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Here are six projects for the type theory course to choose from. Each student
has to choose one of these projects. More than one student can choose the same
project, but they should not collaborate on it.

At the end of the course each student needs to submit both a Coq formal-
ization, plus a short report (up to ten pages) that describes the formalization
and discusses the choices made while formalizing.

For each project we first give a high level description of what should be done,
followed by details of one specific way to do that. However, students are free
not to follow these specifics.

1 Type check the simply typed lambda calculus

Formalize the typing rules of the simply typed lambda calculus, then formalize a
type checker for this system, and finally prove that the type checker will produce
a correct type judgment if it succeeds.

This project is an instance of reflection. Although the type theory of Coq
contains simply typed lambda calculus as a subsystem, the terms and types
that the formalization talks about will not be those Coq terms and types, but
syntactic objects modelled in Coq.

You do not need to prove the completeness of your type checker.

Here are specifics of one possible solution, which takes 97 lines of Coq:

• Define inductive types type and term for the types and terms of the simply
typed lambda calculus. For example the definition of type might look like

Inductive type : Set :=

| var_type : string -> type

| fun_type : type -> type -> type

With this definition the type (A → B) → C would be represented by

fun_type (fun_type (var_type "A") (var_type "B"))

(var_type "C")

1



To get string notation in Coq, put

Require Import String.

Open Local Scope string_scope.

at the start of your file.

• Define an inductive predicate has_type, such that the Coq formula

has_type Gamma M A

corresponds to the derivability of the judgment

Γ ⊢ M : A

• Write a recursive function type_check that (in a given context) returns
the type of an element of term. A possible Coq type for this function
might be

type_check

: list (string * type) -> term -> option type

If the input term (the second argument) is not type correct, the function
will have to return None. For this reason the output type is not type but
option type.

• You will need to look up variables in the context. For this define an induc-
tive predicate assoc (to be used in the variable case of has_type) and a
recursive function lookup (to be used in the variable case of type_check):

assoc

: forall A B : Set, list (A * B) -> A -> B -> Prop

lookup

: forall A B : Set,

(forall x y : A, {x = y} + {x <> y}) ->

list (A * B) -> A -> option B

The third argument of lookup is a decision procedure for equality on A.
If the keys are strings this argument should be string_dec.

The functions assoc and lookup correspond to each other in exactly the
same way that has_type and type_check do.

• The type checker needs to be able to decide equality of types. (If you apply
a function to an argument, the type of the argument needs to match the
type of the domain of the function.) For this prove the lemma
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type_dec

: forall A B : type, {A = B} + {A <> B}

A convenient tactic for proving this is decide equality.

• Next we will need to prove our type checker correct. A nice way to do this
is by changing the types of lookup and type_check to have them also
return ‘proof objects’ for the properties of the objects they return:

lookup

: forall A B : Set,

(forall x y : A, {x = y} + {x <> y}) ->

forall (l : list (A * B)) (a : A),

option {b : B | assoc l a b}

type_check

: forall (Gamma : list (string * type)) (M : term),

option {A : type | has_type Gamma M A}

To find out about the meaning of the set notation { . . . | . . . } do Check

exist or Print sig.

The function exist has implicit arguments. If you want to give those
arguments explicitly because Coq cannot figure them out, write @exist:
then all four arguments can and should be given.

• Often Coq will complain if you just use a simple match . . . with. In
that case using match . . . in . . . return . . . with can improve things. For
example, the match the we used in our definition of lookup looks like

match l return option {b : B | assoc l a b} with . . .

2 The pigeon hole principle

Use Coq to formally prove the pigeon hole principle which says that if you put
n pigeons in m holes, with m < n, then at least one hole with have more than
one pigeon in it.

Here are specifics of one possible solution, which takes 61 lines of Coq (but with
many tactics per line !):

• A possible way to write the statement is:

Lemma pigeon_hole :

forall m n, m < n ->

forall f, (forall i, i < n -> f i < m) ->

exists i, i < n /\

exists j, j < n /\ i <> j /\ f i = f j.
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Here f is the function that maps the number of a pigeon in {0 . . . n − 1}
to the number of its hole in {0 . . .m − 1}. The fact that f also will map
numbers ≥ n to something will not hurt.

• A useful tactic to automatically prove equalities and inequalities between
natural numbers is

omega.

To make it available put

Require Import Omega.

at the start of your file.

• If for natural numbers x and y in a term you want to make a distinction
between whether x ≤ y or y < x, you can write:

if le_lt_dec x y then . . . else . . .

Then to do a case split between those two cases in the proof, one can use:

elim (le_lt_dec x y).

3 Proving an expression compiler correct

Formalize both an interpreter and a compiler for a simple language of arith-
metical expressions, and show that both give the same results. Compile the
expressions to code for a simple stack machine. Use dependent types to make
Coq aware of the fact that the compiled code will never lead to a run time error.

Here are specifics of one possible solution, which takes 78 lines of Coq:

• Consider the following expression language:

⟨exp⟩ ::= ⟨literal⟩ | ⟨exp⟩+ ⟨exp⟩ | . . .
⟨literal⟩ ::= 0 | 1 | 2 | . . .

Give an Inductive definition of a datatype Exp of (the abstract syntax
for) ⟨exp⟩s.

• Define a function

eval: Exp -> nat

giving a semantics for ⟨exp⟩s.
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• Give an Inductive definition of a datatype RPN of Reverse Polish Notation
for ⟨exp⟩s.

• Write a compiler

rpn : Exp -> RPN

• Write an evaluator rpn_eval for RPN, returning an option nat.

• Prove that

forall e:Exp, Some (eval e) = rpn_eval (rpn e)

• Generalize the above to Expressions containing variables, and evaluation
with respect to an environment of bindings of variables to nats.

• Discuss how you might avoid explicit consideration of None terms in the
definition of rpn_eval, and explain how you need to modify your formal-
ization in Coq.

4 Satisfiability of propositional formulas

Implement in Coq a function that searches for a variable assignment that makes
a given propositional formula true, and prove that this function is correct.

You do not need to prove the completeness of your satisfiability checker.

Here are specifics of one possible solution, which takes 79 lines of Coq:

• We study propositional formulas and check whether they are ‘satisfiable’.
A formula f is satisfiable if there is a valuation ρ (a valuation is a map
that assigns 0 or 1 to each of the proposition variables) such that ρ(f) = 1.

Here, ρ(f) is computed using the well-known ‘truth table semantics’.

• Define the inductive type of ‘propositional expressions’ form with the fol-
lowing constructors.

f_var : nat -> form

f_and : form -> form -> form

f_or : form -> form -> form

f_imp : form -> form -> form

f_neg : form -> form

f_var gives us infinitely many propositional variables, that are all indexed
by a natural number.

• Define the notion of a ‘model’ as a valuation ρ that assigns a boolean to
each natural number. This can be done in various ways:
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model : nat -> bool

model : list (nat * bool)

model : list nat

model : list bool

The last three assign a boolean to only finitely many numbers, but a
proposition contains only finitely many variables anyway, so that is no
problem. Each of these choices has pros and cons; probably the third is
easiest to work with.

• Define a function find_model that, given an e:form, computes a model
ρ in which e is true (i.e. in which ρ(e) = true).

Let find_model give an ‘error’ message if no such ρ exists, by making it
of type form -> option model. Check the definition of option by doing
Print option

NB. To define find_model, you will probably have to:

– First collect the list of proposition variables that occur in e.

– Then, by recursion over this list, try out all different valuations of
{true, false} to the proposition variables occurring in e.

• Prove that find_model ‘works’. Specifically: prove that if find_model e

= Some m , then m is a model of e.

5 The unary versus the binary natural numbers

Define both the unary and the binary natural numbers, define addition on both
types, define mappings in both directions, show that those mappings are inverse
to each other, and finally show that the two addition functions correspond to
each other under these mappings.

This exercise is more difficult than it looks, but it is a nice challenge. There are
various approaches possible:

• Define the binary numbers with the possibility of leading zeroes. This
amounts to ‘lists of bits’.

In the case the mappings between the two types are not simply inverse to
each other, as different binary representations might represent the same
number. One can define a predicate of two representations being ‘equal’
(= representing the same number), a predicate of a representation being
in normal form (= having no leading zeroes), and a function to normalize
a representation (= remove the leading zeroes).

Our solution using this approach (with many tactics per line!) takes 347
lines and has 34 lemmas.
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• Alternatively one can use a binary representation that is unique. There
are at least two possibilities for this:

– Define a type of positive binary natural numbers first, and then use
that to define a type of all binary natural number. This is similar to
the way the type of binary integers Z is defined in the Coq standard
library.

Our solution using this approach takes 155 lines and has 11 lemmas.

– Definemutual types of positive and non-negative binary natural num-
bers:

Inductive bnat : Set :=

| bO : bnat

| i : pnat -> bnat

with pnat : Set :=

| bit0 : pnat -> pnat

| bit1 : bnat -> pnat.

Here the functions bit0 and bit1 add a 0 or 1 at the right end of
the number, so they amount to doubling the number respectively
doubling it and adding one. Note that the type bnat has unique
representations for all natural numbers.

Our solution using this approach takes 143 lines and has 10 lemmas.

Both of these approaches are quite hairy with most definitions and lemmas
appearing twice for the two different types for binary numbers.

6 Integers à la Margaris

Margaris [1] gives a “direct” formalization of the integers, so not as pairs of
naturals, or as two copies of the naturals, but by directly defining a language
with 0, s (successor) and p (predecessor) with suitable axioms, including an
induction scheme. The assignment is to formalize this in Coq, and to prove
certain properties about it. The formalization will be slightly different from [1].

Basic definitions

Create a section with the following parameters and hypotheses

Parameter ZZ : Set.

Parameter oZ : ZZ.

Parameter pZ sZ : ZZ -> ZZ.

Hypothesis Zps : forall x : ZZ, pZ (sZ x) = x.

Hypothesis Zsp : forall x : ZZ, sZ (pZ x) = x.
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Hypothesis ZZ_ind_margaris : forall Q : ZZ-> Prop,

Q oZ -> (forall y, Q y <-> Q (sZ y)) -> forall x, Q x.

So we have a zero and a successor and predecessor that are each others inverses.
The final hypothesis is the induction principle for the integers, that Margaris
assumes.

Define the predicate N (N(x) says that “x is a natural number”) on Z by

N(x) := ∀Q,Q(0) → (∀y,Q(y) → Q(s(y))) → Q(x)

and add as an axiom (using Coq’s Hypothesis command) the assumption

¬N(p(0))

Define the predicate M on Z by

M(x) := ∀Q,Q(0) → (∀y,Q(y) → Q(p(y))) → Q(x)

Prove the following lemmas for Z:

• s and p are injective.

• N(0) and M(0), ∀x,N(x) → N(s(x)) and ∀x,M(x) → M(p(x)).

• ∀x,N(p(x)) → N(x) and ∀x,M(s(x)) → M(x).

• ∀x, p(x) ̸= x and ∀x, s(x) ̸= x.

• ∀x,N(x) → s(x) ̸= 0 and ∀x,M(x) → p(x) ̸= 0.

• ∀x,M(x) → ¬N(p(x)) and ¬M(s(0)) and ∀x,N(x) → ¬M(s(x)).

Define the following and prove the given properties

• Define “positive” and “negative” as predicates pos and neg on Z.

• Prove that, for x : Z, either pos(x) or x = 0 or neg(x).

Possible definitions are pos(x) := N(p(x)) and neg(x) := M(s(x)) and then
prove ∀x : Z, N(x) → x = 0 ∨N(p(x)) and ∀x : Z,M(x) → x = 0 ∨M(s(x)) to
prove ∀x : Z,pos(x)∨ x = 0∨ neg(x) and ∀x : Z, pos(x) → x ̸= 0∧¬neg(x) etc.

A full formalization of this assignment can be done in 121 lines of Coq.

Reference. [1] Angelo Margaris – Successor Axioms for the Integers The
American Mathematical Monthly Vol. 68, No. 5 (May, 1961), pp. 441-444
Published by Mathematical Association of America.
URL: http://www.jstor.org/stable/2311096
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