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Abstract. We present a new implementation of a reflexive tactic which
solves equalities in a ring structure inside the Coq system. The efficiency
is improved to a point that we can now prove equalities that were previ-
ously beyond reach. A special care has been taken to implement efficient
algorithms while keeping the complexity of the correctness proofs low.
This leads to a single tool, with a single implementation, which can be
addressed for a ring or for a semi-ring, abstract or not, using the Leibniz
equality or a setoid equality. This example shows that such reflective
methods can be effectively used in symbolic computation.

1 Introduction

In the context of a computer algebra system, one of the most extensively used
functionalities is the simplification of symbolic expressions, and in particular, the
use of algebraic identities. These identities are usually established by elementary
combinations of canonical identities, stored in a very large database, in a quite
efficient way. Programing similar tools in a proof assistant consists in programing
decision procedures, as the user is concerned with the reliability of the result.

Algebraic identities that the user of proof assistant is to handle are often
equalities modulo the axioms of a ring. There are numerous examples of such
identities: the product of two bi-squares is itself a bi-square, remarkable identities
like the famous (a + b)2 = a2 + 2ab + b2 or event more complex properties like
the fact that the product of sums of eight squares is a sum of eight squares.
These equalities are decidable and it seems natural to relieve the user of a proof
assistant of such goals, by providing an automatic tool. Otherwise the proof of
the identity:

(a + b)3 = a3 + 3a2b + 3ab2 + b3

would require no more than thirty elementary rewriting steps of the ring axioms.

The Coq [12] proof assistant already provides such a tool called ring. It is
not based on an automatic rewriting strategy but built using a reflexive tech-
nique [3]. The use of reflexivity has already reduced the size of the generated



proof terms and the time for building and checking them. Nevertheless, the ef-
ficiency of ring is not satisfactory. For example, proving 10 ∗ 100 = 1000, is
immediate if the multiplication ranges over the integers, while it takes about a
hundred seconds on a 3GHz machine if the multiplication ranges over the ax-
iomatic implementation of real numbers. The efficiency of the method on such
goals should not depend on the computational nature of the underlying ring
structure. This bad behaviour on constants strongly affects the efficiency of the
method on algebraic identities of higher degree. Moreover the implementation
choices made in the ring developpment are really limiting the size of the entries
ring is able to deal with.

Currently, there exists eight different implementations of ring depending
on the kind of ring: semi-ring or ring, abstract or not, setoid equality or Leib-
niz equality. Here, we factorize these eight implementations through a modular
implementation which will be finally instantiated to fit the kind of ring required.

The Coq system has recently been improved by the introduction of a com-
piler and an abstract machine, which now allows the evaluation of Coq programs
with the same efficiency as Ocaml programs [8]. After the experiences of mar-
rying computer algebra systems with theorem provers to get both efficiency
and reliability [9], it now seems reasonable to use Coq as a single environment
for programming, certifying and evaluating computer algebra algorithms. Our
newring decision procedure is one of these efficient tools required for the manip-
ulation of symbolic expressions, showing that the reflexive methods are the way
to separate computations from checking, inside the proof assistant. Furthermore
it is the first step for a bunch of other decision procedures, like the simplification
of field equalities [6], or decision methods in geometry [11].

In Section 2, we begin with some general remarks about the reflexive method
and its use in our particular context. The Section 3 is dedicated to our choice
to get efficient representation of polynomials, which is a crucial point for the
efficiency. The Section 4 shows the major importance of the choice of coeffi-
cients set for these polynomials. In the Section 5, we introduce a new axiomatic
structure, called almost-ring, which allows to unify the implementations of the
procedure for rings and semi-rings. In Section 6 we show how the use of the new
metalanguage Ltac [5, 2] allows to completely avoid the use of external Ocaml
code. Section 7 is dedicated to examples and benchmarks before we conclude in
Section 8.

2 Overall view of the method

2.1 Reflexivity

In the Coq system, the rewriting steps are explicit in a proof: each step builds a
predicate having the size of the current goal when the rewriting was performed,
hence the size of the proof term heavily depends on the number of these rewriting
steps. The reflection technique introduced by [1] takes benefit of the reduction
system of the proof assistant to reduce the size of the proof term computed and
consequently to speed up its checking. It relies on the following remark:



– Let P : A → Prop be a predicate over a set A.
– Suppose that we are able to write in the system a semi decision procedure

f , such that f is computable and if f returns true on the entry x, then P (x)
is valid, that is to say:
f correct: forall x, f(x)=true -> P(x).

If we want to prove P (y) for a particular y, and if we know that f(y) reduces to
true, then we can simply apply the lemma f_correct to y and to a proof that
true = true. Thanks to the conversion rule which allows to change implicitly the
type of a term by an equivalent (modulo β-reduction):

Γ ⊢ t : T Γ ⊢ U : s T ≡ U

Γ ⊢ t : U

This latter proof, which is (refl_equal true), is also implicitly a proof that
f(y) = true because f(y) reduces to true, so true = true is convertible with
f(y) = true. Finally the proof of P (y) we have built is :

f correct y (refl equal true)

The size of such a proof now only depends on the size of the particular
argument y and does not depend on the number of implicit β-reduction steps:
explicit rewriting steps have been replaced by implicit β-reductions. The size
of the proof term of the correctness lemma for f may be large, it is only done
once and for all. It will be shared by all the instantiations and will no more be
type-checked. The efficiency of this technique of course strongly depends on the
efficiency of the system to reduce the application of the decision procedure f(y),
hence on the efficiency of the decision procedure itself.

2.2 General scheme of the newring tactic

The newring tactic operates on a ring structure A, which includes a base type
for its elements, two constants 0 and 1, three binary operations +, ∗,− over A

and an opposite unary function −, together with the usual axioms defining a
commutative ring structure. Its goal is to prove the equality of two terms t1 and
t2 of type A modulo the ring axioms.

Working by reflection means that we want to build a semi decision procedure
f , which will take t1 and t2 as arguments and return true if t1 and t2 are equal
modulo associative-commutative rewriting in the ring structure.

A natural way to perform a comparison between two terms seems to be the
pattern-matching. Yet the Coq system does not allow pattern matching over
arbitrary terms, but only over inductive types. That is why terms of the type
A are going to be reflected into an appropriate inductive type PolExpr, which
describes the syntax of terms of type A. This step is also called the metaification.
A term of type A is mapped by the meta-function T to a polynomial expression
in PolExpr by:

– interpreting every ring constant as a constant polynomial expression (eg.
0,1)



– interpreting every ring operation as an operation over polynomial expressions
– hiding every subterm which is neither a ring constant, nor the application

of a ring operation to other subterms behind a labeled variable and building
the corresponding association list.

T is a kind of oracle, we will explain in Section 6 how to build such a function
using the meta-language Ltac[5] which allows to do pattern-matching over an
arbitrary Coq expression.

Once we have built the two PolExpr, e1 and e2, corresponding to t1 and t2,
the idea is to check the equality of the normal forms of e1 and e2 and to prove
that this implies the equality of t1 and t2. For this purpose, we should ensure
the correctness of the following diagram:

e1 = e2 PolExpr
norm //

ϕPE

��

Pol

ϕP

��

norm(e1) = norm(e2)

t1 = t2 A

T

AA

⇐⇒ A ϕP (norm(e1)) = ϕP (norm(e2))

by the correctness lemma:

∀e ∈ PolExpr, ϕPE(e) = ϕP (norm(e))

ϕPE (resp. ϕP ) are the evaluation functions. They evaluate polynomial ex-
pressions (resp. normalized polynomial Pol) into elements of A, by interpreting
back each constant polynomial to a constant of A, each variable by the ring term
it was hiding and each representation of an operator by the corresponding ring
operator.

These functions can be easily defined within the theory by pattern matching
over the reflected inductive types.

The inductive type PolExpr is adapted to the metaification. To ensure the
completeness of our tactic it should verify the following meta property:

∀a ∈ A. ϕPE(T(a)) = a.

Note that we do not have to prove this property, which can not be expressed
inside Coq. It does not affect the correctness of our decision procedure, but only
its completeness.

The type Pol stands for the set of the normalized forms of polynomial ex-
pressions, which does not need to be the same as PolExpr. It is adapted to
build normal forms efficiently. The norm function bridges the gap between these
two kind of constraints: PolExpr suits to the syntax of the terms in A and Pol

allows efficient computations.
To prove the equality of t1 and t2, our tactic first computes e1 and e2 using

T, and then checks the equality of their normal forms. If it holds, the correctness
lemma and the transitivity of equality ensure the equality of t1 and t2:

t1 = ϕPE(T(t1)) = ϕP (norm(T(t1))) = ϕP (norm(T(t2))) = ϕPE(T(t2)) = t2



3 Sparse Horner normal forms

Choosing the shape of the normal form is a crucial point for the complexity. The
normal form for terms in the ring will be determined by the choice made for the
normal form of polynomial expressions. We present here the choice we made for
the normal form, the sparse Horner normal form, which provides the required
efficiency.

3.1 Representation

Horner form for polynomials in C[X ] can be represented by the following induc-
tive type:

Inductive Pol1 (C:Set) : Set :=

| Pc : C -> Pol1 C

| PX : Pol1 C -> C -> Pol1 C.

where (Pc c) represents the constant polynomial c and (PX P c) represents
the polynomial P ∗ X + c. The problem with such a representation is that a
polynomial can have a lot of holes due to gaps in the degrees. For example,
X4 + 1 is represented in the Horner form as:
(PX (PX (PX (PX (Pc 1) 0) 0) 0) 1). The number of nested PX constructors
of such a polynomial is indeed its degree. To get a more compact representation
of the Horner form we can factorize these gaps by adding a power index in the
constructor of non constant polynomials:

Inductive Pol1 (C:Set) : Set :=

| Pc : C -> Pol1 C

| PX : Pol1 C -> positive -> C -> Pol1 C.

where positive is a inductive type representing N∗.
Now (PX P i c) stands for the polynomial P ∗ X i + c. So X4 + 1 is now

represented as (PX (Pc 1) 4 1).
Once the representation of univariate polynomials is fixed, there is a natural

way to extend it to multivariate polynomials, using the canonical isomorphism
C[X1, . . . , Xn] = C[X1 . . . Xn−1][Xn]. In Coq this can be done by declaring the
following fixpoint using dependent type:

Fixpoint Poln (C:Set) (n:nat) {struct n} : Set :=

match n with

| 0 => C

| S m => Pol1 (Poln C m)

end.

The type (Poln C n) represents the set of polynomials with n variables. Namely
(Poln C (S n)) represents the set of univariate polynomials with coefficients
in (Poln C n) and (Poln C 0) is the set of constant polynomials in C.



This representation creates another kind of holes corresponding to holes in
variables. For example the polynomial 1 will be encoded either by (Pc 1) if it
is seen as an element of Z[X ] or by (Pc (Pc (Pc (Pc 1)))) if it is seen as an
element of Z[W, X, Y, Z]. To solve this problem, we give up the idea of defining
multivariate polynomials recursively from univariate ones. We now define the set
of polynomials in an arbitrary number of variables in one shot.

Inductive Pol (C:Set) : Set :=

| Pc : C -> Pol C

| Pinj : positive -> Pol C -> Pol C

| PX : Pol C -> positive -> Pol C -> Pol C.

– (Pc c) stands for the constant polynomial c ∈ C[X1, . . . , Xn] for any n.
– If Q ∈ C[X1, . . . , Xn−j], and Q is its representation, then (Pinj j Q) repre-

sents Q as a polynomial in n variables, namely Q.X0
n−j+1 ∗ . . .∗X0

n. We have
“pushed” Q from C[X1, . . . , Xn−j ] to C[X1, . . . , Xn]. j is called the injection
index.

– Finally, (PX P i Q) stands for P ∗ X i
n + Q where P ∈ C[X1 . . .Xn] and

Q ∈ C[X1 . . . Xn−1] is constant in Xn.

3.2 Normalization

Our sparse Horner form does not provide a unique representation for arbitrary
polynomials. In C[X ] the polynomial X4 + 1 can be represented by (PX (Pc

1) 4 (Pc 1)) or by (PX (PX (Pc 1) 3 (Pc 0)) 1 (Pc 1)). To solve this, we
can define a normalization function that build a canonical representative of a
polynomial, and then define the equality on polynomial as the equality of the
canonical representatives.

Instead of normalizing before checking equality, our choice is to always ma-
nipulate canonical representatives verifying the three following properties:

– the coefficient of highest degree is never zero;
– the injection index is the biggest possible;
– the power index is the biggest possible.

So the canonical representative of X4 +1 is (PX (Pc 1) 4 (Pc 1)). Note that,
it is also the most compact representation of a sparse Horner form. Since the
complexity of operations depends on the size of the polynomials, linear for ad-
dition and quadratic for multiplication, it is interesting to work with canonical
terms. This means that each operation on polynomials should only build canoni-
cal terms. If P and Q are in canonical form, building the canonical representation
of (PX P i Q) is not expensive, since we only need to locally destruct P:

– if P = (Pc 0) then build the canonical representative of (Pinj 1 Q);
– if P = PX P’ i’ (Pc 0) then the canonical representative is:

(PX P’ (i+i’) Q)

– else (PX P i Q) is the canonical representative.



Our defined operations on polynomial, denoted by Padd, Pmul, Psub, and
Popp, keep the following invariant: if their arguments are canonical then their
result is canonical. To ensure this, we use specialized constructors that perform
local normalizations: mkPinj and mkPX. For example, the addition of (PX P i

Q) and (PX P’ i Q’) leads to the term (mkPX (Padd P P’) i (Padd Q Q’)).
Since the addition of P and P’ can be the zero polynomial, we need to use mkPX

to ensure that the result is canonical. But we directly use constructors Pinj and
PX, which are costless, each time the invariant allows it, as in the addition of (PX
P i Q) and (Pc c) which reduces to (PX P i (Padd Q (Pc c))), here P can
not be zero or of the form (PX P’ i’ (Pc 0)), since (PX P i Q) is canonical,
so (PX P i (Padd Q (Pc c))) is canonical.

For each operator, we prove a correctness lemma showing that the operator
is correct up to evaluation. For the addition the lemma is:

Lemma Padd_correct: forall P Q l,

phiP l (Padd P Q) == (phiP l P) + (phiP l Q).

where == is the setoid equality over the initial ring (or semi-ring) structure and
+ is its addition.

Note that using mkPX instead of PX has no influence on the correctness, be-
cause (phiP l (mkPX P i Q)) is equal to (phiP l (PX P i Q)). The only in-
fluence is for completeness, since using PX instead of mkPX can produce a non-
canonical representative. But again, we do not need to prove completeness.

The normalization function from polynomial expressions to their canoni-
cal sparse Horner forms consists in mapping variables to monomials, constants
to constant polynomials and operation constructors to operation functions on
Horner form. The canonical representative is given by the evaluation of the term
obtained.

After having defined the normalization function, we can prove its correctness:

Lemma norm_correct : forall l e, phiPE l e == phiP l (norm e).

And then the main lemma, which expresses the correctness of our decision pro-
cedure:

Lemma f_correct : forall l e1 e2,

Peq (norm e1) (norm e2) = true -> phiPE l e1 == phiPE l e2.

where Peq stands for a defined function which checks the syntactic equality over
sparse Horner forms.

The set of coefficients C is the carrier of the computations performed by the
normalization function. The following section will show that the choice made for
C is crucial, especially for the efficiency of the procedure, as C catches the “best
computational part“ of the ring.

4 Computations over the parametric coefficient set

The normalization function we have described above strongly relies on the com-
putational behavior of the set of coefficients. For example the normalization of



x + (−x) leads to (1 + (−1)).x, which will reduce to 0.x. C has to be chosen
as a set over which we know how to compute, as efficiently as possible. In the
Coq system, these kind of sets will be represented by inductive types, and the
operations are defined as functional programs.

In the Coq system, Z is an implementation of Z as lists of binary digits.
In the case Z is the underlying ring of the equality to be proved, Z itself is a
good candidate. On the other hand, if the underlying ring is R, the axiomatic
implementation of real numbers in Coq, R itself will not be an appropriate set of
coefficients. Indeed, in R, 1+ (−1) is equal to 0 (using ring axioms) but does not
reduce to 0: the subtraction as the other operations and constants of R are only
symbols, and are not evaluable. Hence x + (−x) would not reduced to 0.x by
the normalization function. Since there is a natural inclusion of Z in R, we can
use Z as a set of coefficients. Moreover, whatever ring A we are dealing with,
the canonical morphism from Z to A will enable us to use again Z as a set of
coefficients. This type Z seems then to be a universal candidate for coefficients.

Nevertheless, Z will not always be the good choice. If the computational
content of the ring operations is stronger than the ring axioms, this method will
allow to prove more than what is provable by sole rewriting of the rings axioms.
In the case we are working in the ring bool, the equality x+x = 0 holds, even if
it is not provable using only the ring axioms. The good choice for C is now bool

itself: the left side of the equality is again reflected in X +X (with coefficients in
bool), whose normal form (1+1).X is reduced to 0.X = 0 by the normalization
function, thanks to the computations over the coefficients in bool. Hence our
choice is to parametrize our tactic by the set of coefficients and to let the user
make the most appropriate choice.

An inductive type has to fulfill some requirements to be admissible as a set of
coefficients. These requirements will ensure the correctness of the normalization
function. Formally, C will be admissible if it is equipped with the constants
and operators of a ring, and with a decidable equality relation =C . The last
requirement is needed to implement the mkPX and mkInj constructors (we need
to be able to check the equality at 0). It also allows to get a decidable equality
on sparse Horner form.

We also require a suitable evaluation function from C to A, mapping the
constants of C to the elements of A and this function should be compatible with
the respective operations of C and A. These requirements can be expressed by
the existence a so-called morphism between C and A (even if C does not need to
be a ring). This morphism evaluates the constants and operators in C into their
analogous in A, and the decidable equality relation =C over C should satisfies :
if (x =C y) returns true, then the evaluations of x and y will be equal in A.

Once we have got C and a proof of all these specifications, we define in
a generic way the operations over polynomials as explained in Section 3, and
extend the morphism between C and A into two evaluation functions ϕPE and
ϕP , from the polynomial expressions and sparse Horner form to A. We also
obtain a proof of the general diagram of the reflection presented in 2.2, Pol



and PolExpr being now replaced by their parametrized version Pol(C) and
PolExpr(C).

We have implemented the identity morphism which corresponds to taking
the ring itself as the set of coefficient. The user can always apply the resulting
tactic even if it may not prove much equalities (like in the case R is involved).
We have also implemented the morphism from Z to an arbitrary ring, which can
always be used as an efficient default choice, but is not necessary the best choice
(cf the case of bool).

In order to get the maximal efficiency from this method, the user has to make
to most appropriate choice for C. If the ring structure is defined in an axiomatic
way, like R, Z will always be a good choice for the set of coefficients. In the case
the ring already presents a computational content, like Z or bool, it may be
a good choice to take the ring itself as the coefficient set. Nevertheless, if the
available operations are not efficient enough, like it is the case for example in
the semi-ring of Peano numbers, it may be more appropriate to obtain the most
efficient computational content by changing the set of coefficients all the same,
here for example by taking a binary representation of natural numbers.

5 Unifying rings and semi-rings

A semi-ring is a ring where the axioms stating the existence of an opposite
(and of a subtraction) have been replaced by an extra axiom : ∀x, 0 ∗ x = 0.
These structures are quite alike and we would like to get a tool also adapted
to semi-rings without duplicating the code. For this purpose, we work with an
intermediate structure, called almost-ring. The idea is to complete a semi-ring
with a unary operator, called almost-opposite which is morally the opposite oper-
ator of a ring structure. This operator will be instantiated by a dummy function
to equip a semi-ring with such a structure. In fact the fundamental remark is
the following : in the correctness proof of the normalization function, the axiom
defining the opposite operator as an inverse, by stating that ∀x, x + (−x) = 0
is never used itself, but only the properties which describe its combination with
the other operators. Finally an almost-ring is defined by the following axioms:

– ∀x, 0 + x = x

– ∀x y, x + y = y + x

– ∀x y z, x + (y + z) = (x + y) + z

– ∀x, 1 ∗ x = x

– ∀x y, x ∗ y = y ∗ x

– ∀x y z, x ∗ (y ∗ z) = (x ∗ y) ∗ z

– ∀x y z, (x + y) ∗ z = x ∗ z + y ∗ z

– ∀x, 0 ∗ x = x (at that point we have a semi-ring)

– ∀x y, −(x ∗ y) = −x ∗ y (combination of pseudo-opposite with product)

– ∀x y, −(x + y) = −x + −y (combination of pseudo-opposite with addition)

– ∀x y, x − y = x + −y (definition of an associated pseudo-subtraction)



It is straightforward to prove that every ring is an almost-ring. The axioms
of an almost-ring do not allow to prove the missing axiom defining the opposite
in ring x +−x = 0. Anyway, this identity will be proved by our tactic, provided
that in the set of coefficients 1+(−1) reduces to 0. This is ensured thanks to the
existence of a morphism from the set of coefficients to the ring. Every semi-ring
can also be equipped with an almost-ring structure if we take the identity as an
almost-opposite operator and the defined addition operator of the semi-ring as
subtraction.

The tactic is finally designed for an almost-ring structure. We have moreover
built the proofs required to transform any ring or semi-ring into the associated
almost-ring.

The last parameter given to the tactic is the equality relation used over the
ring. It may not be the Leibniz equality, but an equivalence relation adapted to
the ring structure. For example, this is the case for an implementation of Q as
Z×N∗. A set equipped with such an equality relation is called a setoid ([7],[10]).
Proving equalities in such a setoid ring requires extra properties stating that
all the ring operations are compatibles with the given setoid equality. In the
case the equality involved in the goal is the Leibniz one, these requirements are
trivial to fulfill. That is why the tactic will finally also be parametrized by a
setoid equality and the related compatibility lemmas for the operations.

6 Programming the metaification and the tactic

The purpose of the newring tactic is to solve goals of the form t1 == t2 by
applying the f_correct lemma. To do so we need to produce a list of values l

and two polynomial expressions e1 and e2 such that the evaluation of e1 (resp.
e2) at l is convertible to t1 (resp. t2). Consider the following equality

3 ∗ sin(x) ∗ x = x ∗ (sin(x) + 2 ∗ sin(x)) + 0 ∗ y

In this case l will be [sin(x); x; y], e1 will be 3 ∗ X1 ∗ X2 and e2 will be
X2 ∗ (X1 + 2 ∗ X1) + 0 ∗ X3.

6.1 Programming the metaification

We use the Coq proof-dedicated metalanguage Ltac[5] to design the oracle pro-
ducing the expected values (l, e1, e2). This metalanguage allows to do pattern-
matching on arbitrary Coq terms, and thereby to program this metafunction,
which is a tactic, in a natural way as done in [6].

We first build a function FV which computes the list l containing the subterms
to abstract. These are the ones which do not belong to the syntax of a ring. Then
the mkPolexpr tactic computes the two expresssions e1 and e2 and the list l is
used to know which variable is associated to a given subexpression to abstract.

Ltac mkPolexpr Cst add mul sub opp t l :=

let rec mkP t :=



match t with

| (add ?t1 ?t2) =>

let e1 := mkP t1 in

let e2 := mkP t2 in constr:(PEadd e1 e2)

| (mul ?t1 ?t2) => ...

| (sub ?t1 ?t2) => ...

| (opp ?t1) => ...

| _ =>

match Cst t with

| false => let p := Find_at t l in constr:(PEX p)

| ?c => constr:(PEc c)

end

end

in mkP t.

The tactic mkPolexpr takes as arguments a term t, the list l of terms to abstract,
the ring operators and a tactic Cst. It matches the head symbol of t:

– If this symbol is one of the given operators then it builds recursively the
corresponding polynomial expression;

– If the head symbol is not an operator then either t is a constant or it has to
be abstracted into a variable. This discrimination is performed by the tactic
Cst given in argument :

• If Cst returns false then the index of the proper variable is given by
the position of t in the list l given in argument.

• Otherwise t is mapped to the corresponding constant.

The definition of the Cst tactic depends on the ring A. If A is an abstract ring,
the set of coefficients will be Z, and we can already define a naive tactic which
matches only the neutral elements of A (rO and rI).

Ltac genCstZ rO rI t :=

match t with

| rO => constr:(0%Z)

| rI => constr:(1%Z)

| _ => constr:false

end.

On the other hand, in the case A is Z, the set of coefficients will be Z itself,
and we can match much more constants: in fact all the terms built only with the
constructors of Z.

Ltac ZCst t :=

match (is_ZCst t) with

| true => constr:t

| false => constr:false

end.



Here is_ZCst is a tactic matching the terms built only with the constructors of
the inductive type Z.

This method has also been generalized to the case of semi-rings, where N,
the implementation of binary natural numbers plays the role of Z. We have also
built such a tactic Cst for boolean, where the target constants are booleans.

6.2 The generic tactic

To define the newring tactic itself, we use the possibility given by Ltac to pro-
gram a higher-order function, which builds a tactic, solving equalities in the
structure given in argument. For the sake of clarity we present a simplified ver-
sion that can be used only if the goal is a valid equality modulo ring axioms
and fails otherwise. The real implementation also replace both members of the
equality by their normal form if they are not equal.

Ltac Make_ring_tac add mul sub opp req Cst_tac :=

match goal with

| [ |- req ?r1 ?r2 ] =>

let fv := FV Cst_tac add mul sub opp (add r1 r2) (nil R) in

let e1 := mkPolexpr Cst_tac add mul sub opp r1 fv in

let e2 := mkPolexpr Cst_tac add mul sub opp r2 fv in

apply (f_correct fv e1 e2); compute; exact (refl_equal true)

| _ => fail "not equality"

end.

The tactic first checks that the current goal is an equality. If so, it computes a
single list fv of subterms to be abstracted in both terms, and the two polynomial
expressions e1 and e2 representing the members of the equality. Then the tactic
applies the correctness lemma f_correct. At that point the tactic should prove
the hypothesis of the lemma, namely check that (norm e1) ?== (norm e2) is
equal to true.

If r1 and r2 are equal modulo ring axioms then this new goal is convertible
to true = true. So it is now possible to complete the proof with the term
(refl_equal true). The tactic exact checks that the provided term has a
type convertible to the current goal ((norm e1) ?== (norm e2)) = true. This
is performed using a lazy reduction strategy. Here checking the convertibility
is equivalent to computing the normal form of the equality’s left-hand side.
The efficient strategy suitable to this problem is the call by value reduction. So
the tactic first uses the compute tactic to reduce the goal in this way, before
concluding with exact.

We can now apply the Make_ring_tac to obtain a tactic which automatically
prove ring equality in Z:

Ltac zring := Make_ring_tac Zplus Zmult Zminus Zopp (@eq Z) ZCst.

We also have implemented such a tactic for booleans (bring), reals (rring) and
natural numbers (nring), Peano numbers as well as their binary implementation.



Finally, the newring tactic analyzes the type of the equality to prove and calls
the corresponding specialized tactic:

Ltac newring :=

match goal with

| [|- @eq Z _ _ ] => zring

| [|- @eq R _ _ ] => rring

| [|- @eq bool _ _ ] => bring

| [|- @eq nat _ _ ] => nring

end.

To work with an other user-defined structure, one can always use the prede-
fined tactic Make_ring_tac to build the appropriate tactic for proving equalities
in this structure.

7 Examples and Benchmarks

The newring tactic has performed two orthogonal improvements compared to
the choices made in the ring tactic developped by S. Boutin [3]. The first one
is the choice of the sparse Horner form for the representation of normal forms
instead of an ordered sum of monomials, being themselves an ordered product of
variables. The second is to use Z as the set of coefficients for reflected expressions
when working with abstract rings (R for example).

7.1 Sparse Horner form

Figure 1 describes the time to normalize the expression (x1 + . . .+xn)d seen as a
polynomial with coefficients in Z. For ring, the normal form of this expression is
its expansion in an ordered sum of monomials, each prefixed by a coefficient in Z.
Both tactics use Z as a set of coefficients, so these benchmarks show the interest
of the sparse Horner form to deal with polynomials of higher degree. The gain
in time for n = 5 and d = 5 is a factor 6 and a factor 500 for n = 7 and d = 9,
thanks to the compactness of sparse Horner form representation. Using a naive
Horner form (without power and injection index, or not maintaining canonical
representatives) introduces an overhead of 30%. Moreover, the ring tactic is not
able to normalize this expression when n = 8 and d = 9, and when n = 12 it
fails for d = 6. The newring tactic is able to normalize the expression for n = 12
and d = 11.

Comparing the time to normalize expressions of the form (x1 + . . . + xn)d

to the results given by the expand function of Maple, is deceiving. The algo-
rithm used by the computer algebra system in mainly focused on the access
to a database of stored identities, and possible simple combinations of them.
When the precomputed identities are useless, the system is of course less effi-
cient, and can even fail because of the size of the normal form. This is the case
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Fig. 1. Time to prove that (x1 + . . . + xn)d is equal to its normal form

for expressions of the following form

( y + x2 + . . . + xn−1 + xn) ∗

(x1 + y + . . . + xn−1 + xn) ∗

...
(x1 + x2 + . . . + y + xn) ∗

(x1 + x2 + . . . + xn−1 + y )

For n = 8 the newring tactic is four times slower than the expand strategy of
Maple (0.4s for newring, 0.12s for Maple). But Maple fails to expand the for-
mula when n = 9 (Error, (in expand/bigprod) object too large), while
newring finishes in 1.7s.

7.2 The set of coefficients

Beside the successful use of the Horner form, the use of Z as the set of coefficients
when we are working with an abstract ring has been a major improvement for
efficiency. For the previous ring tactic, the representation of normal forms in an
abstract ring leads to coefficients equivalent to unary numbers, hence compu-
tations are completely inefficient. Proving that 10*100 = 1000 takes about one
hundred of seconds on a 3GHz machine using ring, and it is now immediate with
newring (as one would expect). It is worth paying attention to the efficiency of
such a tactic over (large) integers. One often deals with expressions with small
coefficients but successive computations may increase their size in a significant
way. A well-known phenomenon of explosion in the size of the coefficients oc-
cur while computing a remainder sequence of polynomials, like the computation
of a polynomial gcd in Q[X ]. For example, in the context of the checking of



computations made by an external oracle [9] (Maple or any dedicated program
producing a trace of certificates...), checking the successive steps of such a com-
putation will force to deal with large coefficients, even if the initial polynomial
entries had small ones.

8 Conclusion

This development shows that it is worth paying attention to the algorithmic
aspects in programming such a procedure in the same way we would have done
while programming it in a functional language. The choices we made in that
sense turned out to be primordial for efficiency. This gain in efficiency could
have lead to a complication of the associated correctness proofs. This is not the
case, as the possible difficulties in the proofs lie in the mathematical complexity
of the problem more than in the choices made for computations. This effort
has even allowed to reduce the size of the development, by factorizing the eight
versions of the tactic in a single one.

One other characteristic feature of the reflexive method is that it requires, for
the reflection step, the use of an operator defined in the meta level, and hence
using the meta-language of the system. The Ltac metalanguage turns out to be
exactly the tool needed in reflexive tactic to program this reflection step in the
meta-theory. The mechanism of pattern-matching over Coq terms indeed enables
to write this function easily, without any knowledge of the inside of Coq and to
work entirely at the top-level, without needing to compile again and again the
whole sources of the system to integrate the new tactic.

A possible improvement for our development would be to allow negative
powers in the representation of polynomials, to deal with Laurent series. But,
one can also use the remark that proving an equality in a field can be transformed
into a goal in a certain ring plus nonzero conditions for the denominators. This
implementation of a newfield tactic has been achieved by L. Théry.

This work shows that the sparse Horner form is the right representation to
compute efficiently with polynomials. We hope that existing developments, such
as the decision procedure for geometry [11], strongly relying on the ring tactic
will gain in efficiency and hence in power.

We are also convinced that this will allow the development of other efficient
procedures to deal with symbolic expressions, providing a basic toolkit for larger
developments in the domain of certified computer algebra. In particular, the sec-
ond author uses the Horner representation of polynomials to develop a decision
procedure for real numbers theory based on G. Collins’ cylindrical algebraic
decomposition [4], which is a quite complex algorithm resting on numerous com-
putations over polynomials (computations of gcd, subresultant coefficients,...).

The efficiency of newring overcomes what was before a strongly limiting
factor in such a development, showing that it is possible to compute efficiently
within a proof assistant. This makes possible to use the proof assistant as a single
environment for computing and proving as well as an efficient checker efficiently
computations possibly performed by an external tool as described in [9].



The systematic use of Z as a set of coefficients has considerably increased the
efficiency of the tactic. Yet Z, in which numbers are represented as lists of bits,
is not the best possible implementation for integers. An other step toward the
efficiency of a genuine computer algebra system will be to provide to the user the
possibility to use a library of machine binary integers, comprising fast computing
operations, in order to deal even more efficiently with the huge integers occurring
during symbolic computations (eg. polynomial gcds, prime numbers).
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