logical verification 2008-2009 exercises 2

Exercise 1. This exercise is concerned with dependent types. We use the following definition in Coq:

- a. What is the type of natlist_dep? What is the type of natlist_dep 2? Describe the elements of natlist_dep 2.
- b. Suppose we want to define a function **nth** that takes as input a list and gives back the *n*th element of that list. How can dependent lists be used to avoid errors?

Exercise 2. This exercise is concerned with dependent types.

- a. Give the type of append_dep, the function that appends two dependent lists.
- b. Give the type of reverse_dep, the function that reverses a dependent list.
- c. Consider the following two terms:

reverse_dep (plus n1 n2) (append_dep n1 n2 l1 l2) append_dep n2 n1 (reverse_dep n2 l2) (reverse_dep n1 l1)

(Here n1 and n2 have type nat, the term 11 has type natlist_dep n1, the term 12 has type natlist_dep n2.)

What are the types of the above terms? Are the types convertible?

Exercise 3. This exercise is concerned with λ -calculus with dependent types (λP) .

a. A typing rule that is characteristic for λP is the following:

$$\frac{\Gamma \vdash A : * \quad \Gamma, x : A \vdash B : \Box}{\Gamma \vdash \Pi x : A, B : \Box}$$

Explain how this rule is used to infer that the type of natlist_dep is ok.

b. Another typing rule that is characteristic for λP is the conversion rule:

$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : s}{\Gamma \vdash A : B'} \qquad \text{with } B =_{\beta} B'$$

Explain with an example (for instance natlist_dep) how the conversion rule can be used.

Exercise 4.

- a. Give an inhabitant of $(\Pi x: \text{Terms. } P x) \rightarrow (P M)$.
- b. Give an inhabitant of $(\Pi x: \mathsf{Terms.} P x \to Q x) \to (\Pi x: \mathsf{Terms.} P x) \to (\Pi y: \mathsf{Terms.} Q x).$

Exercise 5. This exercise is concerned with the Curry-Howard-De Bruijn isomorphism between first-order predicate logic and λP .

- a. Give the encoding of algebraic terms (from predicate logic) in λP .
- b. Give the encoding of formulas from predicate logic in λP .
- c. How are the introduction rules (for \rightarrow and \forall) from predicate logic represented in λP ?
- d. How are the elimination rules (for \rightarrow and \forall) from predicate logic represented in λP ?

Exercise 6. First-order propositional logic can be encoded in Coq using dependent types as follows:

```
(* prop representing the propositions is a Set *)
Variable prop:Set.
(* implication on prop is a binary operator *)
Variable imp: prop -> prop -> prop.
(* T expresses if a proposion in prop is valid
    if (T p) is inhabited then p is valid
    if (T p) is not inhabited then p is not valid *)
Variable T: prop -> Prop.
```

Give the types of the variables imp_introduction and imp_elimination modelling the introduction- and elimination rule of implication.

Exercise 7. This exercise is concerned with polymorphic lambda-calculus and second-order minimal propositional logic.

- a. What is the type of the polymorphic identity?
- b. Show how the polymorphic identity is used to get the identity on the type nat of natural numbers.

c. Give the polymorphic version of the following function: $\lambda f: \mathsf{nat} \to \mathsf{bool} \to \mathsf{nat}. \lambda x: \mathsf{nat}. \lambda y: \mathsf{bool}. f x y.$

(In the polymorphic variant neither nat nor bool occurs.)

d. Explain why the following proof is not correct:

$$\frac{\exists a. a \to b}{a \to b} \quad \frac{\begin{matrix} [a \to b^x] \\ \hline (a \to b) \to (a \to b) \end{matrix}}{a \to b} \stackrel{I[x]}{E\exists}$$

Exercise 8. This exercise is concerned with second-order propositional logic and polymorphic λ -calculus ($\lambda 2$).

- a. Show that $\forall a. ((\forall b. b) \rightarrow a)$ is a tautology.
- b. Give the $\lambda 2$ -term corresponding to the formula $\forall a. ((\forall b. b) \rightarrow a)$.
- c. Give a $\lambda 2$ -term that is an inhabitant of the answer to 8b.

Exercise 9. This exercise is concerned with second-order minimal propositional logic and polymorphic λ -calculus.

a. Show that $(\forall c. ((a \rightarrow b \rightarrow c) \rightarrow c)) \rightarrow a$ is a tautology of second-order minimal propositional logic.

Exercise 10.

- a. What is the impredicative definition of \perp in second-order propositional logic?
- b. What is the corresponding term in $\lambda 2$?

Exercise 11. This exercise is concerned with the encoding of logic and datatypes in polymorphic λ -calculus ($\lambda 2$).

a. Define the type new_or

 $(\mathsf{new_or} \ A \ B) = \Pi c : * \ . \ (A \to c) \to (B \to c) \to c$

Assume $\Gamma \vdash a : A$. Give an inhabitant of $(\mathsf{new_or} A B)$.

(NB: it is not asked to give the type derivation.)

- b. Assume new_or as in a, and in addition Γ ⊢ f : A → D, and Γ ⊢ g : B → D, and Γ ⊢ M : (new_or A B). Give an inhabitant of D.
 (NB: it is not asked to give the type derivation.)
- c. We define the booleans B and true(T) and false(F) as follows:
 - $\mathsf{B} = \Pi a : * \, . \, a \to a \to a$
 - $\mathsf{T} = \lambda a: * . \lambda x: a. \lambda y: a. x$
 - $\mathsf{F} = \lambda a{:}*.\,\lambda x{:}a.\,\lambda y{:}a.\,y$

Give a definition of negation in $\lambda 2$.

Exercise 12. We assume $a : \star$. Give inhabitants in $\lambda 2$ of the following types:

- a. $(\Pi b: \star. b) \rightarrow a$,
- b. $a \to \Pi b : \star (b \to a),$
- c. $a \to \Pi b : \star. ((a \to b) \to b).$