context, reduces to a canonical form is called adequacy and is a property
that is satisfied by Martin-Löf’s type theory.
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The family < -elim has the property that for indices x y : N, its inhabitants p : x<
y are uniquely determined by these indices. To be more precise, the following is
satisfied: for all x y : N, ` p q : x < y implies ` p

�
= q . Families D : I0 ! · · · !

In ! Type such as < -elim are called collapsible if they satisfy that for every
i0 : I0, · · · , in : In, if ` p q : D i0 · · · in, then ` p

�
= q .

Checking collapsibility of an inductive family is undecidable in general. This can
be seen by reducing it to the type inhabitation problem: consider the type >+A.
This type is collapsible if and only if A is uninhabited, hence determining with
being able to decide collapsibility means we can decide type inhabitation as well.
As such, we limit ourselves to a subset that we can recognise, called concretely
collapsible families. A family D : I0 ! · · · ! In ! Type is concretely collapsible
if satisfies the following two properties:

• If we have ` x : D i0 · · · in, for some i0 : I0, · · · , in : In, then we can recover
its constructor tag by pattern matching on the indices.

• All the non-recursive arguments to the constructors of D can be recovered
by pattern matching on the indices.

Note that the first property makes sense because we only have to deal with canon-
ical terms, due to the adequacy property. Checking whether this first property
holds can be done by checking whether the indices of the constructors, viewed
as patterns, are disjoint. The second property can be checked by pattern match-
ing on the indices of every constructor and checking whether the non-recursive
arguments occur as pattern variables.

4.4.1 Erasing concretely collapsible families

If D is a collapsible family, then its elimination operator D-elim is constant in its
target, if we fix the indices. This seems to indicate that there might be a possibility
to erase the target altogether. Nevertheless, D might have constructors with non-
recursive arguments giving us information. Concretely collapsible families sat-
isfy the property that this kind of information can be recovered from the indices,
so we can get away with erasing the entire target. Being concretely collapsible
means that we have a function at the meta-level (or implementation level) from
the indices to the non-recursive, relevant parts of the target. Since this is done by
pattern matching on the fully evaluated indices, recovering these parts takes an
amount of time that is constant in the size of the given indices. Even though this
sounds promising, the complexity of patterns does influence this constant, e.g.
the more deeply nested the patterns are, the higher the constant. We now also
need the indices to be fully evaluated when eliminating a particular inductive
family, whereas that previously might not have been needed. The optimisation
is therefore one that gives our dependently typed programs a better space com-
plexity, but not necessarily a better time complexity.
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4.4.2 Quicksort example

The accessibility predicates qsAcc form a collapsible family. The pattern matches
on the indices in the computation rules for qsAcc are the same pattern matches as
those of the original qs definition. There are no overlapping patterns in the orig-
inal definition, so we can indeed recover the constructor tags from the indices.
Also, the non-recursive arguments of qsAcc are precisely those given as indices,
hence qsAcc is indeed a (concretely) collapsible family. By the same reasoning,
any Bove-Capretta predicate is concretely collapsible, given that the original def-
inition we derived the predicate from, has disjoint pattern matches.

The most important aspect of the collapsibility optimisation is that we have es-
tablished that everything we need from the value that is to be erased, can be
(cheaply) recovered from its indices passed to the call to its elimination operator.
This means that we have no restrictions on the elimination of collapsible families:
we can just write our definition of qs by pattern matching on the qsAcc xs argu-
ment. At run-time, the qsAcc xs argument has been erased and the relevant parts
are recovered from the indices.

4.5 Internalising collapsibility

Checking whether an inductive family is concretely collapsible is something that
can be easily done automatically, as opposed to determining collapsibility in gen-
eral, which is undecidable. Since collapsibility is also a meta-theoretical concept
(it makes use of definitional equality and talks about provability), it is only the
compiler that can find out whether an inductive family is collapsible or not. If
we want to provide the user with the means to give a proof of collapsibility for
a certain family itself, if the compiler fails to notice this, then we would need to
specify a new language for such evidence. Instead of create such a language, we
will create an internal version of the meta-theoretical notion of collapsibility, so
that user can provide the evidence in the type theory itself.

Recall the definition of a collapsible family5 : given an inductive familyD indexed
by the type I , we say that D is collapsible if for every index i : I and terms x , y ,
the following holds:

` x , y : D i implies ` x
�
= y

This definition makes use of definitional equality. Since we are working with
an intensional type theory, we do not have the equality reflection rule at our dis-
posal: there is no rule that tells us that propositional equality implies definitional
equality. This might lead us to think that internalising the above definition will
not work, as we seemingly cannot say anything about definitional equality from
within Martin-Löf’s type theory.

5The definition we originally gave allowed for an arbitrary number of indices. In the following
sections we will limit ourselves to the case where we have only one index for presentation purposes.
All the results given can be easily generalised to allow more indices.
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Let us consider the following variation: for all terms x , y there exists a term p
such that

` x , y : D i implies ` p : x ⌘ y

Since Martin-Löf’s type theory satisfies the canonicity property, any term p such
that ` p : x ⌘ y reduces to refl . The only way for the term to type check, is if
x

�
= y , hence in the empty context the equality reflection rule does hold. The

converse is also true: definitional equality implies of x and y that ` refl : x ⌘ y
type checks, hence the latter definition is equal to the original definition of col-
lapsibility.

The variation given above is still not a statement that we can directly prove inter-
nally: we need to internalise the implication and replace it by the function space.
Doing so yields the following following definition: there exists a term p such
that:

` p : (i : I ) ! (x y : D i) ! x ⌘ y

Or, written as a function in Agda:

isInternallyCollapsible : (I : Type) (A : I ! Type) ! Type
isInternallyCollapsible I A = (i : I ) ! (x y : A i) ! x ⌘ y

We will refer to this definition as internal collapsibility. It is easy to see that ev-
ery internally collapsible family is also collapsible, by canonicity and the fact
that refl implies definitional equality. However, internally collapsible families
do di�er from collapsible families as can be seen by considering D to be the fam-
ily Id . By canonicity we have that for any A : Type, x , y : A, a term p satisfying
` p : Id A x y necessarily reduces to refl . This means that Id is a collapsible fam-
ily. In contrast, Id does not satisfy the internalised condition given above, since
this then boils down to the uniqueness of identity proofs principle, which does
not hold, as we have discussed.

4.6 Internalising the collapsibility optimisation

In section 4.4.1 we saw how concretely collapsible families can be erased, since
all we want to know about the inhabitants can be recovered from its indices. In
this section we will try to uncover a similar optimisation for internally collapsible
families.

We cannot simply erase the internally collapsible arguments from the function we
want to optimise, e.g. given a function f : (i : I ) ! (x : D i) ! ⌧ , we generally
cannot produce a function ef : (i : I ) ! ⌧ , since we sometimes need the x : D i
in order for the function to type check. However, we can use Agda’s irrelevance
mechanism to instead generate a function in which the collapsible argument is
marked as irrelevant.

46



The goal is now to write the following function (for the non-dependent case):

optimiseFunction :
(I : Type) (A : I ! Type) (B : Type)
(isInternallyCollapsible I A)
(f : (i : I )!A i ! B)
! ((i : I )! .(A i)! B)

Along with such a function, we should also give a proof that the generated func-
tion is equal to the original one in the following sense:

optimiseFunctionCorrect :
(I : Type) (D : I ! Type) (B : Type)
(pf : isInternallyCollapsible I D)
(f : (i : I )!D i ! B)
(i : I ) (x : D i)
! optimiseFunction I D B pf f i x ⌘ f i x

If we set out to write the function optimiseFunction , after having introduced all
the variables, our goal is to produce something of type B . This can be done by
using the function f , but then we need a i : I and something of type D i . We
have both, however the D i we have is marked as irrelevant, so it may only be
passed along to irrelevant contexts, which the function f does not provide, so we
cannot use that one. We need to find another way to produce an D i . We might
try to extract it from the proof of isInternallyCollapsible I D , but this proof only
tells us how the inhabitants of every D i are related to each other with proposi-
tional equality. From this proof we cannot tell whether some D i is inhabited or
empty.

The optimisation given for concretely collapsible families need not worry about
this. In that case we have a lot more information to work with. We only have to
worry about well-typed calls to the elimination operator, so we do not have to
deal with deciding whether D i is empty or not. Apart from this we only need to
recover the non-recursive parts of the erased, canonical term.

If we extend the definition of internal collapsibility with something that decides
whether A i is empty or not, we get the following definition:

isInternallyCollapsibleDecidable : (I : Type) (A : I ! Type) ! Type
isInternallyCollapsibleDecidable I A = (i : I )

! (((x y : A i) ! x ⌘ y) ⇥ (A i + A i ! ?))

If we then replace the occurrence of isInternallyCollapsible in the type signature
of optimiseFunction with isInternallyCollapsibleDecidable
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4.6.1 Time complexity issues

Using this definition we do get enough information to write optimiseFunction .
However, the success of the optimistically named function optimiseFunction re-
lies on time complexity the proof given of isInternallyCollapsibleDecidable D I
that is used to recover the erased A i value from the index i . In the case of
concrete collapsibility this was not that much of an issue, since the way we re-
trieve the erased values from the indices was constant in the size of the given
indices.

Apart from requiring a decision procedure that gives us, for every index i : I ,
an inhabitant of A i or a proof that A i is empty, we need a bound on the time
complexity of this procedure. If we want to analyse the complexity of the func-
tions, we need an embedding of the language they are written in. Examples of
this approach can be found in Swierstra [2011] and Danielsson [2008]. In Daniels-
son [2008] the functions are written using a monad that keeps track of how many
“ticks” are needed to evaluate the function for the given input, called the Thunk
monad. Thunk : N ! Type ! Type is implemented as an abstract type that
comes with the following primitives:

• step : (a : Type) ! (n : N) ! Thunk n a ! Thunk (n + 1) a

• return : (a : Type) ! (n : N) ! a ! Thunk n a

• (>>=) : (a b : Type) ! (n m : N) ! Thunk m a ! (a ! Thunk n b) !
Thunk (m + n) b

• force : (a : Type) ! (n : N) ! Thunk n a

The user has to write its programs using these primitives. A similar approach
has also been used in van Laarhoven [2013] to count the number of comparisons
needed for various comparison-based sorting algorithms.

Using this to enforce a time bound on the decision procedure is not entirely trivial.
We first need to establish what kind of time limit we want: do we want a constant
time complexity, as we have with the concrete collapsibility optimisation? If we
want it to be non-constant, on what variable do we want it to depend?

Apart from these questions, approaches such as the Thunk monad, are prone to
“cheating”: we can just write our decision procedure the normal way and then
write return 1 decisionProcedure to make sure it has the right type. To prevent
this, we can deepen our embedding of the programming language in such a way,
that the users can write the program completely in this language. Such a lan-
guage, if it is complete enough, will most likely make writing programs unnec-
essarily complex for the user.

Even though we can internalise certain conditions under which certain transfor-
mations are safe (preserve definitional equality), along with the transformations,
guaranteeing that this transformation actually improves complexity proves to be
a lot more di�cult.
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4.7 Indexed h-propositions and homotopy type the-
ory

In section 2.4 we have seen that h-propositions are exactly those types that obey
proof irrelevance. If we generalise this internal notion to the indexed case we ar-
rive at something we previously have called internal collapsibility. We have also
seen that if we restrict ourselves to the empty context, internal collapsibility im-
plies collapsibility. The purpose of the collapsibility optimisations is to optimise
the evaluation of terms in the empty context. In homotopy type theory however,
we postulate extra equalities in order to implement univalence or higher induc-
tive types. “Run-time” for these programs does therefore not mean evaluation
in the empty context, but evaluation in a context that can possibly contain the
aforementioned postulates. To stress this di�erence in what contexts we are con-
sidering to do the evaluation in, we will talk about internal collapsible for the
empty context case and indexed h-propositions in for the homotopy type theory
case. In this section we will investigate what these di�erences mean when trying
to optimise our programs.

When postulating extra propositional equalities, we obviously lose the canonicity
property, hence we can no longer say that propositional equality implies defini-
tional equality at run-time. The essence of the concrete collapsibility optimisation
is that we need not store certain parts of our programs, because we know that they
are unique, canonical and can be recovered from other parts of our program. In
homotopy type theory we no longer have this canonicity property and may have
to make choice in what inhabitant we recover from the indices. As an example of
this we will compare two non-indexed types: the unit type and the interval. Both
types are h-propositions, so they admit proof irrelevance, but the interval does
have two canonical inhabitants that can be distinguished by definitional equal-
ity.

data I : Set where

zero : Interval
one : Interval

segment : zero ⌘ one

The elimination operator for this type is defined in this way:

I-elim : (B : I ! Type)
! (b0 : B zero)
! (b1 : B one)
! (p : (transport B segment b0) ⌘ b1)
! (i : I ) ! B i

with computation rules6:

I-elim B b0 b1 p zero
�
= b0

I-elim B b0 b1 p one
�
= b1

6Apart from giving computation rules for the points, we also need to give a computation rule for
the path constructor, segment , but as we do not need this rule for the discussion here, we have left it
out.
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In other words, in order to eliminate a value in the interval, we need to tell what
has to be done with the endpoints interval and then have to show that this is done
in such a way that the path between the endpoints is preserved.

Let us compare the above to the elimination operator for the unit type, >:

>-elim : (B : > ! Type)
! (b : B tt)
! (t : >) ! B t

with computation rule:

>-elim B b tt
�
= b

If we have canonicity, we can clearly assume every inhabitant of > to be tt at
run-time and erase the t argument from >-elim. In the case of I , we cannot do
this: we have two canonical inhabitants that are propositionally equal, but not
definitionally.

Not all is lost, if we consider the non-dependent elimination operator for the in-
terval:

I-elim-nondep : (B : Type)
! (b0 : B)
! (b1 : B)
! (p : b0 ⌘ b1)
! I ! B

then it is easy to see that all such functions are constant functions, with respect
to propositional equality. If we erase the I argument and presuppose it to be
zero, we will get a new function that is propositionally equal to the original one.
However, it is definitional equality that we are after. We can define the following
two functions:

I-id : I ! I
I-id = I-elim-nondep I zero one segment

I-const-zero : I ! I
I-const-zero = I-elim-nondep I zero zero refl

If we presuppose and erase the I argument to be zero in the I-id case, we would
get definitionally di�erent behaviour. In the case of I-const-zero, it does not mat-
ter if we presuppose the argument to be zero or one , since this function is also
definitionally constant. This is because for the refl to type check, b0 and b1 have
to definitionally equal. So if we want to optimise the elimination operators of
higher inductive types that are h-propositions, such as the interval, we need to
look at what paths the non-trivial paths are mapped to. If these are all mapped
to refl , then the points all get mapped to definitionally equal points.
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Suppose that f is the function that we are constructing using the elimination prin-
ciple of some higher inductive type H , which happens to be a h-proposition. We
want to verify that ap f maps every path to refl . Checking this property can
become di�cult, as we can tell from this rather silly example:

data N-truncated : Type where

0 : N-truncated
S : (n : N-truncated) ! N-truncated
equalTo0 : (n : N-truncated) ! 0 ⌘ n

with non-dependent eliminator:

N-truncated-elim-nondep : (B : Type)
! (b0 : B)
! (bS : B ! B)
! (p : (b : B) ! b0 ⌘ b)
! N-truncated ! B

If we were to check that all paths between 0 and n are mapped to refl , we have to
check that p satisfies this property, which we cannot do.

4.7.1 Internally optimising h-propositions

The optimisation given in section 4.6 of course still is a valid transformation for
the homotopy type theory case. The proof of a family D : I ! Type being an
indexed h-proposition is again not enough for us to be able to write the term
optimiseFunction . What we called isInternallyCollapsibleDecidable is that we in-
ternally need a witness of the fact that every h-proposition in the family is either
contractible or empty, so we could have written the property as follows:

isIndexedhPropDecidable : (I : Type) (A : I ! Type) ! Type
isIndexedhPropDecidable I A = (i : I )

! (isContractible (A i)) + (A i ! ?)
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4.8 Conclusions

In this chapter we have looked at various ways of dealing with types that are
purely logical, called propositions. Coq and Agda both provide mechanisms to
in a way “truncate” a type into a proposition. The first takes this approach by
allowing the user to annotate a type as being a proposition when defining the
type. Making sure it is a proposition and has no computational e�ect on non-
propositions is handled by limiting the elimination of these propositions: we
may only eliminate into other propositions. Singleton elimination is an excep-
tion to this rule, which does not play well with homotopy type theory and the
univalence axiom, as it means that the equality used by Coq gets falsely recog-
nised as a singleton type, even though it is provably not one. Using univalence
we can construct a term that behaves di�erently in Coq as it does in the extracted
version.

Agda allows the user to indicate that a type is a proposition when referring to that
type, instead of having to annotate it when defining it. Agda enforces the proof
irrelevance by ensuring that inhabitants of an annotated type are never scruti-
nised in a pattern match and may only be passed onto other irrelevant contexts.
It contrast to Coq’s mechanism, it does not allow for singleton elimination, but
unlike Coq, it does enable the user to prove properties of the annotated types
in Agda itself. As such, we can construct a squash type that is isomorphic to
the (�1)-truncation from homotopy type theory, defined as a higher inductive
type.

Instead of truncating a type such that it becomes a proposition, we can also let the
compiler recognise whether a type is a proposition or not. This is the approach
that the collapsible families optimisation takes in Epigram. The definition of col-
lapsibility is reminiscent of the definition of h-proposition, albeit it an indexed
version that uses definitional equality instead of propositional equality. The op-
timisation specifically focuses on families of propositions.

Recognising whether an inductive family is a collapsible family is undecidable,
so the actual optimisation restricts itself to a subset called concretely collapsible
families. To improve on this, we internalise the notion of collapsibility, allowing
the user to provide a proof if the compiler fails to notice this property. We show
that this notion of internal collapsibility is a subset of collapsibility. We also try
to internalise the optimisation, but since the time complexity of the optimised
function heavily depends on the user-provided proof, we cannot be sure whether
it the “optimised” version actually improves on the complexity. We have looked
at ways to enforce time complexities in the user-provided proofs. Our conclusion
is that this is not viable.

Collapsible families look a lot like families of h-propositions. When internalis-
ing the collapsibility concept and the optimisation, we only considered the non-
homotopy type theory case, i.e. no univalence and no higher inductive types. We
have looked at extending the optimisations to the homotopy type theory case, but
as we lose canonicity the optimised versions may no longer yield the same results
as the original function, with respect to definitional equality. We have identified
cases in which this is the case and cases in which definitional equality actually is
preserved. We also argue that detecting such cases is undecidable.
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Chapter 5

Discussion

One of the main goals of this project was to establish whether homotopy type
theory is an interesting language to do dependently typed programming in. As
it is incompatible with dependent pattern matching in general, it seems like we
are taking a step backwards. However, univalence and higher inductive types
can become the two steps forward. Univalence means that we can transport def-
initions along isomorphisms, which saves us a great deal of writing boring code
applying the to and from parts of the isomorphisms in the right places. It also
implies function extensionality, which is indispensable when proving properties
about programs.

We have also seen the usefulness of higher inductive types. They allow us to
define quotient types. It is all too easy to come up with a higher inductive type
that has more structure than is desired: one quickly runs into coherence issues: the
resulting type has too many di�erent equalities at higher levels than is needed.
The original definition of quotient types also su�ered from this issue: we want it
to be an h-set, but as could be seen from a simple example, one could easily define
the circle: the simplest type that is not an h-set. Therefore one usually needs to
truncate the higher inductive type to a certain level, e.g. take the 0-truncation in
the case of quotients. Truncating a type does mean that we have extra conditions
that we need to satisfy when eliminating something of that particular type. In a
programming setting, one typically only encounters h-sets, except for univalent
universes of h-sets. Eliminating into an h-set means that the extra conditions
stemming from 0-truncation are automatically satisfied, so in programming this
need not be too much of a problem.

For these two steps to be actual steps forward, there is still a lot of work that needs
to be done. The most obvious and possibly most di�cult problem is determining
the computational content of the univalence axiom. Seeing as most types in pro-
gramming applications are h-sets, it is already a big improvement if we get this
to work for a type theory in which everything is 1-truncated and the only 1-type
which is not an h-set is a univalent universe of all h-sets.
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Giving up pattern matching altogether is quite drastic. There are still a lot of cases
in which (dependent) pattern matching is still valid and can be transformed to an
expression using only elimination principles. An interesting future research di-
rection is to take the elaboration process described in Goguen et al. [2006], which
critically depends on K , and see how one can uncover conditions in which K is
not necessary for the elaboration to work.

There is also a lot of work to be done on higher inductive types. As of yet, a
well-defined syntax for higher inductive types and a generic way to derive the
induction principles is lacking. It has also been noted [Lumsdaine, 2012] that ev-
ery higher inductive type that has higher path constructors in its definition, can
be rewritten to an equivalent form that only has path constructors that construct
paths between points (a so called 1-HIT). Having a mechanism that automatically
translates the definition of a higher inductive type to a 1-HIT, also means that we
only have to care about these cases when devising induction principles. Having
a form of pattern matching for higher inductive types is also a research direc-
tion that can help make higher inductive types significantly more easy to work
with.

In chapter 4, we have seen that in traditional Martin-Löf’s type theory, proposi-
tional equality coincides with definitional equality at “run-time” (i.e. in the empty
context). This property makes it possible to internalise optimisations: one could
create a system in which we provide rules to the compiler akin to the GHC rewrite
rules [Jones et al., 2001], but along with a proof of correctness. In homotopy type
theory, we also want to have non-canonical proofs of propositional equality at
run-time, so we lose this property. A further investigation of when propositional
equality still does imply definitional equality might be an interesting research
direction. Another interesting thing to look at is the question whether we really
need definitional equality, i.e. identify cases in which we can safely replace some-
thing by something else that is propositionally but not necessarily definitionally
equal.

Coming back to the main research question:

What is homotopy type theory and why is it interesting to do pro-
gramming in it?

In this thesis, we have given evidence that homotopy type theory is an interesting
language to program in, but as of yet we have to sacrifice too much (i.e. dependent
pattern matching and canonicity in its entirety) for it to be useful for program-
ming right now, but the future looks promising, even if we only get to implement
restricted versions of homotopy type theory.
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Á. Pelayo and M. A. Warren. Homotopy type theory and Voevodsky’s univalent
foundations. arXiv preprint arXiv:1210.5658, 2012.

E. M. Rijke. Homotopy type theory. Master’s thesis, Universiteit Utrecht, 2012.

M. Schulman. Univalence versus Extraction. online, http://

homotopytypetheory.org/2012/01/22/univalence-versus-extraction/,
2012. [blog post].

M. Sozeau, N. Tabareau, et al. Univalence for free. 2013.

W. Swierstra. Sorted. Journal of Functional Programming, 21(06):573–583, 2011.

57

http://homotopytypetheory.org/2013/05/15/universe-n-is-not-an-n-type/
http://homotopytypetheory.org/2013/05/15/universe-n-is-not-an-n-type/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
http://homotopytypetheory.org/2012/11/12/abstract-types-with-isomorphic-types/
http://homotopytypetheory.org/2012/11/12/abstract-types-with-isomorphic-types/
http://homotopytypetheory.org/2012/05/07/reducing-all-hits-to-1-hits/
http://homotopytypetheory.org/2012/05/07/reducing-all-hits-to-1-hits/
http://homotopytypetheory.org/2012/01/22/univalence-versus-extraction/
http://homotopytypetheory.org/2012/01/22/univalence-versus-extraction/


The Univalent Foundations Program. Homotopy type theory: Univalent founda-
tions of mathematics. Technical report, 2013.

T. van Laarhoven. The complete correctnes of sorting. online, http://twanvl.
nl/blog/agda/sorting, 2013. [blog post].

V. Voevodsky. Univalent foundations. online, http://www.math.ias.edu/

~

vladimir/Site3/Univalent_Foundations_files/2011_UPenn.pdf, 2011.
[presentation at University of Pennsylvania].

P. Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pages 307–313. ACM, 1987.

58

http://twanvl.nl/blog/agda/sorting
http://twanvl.nl/blog/agda/sorting
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2011_UPenn.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2011_UPenn.pdf

	Introduction
	Homotopy type theory
	Topology and homotopy theory
	Identity types of Martin-Löf's type theory
	Homotopy interpretation
	n-types
	Higher inductive types
	Equivalence and univalence
	Implementation

	Applications of homotopy type theory
	Quotient types
	Views on abstract types
	Conclusion

	Erasing propositions
	Propositions
	The Prop universe in Coq
	Irrelevance in Agda
	Collapsible families
	Internalising collapsibility
	Internalising the collapsibility optimisation
	Indexed h-propositions and homotopy type theory
	Conclusions

	Discussion

