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Abstract. This paper is a tutorial on using the Coq proof-assistant for
reasoning on software correctness.
We illustrate characteristic features of Coq like inductive definitions and
proof automation on a few examples : arithmetic, algorithms on lists,
cryptographic protocols. . .
Coq is not a tool dedicated to software verification but a general purpose
environment for developing mathematical proofs. However, it is based on
a powerful language including basic functional programming and high-
level specifications. As such it offers modern ways to literally program
proofs in a structured way with advanced data-types, proofs by compu-
tation, and general purpose libraries of definitions and lemmas.
Coq is well suited for software verification of programs involving ad-
vanced specifications (language semantics, real numbers). The Coq ar-
chitecture is also based on a small trusted kernel, making possible to use
third-party libraries while being sure that proofs are not compromised.

1 Introduction

1.1 What is Coq ?

The proof assistant Coq is an environment for developing mathematical facts.
This includes defining objects (integers, sets, trees, functions, programs . . . );
making statements (using basic predicates and logical connectives); and finally
writing proofs.

The Coq compiler automatically checks the correctness of definitions (well-
formed sets, terminating functions . . . ) and of proofs.

The Coq environment helps with: advanced notations; proof search; modular
developments. It also provides program extraction towards languages like Ocaml
and Haskell for efficient execution of algorithms and linking with other libraries.

Impressive examples have been done using Coq. They cover different areas.
In pure mathematics, one can notice the Fundamental theorem of Algebra (every
polynomial has a root in C) developed at Nijmegen in the team of Barendregt [21]
in 2000 and more recently the Feit-Thompson theorem on finite groups under
the supervision of Gonthier in the joint INRIA-Microsoft research center [23].
Many interesting proofs combine advanced algorithms and non-trivial mathe-
matics like the proof of the four-color theorem by Gonthier & Werner at INRIA
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and Microsoft-Research [22], a primality checker using Pocklington and Elliptic
Curve Certificates developed by Théry et al. at INRIA [37] and more recently
the proof of a Wave Equation Resolution Scheme by Boldo et al. [9]. Coq can
also be used to certify the output of external theorem provers like in the work
on termination tools by Contejean and others [15], or the certification of traces
issued from SAT & SMT solvers done by Grégoire and others [1]. Coq is also
a good framework for formalizing programming environments: the Gemalto and
Trusted Logic companies obtained the highest level of certification (common cri-
teria EAL 7) for their formalization of the security properties of the JavaCard
platform [12]; Leroy and others developed in Coq a certified optimizing compiler
for C (Leroy et al.) [27]. Barthe and others used Coq to develop Certicrypt, an
environment of formal proofs for computational cryptography [5]. G. Morrisett
and others also developed on top of Coq the Ynot library for proving impera-
tive programs using separation logic. These represent typical examples of what
can be achieved using Coq. Coq might not be the best tool for proving your ev-
eryday routine code but is definitely useful when sophisticated data-structures,
algorithms and specifications are involved and also as a general framework to
design special platforms for software verification.

Related Systems. Coq is a proof assistant similar to HOL systems, a family
of interactive theorem provers based on Church’s higher-order logic including
Isabelle/HOL [33], HOL4 [30], HOL-light [25]), PVS [32], . . .

Unlike these systems, Coq is based on an intuitionistic type theory and is
consequently closer to Epigram [29], Matita [2] and also Agda [16] and NuPrl [14].
All these systems have in common that functions are programs that can be
computed and not just binary relations like in mathematics.

More Informations on Coq. The Coq web site is located at coq.inria.fr. It
contains official distributions (multi-platforms), the reference manual and also
libraries and user’s contributions.

The so-called Coq’art book by Yves Bertot and Pierre Castéran [7] provides
a full presentation of the Calculus of Inductive Constructions from the point of
view of Interactive Theorem Proving and Program Development. The course by
B. Pierce on software foundations [34] using Coq is available on-line. The book
by A. Chlipala [13] concentrates on programming with Coq and make intensive
use of dependent types. We also recommend the course notes Coq in a Hurry by
Y. Bertot [6] as an alternative quick introduction to the Coq system.

History. Information on the history of Coq can be found in the preface of the
reference manual. The origin of the language , the pure Calculus of Construc-
tions and its first implementations go back to 1984 and are due to Coquand &
Huet [17].

The language and the environment were constantly extended afterward: uni-
verses and tactics (Coquand, 1985), program extraction (Paulin& Werner, 1989
– Letouzey 2002), inductive definitions (Coquand & Paulin, 1989), co-inductive
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definitions (Giménez, 1995), advanced pattern-matching (Cornes, 1995 – Her-
belin, 2002), coercions (Saibi, 1997), efficient computations (Barras, 2001 –
Grégoire, 2002), Modules (Courant, 1998 – Chrząszcz, 2004 – Soubiran, 2010),
tactic language (Delahaye, 2000), automated tactics (Crégut, Boutin, Pottier,
Besson, Sozeau, . . . ), type classes (Sozeau, 2009). . .

1.2 Coq architecture

It is important to understand that Coq is based on a two levels architecture.
There is a relatively small kernel based on a language with few primitive con-
structions (functions, (co)-inductive definitions, product types, sorts) and a lim-
ited number of rules for type-checking and computation. The same language is
used to represent objects, functions, propositions and proofs.

On top of this kernel, Coq provides a rich environment to help designing
theories and proofs offering mechanisms like user extensible notations, tactics
for proof automation, libraries . . . This environment can be used and extended
safely because ultimately any definition and proof is checked by a safe kernel.

As a Coq user, one might be interested by finding quickly the high-level
constructions that will be helpful to solve a problem, but it might also be im-
portant to understand the underlying low-level language in order to be able to
develop new functionalities and to better control how certain constructions work
in certain circumstances.

The following example illustrates the two levels structure. When dealing with
integers, the user will enter the notation 5=2+3 but internally the Coq kernel
will be given the term:
@eq Z (Zpos (xI (xO xH))) (Zplus (Zpos (xO xH)) (Zpos (xI xH)))

which explicits the type Z of the components and also the binary encoding of
the integers.

1.3 Program verification in Coq

Coq can be used for program verification in different ways :

– One can express the property “the program p is correct” as a mathematical
statement in Coq and prove it is correct. It can can be hard but the proof
is guaranteed.

– One can develop a specific program analyzer (model-checking, abstract in-
terpretation,. . . ) in Coq, prove it correct and use it. It is a huge investment,
but one get an automatic guaranteed result for each program instance.

– One can represent the program p by a Coq term t and the specification by a
type T such that t : T (which is automatically checked) implies p is correct.
It works well for functional (possibly monadic) programs.

– One can also use an external tool to generate proof obligations and then
use Coq to solve obligations. It is a less safe approach (unless your gener-
ator of proof obligations is certified) but it can deal with specifications in
undecidable fragments where full automation will not work.
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1.4 Outline

In section 2, we introduce quickly the basics Coq commands and tactics for
logical reasoning. In section 3, we develop the notion of inductive definitions
(both types and relations) and illustrate them on a board example, simple search
algorithms and proof of cryptographic protocols. In section 4, we show examples
of advanced programming using Coq. In section 5, we discuss proof automation
and in particular proofs by reflection. We conclude by a discussion on the merits
of Coq with respect to other approaches.

2 Basics of Coq system

2.1 First steps in Coq

Coq is an interactive system intended to build libraries of definitions and facts.
As a logical system it implements higher-order logic including arithmetic. It also
includes a basic functional programming language. The environment provides
additional tools such as libraries that can be quickly loaded, tools to query the
environment in order to find the appropriate definitions and lemmas, and various
mechanisms to simplify notations.

We recommend following the examples in this paper while experimenting
with the system. A widely used interface is coqide which is part of the Coq
standard distribution. An alternative is to use emacs with the proof-general [3]
library. Both environments offer similar functionalities. A main window contains
Coq commands and is sequentially interpreted. When entering proof mode,
another window displays the current status of the proof (unsolved goals). Finally,
a window displays Coq output messages (including errors). coqide has also a
special Queries window to display result of various printing commands.

Fig. 1. Graphical interfaces for Coq: coqide (left), Proof General (right)

All Coq commands end with a dot. Comments are written between (* ..

*). This document has been prepared using Coq V8.3pl3. The lines correspond-
ing to Coq inputs are starting with Coq <. The Coq code corresponding to the
examples presented in this paper are available from the author web page.
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2.2 Basic terms

A Coq object in the environment has a name and a type. The Check term
command takes a name (or more generally a term) as an argument; it checks it
is well-formed and displays its type.

Coq < Check nat.

nat : Set

Coq < Check 0.

0 : nat

The object nat is a predefined type for natural numbers, its type is a special
constant Set called a sort. The constant 0 has type nat. The object S is the
successor function, it has type nat → nat. The binary function plus has type
nat → nat → nat which should be read as nat → (nat → nat).

The term funx→ t (or fun (x : T )→ t to indicate the type T of variable x)
represents a function f such that f(a) ≡ t[x← a].

A function f can be applied to a term t using the notation f t. The term
f t1 t2 stands for (f t1) t2. The natural number 10 is just a notation for the
successor function applied 10 times to 0 and the usual infix notation t1 + t2 can
be used instead of plus t1 t2.

Coq < Check (3+2).

3 + 2 : nat

The standard library defines the type of booleans bool with two inhabitants
true and false. A choice on a boolean term b is written if b then t1 else t2.

Propositions. In Coq, logical propositions are also seen as terms. The type
of propositions is the sort Prop will be the type of propositions. We present
a summary of Coq syntax for logical propositions (first line presents paper
notation and second line the corresponding Coq input).

⊥ > t = u t 6= u ¬P P ∧Q P ∨Q P → Q P ⇔ Q
False True t=u t<>u ~P P /\ Q P \/ Q P -> Q P <-> Q

The arrow represents implication, it associates to the right and T1->T2->T3 is
interpreted as T1->(T2->T3)

Quantifiers. Syntax for universal and existential quantifiers is given below with
possible variants:

∀x, P forall x, P forall x:T, P forall T (x y:T) (z:nat),P

∃x, P exists x, P exists x:T, P no multiple bindings

The command Check verifies a proposition is well-formed but does not say if it
is true or not.

Coq < Check (1+2=3).

1 + 2 = 3 : Prop

Coq < Check (forall x:nat , exists y, x=y+y).

forall x : nat , exists y : nat , x = y + y : Prop
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In the following, term will denote any Coq term, name or id represents an
identifier, type represents a so-called “type” which is a term with type Type,
Set or Prop. We use prop instead of type when we expect a term of type Prop,
however the same commands will usually also work with a more general type.

2.3 Logical rules and tactics

In order to establish a proposition is true, we need to produce a proof. Following
the approach introduced by R. Milner for the LCF system, we use backward
reasoning with tactics. A tactic transforms a goal into a set of subgoals such that
solving these subgoals is sufficient to solve the original goal. The proof succeeds
when no subgoals are left.

In practice, we introduce a new goal in Coq using one of the following com-
mands with prop representing a logical proposition (a well-formed term of type
Prop).

Lemma id : prop. Theorem id : prop. Goal prop.

Coq implements a natural deduction logical system. Following Curry-Howard
isomorphism, a proof of a proposition A is represented by a term of type A.
So there is only one form of judgment Γ ` p : A. The environment Γ is a
list of names associated with types x : T . When A is a type of objects, it is
interpreted as “the term p is well-formed in the environment Γ and has type A”.
For instance x : nat ` x+ 1 : nat. When A is a proposition, it is interpreted as
“A is provable under the assumption of Γ and p is a witness of that proof”. For
instance x : nat, h : x = 1 ` . . . : x 6= 0

Axiom. The basic rule of natural deduction is the axiom rule when the goal to
be proven is directly an hypothesis. The logical rule and corresponding tactics
are:

h : A ∈ Γ
Γ ` h : A

exact h or assumption

Connectives. The rules for a connective are separated between introduction
rule(s) giving a mean to prove a proposition formed with that connective if
we can prove simpler propositions, and a rule of elimination which explains how
we can use a proof of a proposition with that connective. In the figure 2, we
give the logical rule and the corresponding tactics. A tactic will work with a still
unresolved goal, that we indicate using ? in place of the proof-term.

It would be painful to apply only atomic rules as given in the figure. Tactics
usually combine in one step several introductions or elimination rules. The tactic
intros does multiple introductions and infer names when none are given. The
tactic apply takes as an argument a proof h of a proposition

∀x1 . . . xn, A1 → · · ·Ap → B.
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introduction elimination

⊥ Γ`?:False

Γ`?:C
exfalso

¬ Γ,h:A`False

Γ`?:¬A
intro h

Γ`h:¬A Γ`?:A

Γ`?:C
destruct h

→ Γ,h:A`?:B

Γ`?:A→B
intro h

Γ`h:A→B Γ`?:A

Γ`?:B
apply h

∀ Γ,y:A`?:B[x←y]

Γ`?:∀x:A,B
intro y

Γ`h:∀x:A,B Γ`t:A

Γ`?:B[x←t]
apply y with (x:=t)

∧ Γ`?:A Γ`?:B

Γ`?:A∧B
split

Γ`h:A∧B Γ,l:A,m:B`?:C

Γ`?:C
destruct h as (l,m)

∨

Γ`?:A

Γ`?:A∨B

Γ`?:B

Γ`?:A∨B

left

right

Γ`h:A∨B Γ,l:A`?:C Γ,l:B`?:C

Γ`?:C
destruct h as [l|l]

∃ Γ`t:A Γ`?:B[x←t]

Γ`?:∃x:A,B
exists t

Γ`h:∃x:A,B Γ,x:A,l:B`?:C

Γ`?:C
destruct h as (x, l)

=
t≡u

Γ`?:t=u
reflexivity

Γ`h:t=u Γ`?:C[x←u]

Γ`?:C[x←t]
rewrite h

Fig. 2. Logical rules and corresponding tactics

It tries to find terms ti such that the current goal is equivalent to B[xi ← ti]i=1...n

and generates subgoals corresponding to Aj [xi ← ti]i=1...n. If some of the xi are
not infered by the system, it is always possible to use the variant with (xi:= ti).

Tactics associated with logical rules implement backward reasoning, but it is
often useful to do forward reasoning, adding new facts in the goal to be proven.
This is done using the assert tactic:

Γ ` ? : B Γ, h : B ` ? : A

Γ ` ? : A
assert (h : B)

As an exercise, you may try to prove the following simple logical properties.

Coq < Lemma ex1: forall A B C:Prop ,

(A -> B -> C) -> (A -> B) -> A -> C.

Coq < Lemma ex2: forall A, ~~~ A -> ~ A.

Coq < Lemma ex3: forall A B, A \/ B -> ~ (~ A /\ ~ B).

Coq < Lemma ex4: forall T (P:T -> Prop),

(~ exists x, P x) -> forall x, ~ P x.

Tactics can be combined using what is called a tactical :

t1 ; t2 applies tactic t1 then tactic t2 on generated subgoals

t1 || t2 applies tactic t1, when it fails, applies t2
try t applies tactic t, does nothing when t fails

repeat t repeats tactic t until it fails

Some tactics are doing proof search to help solve a goal:
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contradiction solves the goal when False, or A and ¬A appear in the hypotheses
tauto solves propositional tautologies
trivial tries very simple lemmas to solve the goal
auto searches in a database of lemmas to solve the goal
intuition removes the propositional structure of the goal then auto
omega solves goals in linear arithmetic

Proving Equalities. The introduction rule of equality is reflexivity. In Coq, two
terms t and u are convertible (written t ≡ u) when they represent the same
value after computation. The elimination rule allows to replace a term by an
equal in any context. As a consequence, we have the following derived rules and
corresponding tactics:

Γ`?:u=t

Γ`?:t=u
symmetry

Γ`?:t=v Γ`?:v=u

Γ`?:t=u
transitivity v

Γ`?:f=g Γ`?:t1=u1...Γ`?:tn=un

Γ`?:f t1...tn=g u1...un

f equal

Variants of the rewrite rule includes rewrite <- H when H is a proof of t = u
(or a generalization of it) which replaces u by t and the tactic replace u with

t which does the replacement but also generates the goal t = u.

The rewrite tactics by default replace all the occurrences of u in P (u). To
rewrite selected occurrences, there is a variant: rewrite H at occs.

Another useful tactic for dealing with equalities is subst. When x is a variable
and the context contains an hypothesis x = t (or t = x) with x not occurring
in t, then the tactic subst x will substitute t for x and remove both x and
the hypothesis from the context. The tactic subst without argument do the
substitution on all possible variables in the context.

Finishing Proofs. The commands Theorem and Lemma, given a name name
and a property A, enter the interactive proof mode in which tactics are used
to transform the goal. Hopefully, after some effort there will be no remaining
subgoals : the proof of A is finished. Actually, Coq is doing one more check before
accepting the proof. From the tactics used, the system extracts a term p and
the trusted kernel has to check that Γ ` p : A is a valid judgment, which is done
by elementary rules for type-checking p. This step is done with the commands
Qed or Save. The proof is recorded in the environment and given the name
name with type A. It can be used in other proofs like any hypothesis in the
environment. It might seem useless to check again the proof, however, this choice
of architecture allows to freely extend the set of tactics without compromising
the safety of the proofs. Actually, some correctness checking (universes, well-
formed definition of recursive functions) are not done during interactive proof
mode and consequently, it might be the case (in rare occasions) that a “finished
proof” is actually not a correct proof.
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If a proof is not finished, it is possible to admit an intermediate goal using
the tactic admit. It will introduce an axiom corresponding to the current goal,
it uses this axiom to solve the goal and continue with the next unproven goal.
Using the command Admitted instead of Qed gives the possibility to finish the
proof, introducing the original goal A as an axiom. It is convenient to postpone
a proof but it is also potentially dangerous. Assuming a false property might
result in being able to prove ⊥ and, consequently, everything becomes provable.

Safety in Coq is only guaranteed if there are no axioms left in the proof. The
command Print Assumptions name can be used to display all axioms used in
the theorem name.

Definitions. A new definition is introduced by:

Definition name args : type := term.

The identifier name is then an abbreviation for the term term . The type type is
optional as well as the arguments which are a list of identifiers possibly associated
with types. For instance, the square function can be defined as follows:

Coq < Definition square (x:nat) : nat := x * x.

square is defined

A Coq definition name can be unfolded in a goal by using the tactic unfold

name (in the conclusion) or unfold name in H (in hypothesis H).

Variables and axioms. It is often convenient to introduce a local context of vari-
ables and properties, which are shared between several definitions. It is done with
a section mechanism. A section name is opened using the command Section
name . Then objects can be introduced using the syntax:

Variable name : type or Hypothesis name : prop

Several variables with the same type can be introduced with a single command,
using the variant Variables and a blank-separated list of names. The following
definitions can refer to the objects in the context of the section. The section
is ended by the command End name ; then all definitions are automatically ab-
stracted with respect to the variables they depend on.

For instance, we can introduce a type A and two variables of this type using
the commands:

Coq < Section test.

Coq < Variable A : Type.

Coq < Variables x y : A.

Coq < Definition double : A * A := (x,x).

Coq < Definition triple : A * A * A := (x,y,x).

Coq < End test.

After ending the section, the objects A, x and y are not accessible anymore and
one can observe the new types of double and triple.
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Coq < Print double.

double = fun (A : Type) (x : A) => (x, x)

: forall A : Type , A -> A * A

Coq < Print triple.

triple = fun (A : Type) (x y : A) => (x, y, x)

: forall A : Type , A -> A -> A * A * A

2.4 Libraries in Coq

The Coq environment is organized in a modular way. Some libraries are already
loaded when starting the system. They can be displayed using the command:

Coq < Print Libraries.

Searching the environment The following interactive commands are useful to
find information in libraries when doing proofs. They can be executed from the
coqide Queries menu.

– SearchAbout name : displays all declarations id : type in the environment
such that name appears in type .

Coq < SearchAbout plus.

plus_n_O: forall n : nat , n = n + 0

plus_O_n: forall n : nat , 0 + n = n

plus_n_Sm: forall n m : nat , S (n + m) = n + S m

plus_Sn_m: forall n m : nat , S n + m = S (n + m)

mult_n_Sm: forall n m : nat , n * m + n = n * S m

nat_iter_plus:

forall (n m : nat) (A : Type) (f : A -> A) (x : A),

nat_iter (n + m) f x = nat_iter n f (nat_iter m f x)

Useful variants are SearchAbout [name1 · · ·namen] to find objects with types
mentioning all the names namei and also SearchAbout pattern to find ob-
jects with types mentioning an instance of the pattern which is a term pos-
sibly using the special symbol “ ” to represent an arbitrary term.

Coq < SearchAbout [plus 0].

plus_n_O: forall n : nat , n = n + 0

plus_O_n: forall n : nat , 0 + n = n

Coq < SearchAbout ( ~ _ <-> _ ).

neg_false: forall A : Prop , ~ A <-> (A <-> False)

– Check term : checks if term can be typed and displays its type.
– Print name : prints the definition of name together with its type.
– About id: displays the type of the object id (plus other informations like

qualified name or implicit arguments).

Coq < About pair.

pair : forall A B : Type , A -> B -> A * B

Arguments A, B are implicit and maximally inserted

<...>

Expands to: Constructor Coq.Init.Datatypes.pair
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Loading New Libraries. The command Require Import name checks if module
name is already present in the environment. If not, and if a file name.vo occurs
in the load-path, then it is loaded and opened (its contents is revealed).

The set of loaded modules and the load-path can be displayed with commands
Print Libraries and Print LoadPath. The default load-path is the set of all
sub-directories of the Coq standard library.

The libraries related to natural numbers arithmetic are gathered in a single
module Arith in such a way that the command Require Import Arith loads
and opens all these modules.

As usual in programming languages, the module names are used to organize
the name space. The same “short name” can be used to represent different
objects in different modules.

The command Require name (without Import) only loads the library, the
objects inside are refered to by a qualified name: dir.name .id. This long name is
also useful when the same identifier exists in different libraries. The command
Locate id helps find all occurrence of id in loaded libraries.

2.5 Examples

After all these generalities, we can try to do our first program verifications.
One of the challenges proposed by the LASER summer school was to define

an absolute value function on machine integers and prove the result is positive.
We first prove a much simpler result on mathematical integers. Mathematical

integers in Coq are defined as a type Z. Their representation is based on a binary
representation of positive numbers (type positive).

Definition and properties of integers are defined in the library ZArith that
needs to be loaded first. In order to use the standard arithmetical notations for
Z, we have to tell Coq to use them (otherwise Coq will interpret 0 or + as
objects in nat).

Coq < Require Import ZArith.

Coq < Open Scope Z_scope.

The absolute value function is part of Coq standard arithmetic library (function
Zabs), and the expected result is a theorem named Zabs pos).

However, we may want to do it naively. We need to test the sign of an integer
so we need a boolean function for that. The command SearchAbout (Z->bool)
shows their is a function Zle bool: Z -> Z -> bool, then the command Search-
About Zle bool gives us several properties of this function , including:

Zle_cases: forall n m, if Zle_bool n m then n <= m else n > m

which links the boolean result of the Zle bool function with the mathematical
property. The proof goes as follows:

Coq < Definition abs (n:Z) : Z := if Zle_bool 0 n then n else -n.

abs is defined

Coq < Lemma abs_pos : forall n, 0 <= abs n.
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Coq < intro n; unfold abs.

1 subgoal

n : Z

============================

0 <= (if Zle_bool 0 n then n else - n)

Coq < assert (if Zle_bool 0 n then 0 <= n else 0 > n).

2 subgoals

n : Z

============================

if Zle_bool 0 n then 0 <= n else 0 > n

subgoal 2 is:

0 <= (if Zle_bool 0 n then n else - n)

Coq < apply Zle_cases.

1 subgoal

n : Z

H : if Zle_bool 0 n then 0 <= n else 0 > n

============================

0 <= (if Zle_bool 0 n then n else - n)

Coq < destruct (Zle_bool 0 n); auto with zarith.

Proof completed.

Coq < Qed.
abs_pos is defined

If we want to reason on machine integers, one can use the Int31 library in Coq
which represents 31-bit cyclic arithmetic, but because it is interpreted as positive
integers between 0 and 231 − 1, some work is needed before solving the problem
and we shall not detail the proof here. The Compcert project[27] also provides
a library http://compcert.inria.fr/src/lib/Integers.v defining machine
integers as mathematical numbers modulo 2N .

A second challenge was to implement a class for a bank account with a bal-
ance represented as an IEEE floating point number and to specify a deposit
method. Of course the difficulty comes from the interpretation of the plus op-
eration which will be a floating point number operation with rounding in the
program ans possibly a mathematical operation in the specification.

In Coq, it is possible to manipulate real numbers (library Reals, with arith-
metic notations) and there are also external libraries dealing with IEEE floating
point real numbers, the most recent one being Flocq [10] (we use here version
2.0).

Coq < Require Import Reals Fappli_IEEE Fappli_IEEE_bits.

Coq < Open Local Scope R_scope.

The type binary32 represents a single precision (normalized) floating point num-
ber with its sign (a boolean), its mantissa (a positive binary number between 0
and 223− 1) and its exponent (between −126 and 126). Coq is able to compute
with these numbers. We can also choose the rounding mode of the addition.

Coq < Print binary32.

binary32 = binary_float 24 128 : Set



Introduction to the Coq proof-assistant for practical software verification 13

Coq < Check b32_plus.

b32_plus : mode ->

binary_float 24 128 ->

binary_float 24 128 -> binary_float 24 128

Coq < Print mode.

Inductive mode : Type :=

mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA

The function B2R transforms a floating point into the corresponding real number.
We introduce convenient notations for the numbers 1, 2−23 and 2−24.

Coq < Notation bin32 b m e :=

Coq < (binary_normalize 24 128 gt0_24 gt_24_128 mode_NE m e b).

Coq < Definition b32_one := bin32 false (1) (0).

Coq < Definition b32_2_minus23 := bin32 false (1) ( -23).

Coq < Definition b32_2_minus24 := bin32 false (1) ( -24).

We can now implement the deposit function and introduce the property corre-
sponding to its correctness.

Coq < Definition deposit (olda amount:binary32) : binary32

Coq < := b32_plus mode_NE olda amount.

Coq < Definition deposit_correct olda amount : Prop :=

Coq < B2R (deposit olda amount) = (B2R olda + B2R amount )%R.

We can now show correct and incorrect behaviors.

Coq < Lemma ex1: deposit_correct b32_one b32_2_minus23.

Coq < compute.

1 subgoal

============================

8388609 * / 8388608 =

8388608 * / 8388608 + 8388608 * / 70368744177664

The proof can be finished using the field tactic to reason on real numbers. The
following case can be proved to be incorrect:

Coq < Lemma ex2: ~ (deposit_correct b32_one b32_2_minus24 ).

Coq < compute; intro.

1 subgoal

H : 8388608 * / 8388608 =

8388608 * / 8388608 + 8388608 * / 140737488355328

============================

False

The proof comes from the fact that we have an hypothesis (x = x + y) with
y 6= 0 but unfortunately it is not fully automated in Coq (automation on real
numbers is still rudimentary); we do not give the details here.

These examples show that Coq provides advanced libraries to reason on
complex mathematical and algorithmic notions such as real and floating point
numbers.
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2.6 About classical logic

Coq implements an intuitionistic logic. Which means that A ∨ ¬A is not an
axiom. Actually, both A ∨B and ∃x : A,B have a strong constructive meaning.
Indeed, from a proof of ` ∃x : A,B, one can compute t such that B[x← t] is
provable and from a proof of A ∨B one can compute a boolean b and proofs of
b = true→ A and b = false→ A.

Classical reasoning is often not needed, manual proofs of A ∨ ¬A can be
built for many simple formulas. It is also possible to use classical versions of
logical connectives (negative formulas are classical). But if we really want to use
classical logic, a library Classical introduces the excluded middle as an axiom.

3 Inductive Declarations

Inductive definitions are another main ingredient of Coq language. It is a generic
mechanism which captures different notions such as data-types, logical connec-
tives, primitive relations. We illustrate the use of inductive definitions on an
example, modeling a game on a board containing bi-color tokens. We also study
simple algorithms on lists and a cryptographic protocol.

3.1 Inductive Data Types

A data-type name can be declared by specifying a set of constructors. Each
constructor ci is given a type Ci which declares the type of its expected argu-
ments. A constructor possibly accepts arguments (which can be recursively of
type name ), and when applied to all its arguments, a constructor has type the
inductive definition name itself. There are some syntactic restrictions over the
type of constructors to make sure that the definition is well-founded.
The syntax for declaring an inductively defined type is:

Inductive name : sort := c1 : C1 | . . . | cn : Cn.

where name is the name of the type to be defined; sort is one of Set or Type
(or even Prop); ci are the names of the constructors and Ci is the type of the
constructor ci.

The declaration of an inductive definition introduces new primitive objects
for the type itself and its constructors; it also generates theorems which are
abbreviations for more complex terms expressing that name is the smallest set
containing the terms build with constructors. These theorems provide induction
principles to reason on objects in inductive types.

Examples. The data types of booleans and natural numbers are defined induc-
tively as follows:

Coq < Print bool.

Inductive bool : Set := true : bool | false : bool
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Coq < Check bool_ind.

bool_ind : forall P : bool -> Prop ,

P true -> P false -> forall b : bool , P b

Coq < Print nat.

Inductive nat : Set := O : nat | S : nat -> nat

Coq < Check nat_ind.

nat_ind : forall P : nat -> Prop ,

P 0 -> (forall n : nat , P n -> P (S n))

-> forall n : nat , P n

The type of booleans has only two constant constructors. The type of natural
numbers has a constant O and a unary constructor S for the successor function.
The product type is also inductively defined.

Coq < Print prod.

Inductive prod (A B : Type) : Type := pair : A -> B -> A * B

For pair: Arguments A, B are implicit and maximally inserted

We remark two things on this definition. First it is a polymorphic definition,
parametrized by two type A and B. Second the constructor pair takes two
arguments and pairs them in an object of type A ∗B, which is what is expected
for a product representation.

Inductive Types and Equality. The constructors of an inductive type are
injective and distinct. For instance one can prove true 6= false and for natural
numbers, Sn = Sm→ n = m and Sn 6= 0. These lemmas are part of the stan-
dard library for natural numbers but have to be proved for new inductive types.
There are tactics to automate this process.

– discriminate H will prove any goal if H is a proof of t1 = t2 with t1 and t2
starting with different constructors. With no argument discriminate will
try to find such a contradiction in the context.

– injection H assumes H is a proof of t1 = t2 with t1 and t2 starting with
the same constructor. It will deduce equalities u1 = u2, v1 = v2, . . . between
corresponding subterms and add these equalities as new hypotheses.

Coq < Goal (forall n, S (S n) = 1 -> 0=1).

Coq < intros n H.

1 subgoal

n : nat

H : S (S n) = 1

============================

0 = 1

Coq < discriminate H.

Proof completed.

Coq < Goal (forall n m, S n = S (S m) -> 0 < n).

Coq < intros n m H.



16 Christine Paulin-Mohring

1 subgoal

n : nat

m : nat

H : S n = S (S m)

============================

0 < n

Coq < injection H.

1 subgoal

n : nat

m : nat

H : S n = S (S m)

============================

n = S m -> 0 < n

Remark on Inductive Propositions. The sort in an inductive definition can
also be Prop allowing the inductive declaration of logical propositions. Following
the Curry-Howard correspondence between proposition and types, all proposi-
tional connectives except for negation, implication and universal quantifier are
declared using inductive definitions. False is a degenerated case where there are
no constructors. True is the proposition with only one proof I (corresponding
to the unit type with only one constructor). Conjunction of two propositions
corresponds to the product type and disjunction to an inductive proposition
with two constructors. Existential quantifiers and equality are also inductively
defined.

Coq < Print False.

Inductive False : Prop :=

Coq < Check False_ind.

False_ind : forall P : Prop , False -> P

Coq < Print or.

Inductive or (A B : Prop) : Prop :=

or_introl : A -> A \/ B | or_intror : B -> A \/ B

Coq < Check or_ind.

or_ind : forall A B P : Prop ,

(A -> P) -> (B -> P) -> A \/ B -> P

The Board Example. The game we want to study involves nine bicolor tokens
(one side black and one side white) which are placed on a 3× 3 board.

A B C

A

B

C

At each step it is possible to choose one line or one column and to inverse the
color of each token on that line or column. We want to study when a configuration
is reachable from a starting configuration.
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The data types involved in that example are the state of each token (black or
white) which can be represented by a boolean or a special inductive type with
two values. We need to identify a column and a line by a position (three possible
values).

Coq < Inductive color : Type := White | Black.

Coq < Inductive pos : Type := A | B | C.

Finally we need to represent the board. It is convenient to represent it as three
lines, each line being composed of three colors. In order to reuse functions, one
can introduce a polymorphic type of triples of elements in an arbitrary type M
(the definition is very similar to the definition of the product type).

Coq < Inductive triple M := Triple : M -> M -> M -> triple M.

A line White/Black/White will be represented by the term Triple White Black

White. The Coq kernel requires the type argument M to be explicitly given, so
the Coq internal term is Triple color White Black White. However, the type
color can be easily deduced from the type of White and can be systematically
omitted in the input, thanks to the Coq declaration:

Coq < Set Implicit Arguments.

which tells Coq to infer type arguments whenever possible. Alternatively, the
command Implicit Arguments name [args] can be used to force the implicit
arguments of a given object name. On can also introduce a special notation for
triples:

Coq < Notation "[ x | y | z ]" := (Triple x y z).

and define a function which given an element m in M builds a triple with the
value m in the three positions.

Coq < Definition triple_x M (m:M) : triple M := [ m | m | m ].

3.2 Definitions by pattern-matching

The Pattern-Matching Operator. When a term t belongs to some inductive type,
it is possible to build a new term by case analysis over the various constructors
which may occur as the head of t when it is evaluated. Such definitions are known
in functional programming languages as pattern-matching. The Coq syntax is
the following:

match term with c1 args1 ⇒ term1 . . . cn argsn ⇒ termn end

In this construction, the expression term has an inductive type with n construc-
tors c1, ..., cn. The term termi is the term to build when the evaluation of t
produces the constructor ci.
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Example. If n has type nat, the function checking whether n is O can be defined
as follows:

Coq < Definition iszero n :=

match n with | O => true | S x => false end.

The board example. On can simply define a function which inverses a color:

Coq < Definition turn_color (c: color) : color :=

match c with | White => Black | Black => White end.

On our board example, given a function f of type M →M , one can define a
function triple map which given a triple (a, b, c), applies f to all components,
and a function triple map select which also expects a position and applies the
function f at that position.

Coq < Definition triple_map M f (t: triple M) : triple M:=

match t with (Triple a b c) => [(f a)|(f b)|(f c)] end.

Coq < Definition triple_map_select M f p t : triple M :=

match t with (Triple a b c) =>

match p with | A => [ (f a) | b | c ]

| B => [ a | (f b) | c ]

| C => [ a | b | (f c) ]

end

end.

Generalized Pattern-Matching Definitions. More generally, patterns can match
several terms at the same time, they may be nested and they may contain the
universal pattern which filters any expression. Patterns are examined in a
sequential way (as in functional programming languages) and they must cover
the whole domain of the inductive type. Thus one may write for instance

Coq < Definition nozero n m :=

match n, m with

| O, _ => false | _, O => false | _, _ => true

end.

However, the generalized pattern-matching is not considered as a primitive con-
struct and is actually compiled into a sequence of primitive patterns.

Some Equivalent Notations. In the case of an inductive type with a single con-
structor C:

let (x1, .., xn):=t in u

can be used as an equivalent to match t with Cx1..xn ⇒ u end.
In the case of an inductive type with two constructors (like booleans) c1 and

c2 (such as the type of booleans for instance) the construct

if t then u1 else u2

can be used as an equivalent to match t with c1 ⇒ u1|c2 ⇒ u2 end.
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3.3 Fixpoint Definitions

To define interesting functions over recursive data types, we use recursive func-
tions. General fixpoints are not allowed since they lead to an unsound logic.

Only structural recursion is allowed. It means that a function can be defined
by fixpoint if one of its formal arguments, say x, has an inductive type and if each
recursive call is performed on a term which can be checked to be structurally
smaller than x. The basic idea is that x will usually be the main argument
of a match and then recursive calls can be performed in each branch on some
variables of the corresponding pattern.

The Fixpoint Construct. The syntax for a fixpoint definition is the following:

Fixpoint name (x1 : type1) . . . (xp : typep){struct xi} : type := term

The variable xi following the struct keyword is the recursive argument. Its
type typei must be an instance of an inductive type. If the clause {struct xi} is
omitted, the system will try to infer an appropriate argument.

The type of name is forall (x1 : type1) . . . (xp : typep), type. Occurrences
of name in term must be applied to at least i arguments and the ith must be
structurally smaller than xi.

Examples. The following two definitions of plus by recursion over the first and
the second argument respectively are correct:

Coq < Fixpoint plus1 (n m:nat) : nat :=

Coq < match n with | O => m | S p => S (plus1 p m) end.

plus1 is recursively defined (decreasing on 1st argument)

Coq < Fixpoint plus2 (n m:nat) : nat :=

Coq < match m with | O => n | S p => S (plus2 n p) end.

plus2 is recursively defined (decreasing on 2nd argument)

Restrictions on Fixpoint Declarations. There are strong syntactic restrictions
on the kind of definitions that are accepted, there should be one decreasing
argument for each fixpoint, the following definition will not be accepted:

Coq < Fixpoint test (b:bool) (n m:nat) : bool

Coq < := match (n,m) with

Coq < | (O,_) => true | (_,0) => false

Coq < | (S p,S q) => if b then test b p m else test b n q

Coq < end.

Error: Cannot guess decreasing argument of fix.

However, it is possible to define functions with more elaborated recursive schemes
using higher order functions like the Ackermann function:

Coq < Fixpoint ack (n m:nat) {struct n} : nat

Coq < := match n with
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Coq < | 0 => S m

Coq < | S p => let fix ackn (m:nat) {struct m} :=

Coq < match m with 0 => ack p 1

| S q => ack p (ackn q)

end

Coq < in ackn m

Coq < end.

ack is recursively defined (decreasing on 1st argument)

We may remark the internal definition of fixpoint using the let fix construction
which defines the value of ack n as a new function ackn with one argument
and a structurally smaller recursive call. As an exercise, you may prove that the
following equations are solved using reflexivity.

Coq < Goal forall n, ack (S n) 0 = ack n 1.

Coq < Goal forall n m, ack (S n) (S m) = ack n (ack (S n) m).

Computation. A fixpoint can be computed when the recursive argument starts
with a constructor. So plus1 0 n and n are convertible but plus1 n 0 is in
normal form when n is a variable. The equation corresponding to the fixpoint
definition is not just proven by reflexivity but requires a simple case analysis
over the recursive argument.

Coq < Lemma plus1_eq : forall n m,

Coq < plus1 n m = match n with O => m | S p => S (plus1 p m) end.

Coq < destruct n; trivial.

Proof completed.

The tactic simpl name when name is a fixpoint definition will simplify the
expression whenever it is applied to a constructor. The tactic simpl simplifies
all fixpoint definitions in the goal (which is sometimes too much, in which case
it is recommended to prove the relevant equations as theorems and use them in
a controled way with the rewrite tactic).

Remark. Coq does not prevent to define empty inductive data-types such as:

Coq < Inductive E : Set := Ei : E -> E.

E is defined

But of course, there are no way to build a value (term without variable) of type
E and furthermore, one can build a function which given an argument in E build
an element in any type A:

Coq < Fixpoint Eany A x : A :=

match x with (Ei y) => Eany A y end.

Eany is recursively defined (decreasing on 2nd argument)

In particular one can prove False from an hypothesis x : E.
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Computing. One can reduce a term and prints its normal form with Eval compute in
term . For instance:

Coq < Eval compute in (2 + 3)% nat.

= 5%nat : nat

Coq < Eval compute in (turn_color White).

= Black : color

Coq < Eval compute in (triple_map turn_color [Black|White|White ]).

= [White | Black | Black] : triple color

3.4 Algorithms on lists

Another LASER challenge was proving algorithms on arrays. We choose to rep-
resent arrays by functional lists. We import the List and ZArith libraries and
use the predefined notations. Notations for lists include a::l for the operator
cons and l1++l2 for the concatenation of two lists.

Coq < Require Import List ZArith.

Coq < Open Scope Z_scope.

Coq < Open Scope list_scope.

Coq < Print list.

Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A

Sum and maximum Computing the sum and the maximum value of a list is
done by a simple fixpoint definition.

Coq < Fixpoint sum (l : list Z) : Z :=

Coq < match l with nil => 0 | a::m => a + sum m end.

Coq < Fixpoint max (l : list Z) : Z :=

Coq < match l with nil => 0

Coq < | a::nil => a

Coq < | a::m => let b:= max m in

Coq < if Zle_bool a b then b else a

Coq < end.

Because the pattern-matching for defining max is not elementary, it is useful to
prove the corresponding equation to be used for rewriting.

Lemma max_cons : forall a m, m <> nil

-> max (a::m) = let b:= max m in if a <=? b then b else a.

intro a; destruct m; trivial; intro H.

destruct H; trivial.

Qed.

We can after that enunciate the correctness property we want to prove:

Lemma sum_max_prop : forall l, sum l <= Z_of_nat (length l) * max l.

It is proved by induction on l (see section 3.6), then using the tactic simpl to do
some of the simplifications on sum and length and then arithmetical reasoning.
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Correctness of max and sum. To specify the behavior of max, we could use the
predicate In of the List library and say that whenever l is non empty then max l
is in l and it is not less than all elements in l. Our function sum satisfies the two
following equations which can be considered as a valid functional specification.

sum nil = 0 sum (a::l) = a+ sum l

Termination. All functions in Coq terminate.

3.5 Inductive Relations

Inductive definitions can also be used to introduce relations specified by a set of
closure properties (like inference rules or Prolog clauses). Each clause is given a
name, seen as a constructor of the relation. The type of this constructor is the
logical formula associated to the clause. The syntax of such a definition is:

Inductive name : arity := c1 : C1 | . . . | cn : Cn

where name is the name of the relation to be defined, arity its type (for instance
nat->nat->Prop for a binary relation over natural numbers) and, as for data
types, ci and Ci are the names and types of constructors respectively.

Example. The definition of the order relation over natural numbers can be de-
fined as the smallest relation verifying:

∀n : nat, 0 ≤ n ∀nm : nat, n ≤ m⇒ (Sn) ≤ (Sm)

which is sometimes presented as a set of inference rules

0 ≤ n
n ≤ m

(Sn) ≤ (Sm)

In Coq, such a relation is defined as follows:

Coq < Inductive LE : nat -> nat -> Prop :=

Coq < | LE_O : forall n:nat , LE 0 n

Coq < | LE_S : forall n m:nat , LE n m -> LE (S n) (S m).

LE is defined

LE_ind is defined

This declaration introduces identifiers LE, LE O and LE S, each having the type
specified in the declaration. The LE ind theorem is introduced which captures
the minimality of the relation.

Coq < Check LE_ind.

LE_ind

: forall P : nat -> nat -> Prop ,

(forall n : nat , P 0 n) ->

(forall n m : nat , LE n m -> P n m -> P (S n) (S m)) ->

forall n n0 : nat , LE n n0 -> P n n0
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Actually, the definition of the order relation on natural numbers in Coq standard
library is slightly different:

Coq < Print le.

Inductive le (n : nat) : nat -> Prop :=

le_n : (n <= n)

| le_S : forall m : nat , (n <= m) -> (n <= S m)

The parameter (n:nat) after le is used to factor out n in the whole inductive
definition. As a counterpart, the first argument of le must be n in the conclusion
of each type of constructor. In particular, n could not have been a parameter
in the definition of LE since LE must be applied to (S n) in the conclusion
of the second clause. Both definitions of the order can be proved equivalent.
For technical reasons, having more arguments as parameters in an inductive
definition makes usually proofs easier. In general there are multiple ways to define
the same relation by inductive declarations (or possibly recursive functions). One
has to keep in mind that they are different implementations of the same notion
and that like in programming, some of the choices will have consequences on the
easiness of doing subsequent proofs with these notions.

Examples

The Board Example. We have defined functions on triples and colors. We can
now introduce the type of boards that will be a triple of lines, a line being a
triple of colors. We also define two specific boards start and target. And we
can define the functions turn col and turn row which inverse the colors.

Coq < Definition board := triple (triple color).

Coq < Definition start : board

Coq < := [ [White | White | Black] |

Coq < [Black | White | White] |

Coq < [Black | Black | Black] ].

Coq < Definition target : board

Coq < := [ [Black | Black | White] |

Coq < [White | Black | Black] |

Coq < [Black | Black | Black] ].

Coq < Definition turn_row (p: pos) : board -> board :=

Coq < triple_map_select (triple_map turn_color) p.

Coq < Definition turn_col (p: pos) : board -> board :=

Coq < triple_map (triple_map_select turn_color p).

Now if we want to define the relation between two boards corresponding to one
step (inversing one line or one column), we can use predefined logical connectives:

Coq < Definition move1 (b1 b2: board) : Prop :=

Coq < (exists p : pos , b2=turn_row p b1)

Coq < \/ (exists p : pos , b2=turn_col p b1).
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or alternatively a direct inductive definition:

Coq < Inductive move (b1:board) : board -> Prop :=

Coq < move_row : forall (p:pos), move b1 (turn_row p b1)

Coq < | move_col : forall (p:pos), move b1 (turn_col p b1).

If we want to define reachability, we need to consider the reflexive-transitive
closure of the move relation. This is done easily with an inductive definition:

Coq < Inductive moves (b1:board): board -> Prop :=

Coq < moves_init : moves b1 b1

Coq < | moves_step : forall b2 b3 ,

Coq < moves b1 b2 -> move b2 b3 -> moves b1 b3.

One can prove simple properties like:

Coq < Lemma move_moves : forall b1 b2 , move b1 b2 -> moves b1 b2.

Coq < intros; apply moves_step with b1; trivial.

1 subgoal

b1 : board

b2 : board

H : move b1 b2

============================

moves b1 b1

Coq < apply moves_init.

Proof completed.

We can prove that the board target is accessible from the board start.

Lemma reachable : moves start target.

apply moves_step with (turn_row A start); auto.

replace target with (turn_row B (turn_row A start )); auto.

Qed.

Linear Search. With linear search of a zero in an array of non-negative integers,
we go back to natural numbers.

Open Scope nat_scope.

In order to capture the special case where there is no 0 in the list, we prefer to
use an option type with none or one value.

Coq < Print option.

Inductive option (A : Type) : Type :=

Some : A -> option A | None : option A

We use a terminal recursive definition:

Coq < Fixpoint linear (n:nat) (l:list nat) : option nat :=

Coq < match l with nil => None

Coq < | a::m => if zerop a then Some n

else linear (S n) m

Coq < end.

Coq < Definition linear_search := linear 0.
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In order to specify this function, it is convenient to introduce an inductive predi-
cate correct such that correct k l is true when l starts with k non-zero elements
and then contains a zero.

Coq < Inductive correct : nat -> list nat -> Prop :=

Coq < correct_hd : forall a l, a=0 -> correct 0 (a::l)

Coq < | correct_tl : forall a l n,

Coq < a<>0 -> correct n l -> correct (S n) (a::l).

Coq < Hint Constructors correct.

The Hint Constructors command adds the constructors of the inductive defi-
nition in the hints database to be used by the auto tactic.

3.6 Elimination of Inductive Definitions

Proof by Case Analysis: the destruct tactic. An object in an inductive
definition I, when fully instantiated and evaluated will be formed after one of
the constructors of I. When we have an arbitrary term t in I, we can reason
by case on the constructors the term t can be evaluated to. The destruct t
tactic generates a new subgoal for each constructor and introduces new vari-
ables and hypothesis corresponding to the arguments of the constructor. Coq
generates automatically names for these variables. It is recommended to use
destruct t as pat ; with pat a pattern for naming variables. pat will be written
[p1| . . . |pn] with n the number of constructors of I. The pattern pi will be written
(x1, . . . , xk) if the constructor ci expects k arguments.

If the goal has the form ∀x : I, P , then the tactic intros pat, will do the
introduction of x and will immediately after destruct this variable using the
pattern as in the following example:

Coq < Goal forall A B : Prop , (A /\ ~ B) \/ B -> ~A -> B.

Coq < intros A B [ (Ha ,Hnb) | Hb ] Hna.

2 subgoals

A : Prop

B : Prop

Ha : A

Hnb : ~ B

Hna : ~ A

============================

B

subgoal 2 is:

B

Coq < contradiction.

1 subgoal

A : Prop

B : Prop

Hb : B

Hna : ~ A

============================
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B

Coq < auto.

Proof completed.

For instance, the equivalence between the two definitions of one-step move in
the board example can be easily done using the destruct tactic.

Coq < Lemma exboard : forall b1 b2 , move1 b1 b2 <-> move b1 b2.

The destruct tactic, when applied to an hypothesis will clear this hypothesis
from the goal. The case tactic is a more elementary tactic corresponding to the
logical elimination rule when more control is needed.

Proof by induction. The tactic to perform proofs by induction is induction term
where term is an expression in an inductive type. It can be an induction over a
natural number or a list but also an elimination rule for a logical connective or
a minimality principle for an inductive relation. More precisely, an induction is
the application of one of the principles which are automatically generated when
the inductive definition is declared.

The induction tactic can also be applied to variables or hypotheses bound
in the goal. To refer to some unnamed hypothesis from the conclusion (i.e. the
left hand-side of an implication), one has to use induction num where num is
the num-th unnamed hypothesis in the conclusion.

The induction tactic generalizes the dependent hypotheses of the expression
on which the induction applies.

Induction over Data Types. For an inductive type I, the induction scheme is
given by the theorem I ind; it generalizes the standard induction over natural
numbers. The main difficulty is to tell the system what is the property to be
proved by induction. The default (inferred) property for the tactic induction term
is the abstraction of the goal w.r.t. all occurrences of term . If only some occur-
rences must be abstracted (but not all) then the tactic “pattern term at occs”
can be applied first.

It is sometimes necessary to generalize the goal before performing induction.
This can be done using the cut prop tactic, which changes the goal G into
prop → G and generates a new subgoal prop . If the generalization involves some
hypotheses, one may use the generalise tactic first (if x is a variable of type
A, then generalise x changes the goal G into the new goal forall x : A, G).

The correctness of the linear function introduced earlier can be expressed
by the following lemma:

Coq < Lemma linear_correct : forall l n k,

Coq < linear n l = Some k <-> (n <= k /\ correct (k-n) l).

which is proved by induction on l. The special case is a simple consequence when
n = 0:

Coq < Lemma linear_search_correct :

Coq < forall l k, linear_search l = Some k <-> correct k l.
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Induction over Proofs. If term belongs to an inductive relation then the induc-
tion tactic corresponds to the use of the minimality principle for this relation.
Generally speaking, the property to be proved is (I x1 . . . xn)⇒ G where I is the
inductive relation. The goal G is abstracted w.r.t. x1 . . . xn to build the relation
used in the induction. It works well when x1 . . . xn are either parameters of the
inductive relation or variables. If some of the xi are complex terms, the system
may fail to find a well-typed abstraction or may infer a non-provable property.

If no recursion is necessary then the tactic inversion term is to be preferred
(it exploits all informations in x1 . . . xn). If recursion is needed then one can try
to first change the goal into the equivalent one (assuming xi is a non-variable,
non-parameter argument):

∀y, (I x1 . . . y . . . xn)⇒ xi = y ⇒ G

and then do the induction on the proof of (I x1 . . . y . . . xn).
For the board example, the transitivity of the moves relation (an arbitrary

number of simple moves) is easily done by an induction on the proof of (moves b2 b3).

Coq < Lemma moves_trans

Coq < : forall (b1 b2 b3:board),

Coq < moves b1 b2 -> moves b2 b3 -> moves b1 b3.

Coq < induction 2.

A more complex proof will be to prove that there are no possible moves from the
board start to the board with only white tokens (called wboard). So we have
to prove:

Coq < Lemma not_reachable : ~ moves start wboard.

Coq < intro.

1 subgoal

H : moves start wboard

============================

False

After an introduction, we end up proving ⊥ from the assumption (moves start

wboard). If we try an induction on this proof, the first goal will be to prove ⊥
without any assumption, this is hopeless. A solution is to find an appropriate
invariant of the game and to derive a contradiction from the assumption that
wboard satisfies this invariant. The hint is to look at the number of white tokens
at the 4 corners.

3.7 Advanced inductive definitions

The inductive definition mechanism of Coq is quite general and allows to model
more than just algebraic data-types.

For instance, it is possible to represent trees with infinite branching, like in
this type of ordinal notations.
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Coq < Inductive ord := zero : ord | succ : ord -> ord

Coq < | lim : (nat -> ord) -> ord.

The constructor lim takes a function as argument, for each natural number, it
gives a new object of type ord which is a subterm.

Another important inductive definition is the accessibility property. Given
a binary relation R on a type A, an element x : A is accessible if there are
no infinite chain (xi)i∈IN such that x0 = x and ∀i, R(xi+1, xi). Inductively, it
is possible to define x to be accessible when all y such that R(x, y) are also
accessible. This is captured in the following definition:

Coq < Print Acc.

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=

Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

This inductive definition is the key for the definition of general fixpoints (see
section 4.2)

Dependent types. It is also possible to introduce types indexed by other objects
(also called dependent types) like in the type of vectors of size n:

Coq < Inductive vect (A:Type) : nat -> Type :=

Coq < v0 : vect 0

Coq < | v1 : forall n, A -> vect n -> vect (S n).

This definition looks like the definition of lists but with an extra argument which
will correspond to the size of the vector. Dependent types can also be defined in
a recursive way:

Coq < Fixpoint prodn A (n:nat) : Type :=

Coq < match n with O => A | S n => A * prodn n end.

In that definition, the type (prodn 2) is convertible with the type A ∗ (A ∗A).

3.8 Needham-Schroeder Public Key protocol

The formalization of Needham-Schroeder Public Key protocol in Coq was first
experimented by D. Bolignano [11]. Inductive definitions are used to model the
exchanges. We have three agents A, B, I for Alice, Bob and the Intruder.

Coq < Inductive agent : Set := A | B | I .

A nonce is a secret that is generated by one agent to be shared with another; in
our formalization, nonces have two agents as parameters. The atomic messages
are names of the agents, nonces, secret keys. A message can be encoded or
combined with another.

Coq < Inductive message : Set :=

Coq < Name : agent -> message

Coq < | Nonce : agent*agent -> message

Coq < | SK : agent -> message

Coq < | Enc : message -> agent -> message

Coq < | P : message -> message -> message.
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The assumptions are that every message sent is received by everybody. Alice and
Bob follow the protocol but the intruder can transform the messages (pairing,
unpairing, encoding with public keys, decoding when he knows the secret key).

We define three mutually inductive definitions:

– send which takes an agent and a message and implements the protocol rules
plus the intruder capabilities;

– receive which takes an agent and a message and just says that everybody
receive everything;

– known which characterizes the knowledge of the intruder, some basic facts
such as the name of the agents, his/her own secret key, plus the capability
to eavesdrop the messages and massage them.

The protocol is parametrized by an agent X with which Alice starts the protocol.

Coq < Section Protocol.

Coq < Variable X:agent.

Coq < Inductive send : agent -> message -> Prop :=

Coq < init : send A (Enc (P (Nonce (A,X)) (Name A)) X)

Coq < | trans1 : forall d Y,

Coq < receive B (Enc (P (Nonce d) (Name Y)) B)

Coq < -> send B (Enc (P (Nonce d) (Nonce (B,Y))) Y)

Coq < | trans2 : forall d,

Coq < receive A (Enc (P (Nonce (A,X)) (Nonce d)) A)

Coq < -> send A (Enc (Nonce d) X)

Coq < | cheat : forall m, known m -> send I m

Coq < with receive : agent -> message -> Prop :=

Coq < link : forall m Y Z, send Y m -> receive Z m

Coq < with known : message -> Prop :=

Coq < spy : forall m, receive I m -> known m

Coq < | name : forall a, known (Name a)

Coq < | secret_KI : known (SK I)

Coq < | decomp_l : forall m m’, known (P m m’) -> known m

Coq < | decomp_r : forall m m’, known (P m m’) -> known m’

Coq < | compose : forall m m’,

Coq < known m -> known m’ -> known (P m m’)

Coq < | crypt : forall m a, known m -> known (Enc m a)

Coq < | decrypt : forall m a,

Coq < known (Enc m a) -> known (SK a) -> known m.

Coq < End Protocol.

The protocol is correct if the fact that Bob receives the acknowledgment (the
nonce he generated for Alice) means that the protocol was initiated by Alice
to talk with Bob. Also in that case, the nonces which are generated by Alice
and Bob for each other should remain a shared secret. With this version, it is
possible to prove that the protocol goes wrong, namely Alice starts the protocol
with the intruder and Bob gets the acknowledgment.

Coq < Lemma flaw : receive I B (Enc (Nonce (B,A)) B).

Coq < Lemma flawB : known I (Nonce (B,A)).
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4 Functional programming with Coq

In this section, we show how to represent in Coq programming constructions
more elaborated than the “mathematical” functions we defined earlier.

4.1 Partiality and dependent types

An object of type A→ B in Coq is a total function. Given a value of type A,
the evaluation always terminates and gives a value of type B. If the function we
want to implement is partial, there are several possibilities:

– choose an arbitrary value in B to extend the function. This solution does
not work for polymorphic functions when B is a type variable because Coq
types might be empty.

– use an option type to represent 0 or 1 value. The main drawback is that
the function has now a type A→ optionB so case analysis is needed when
using this function. This can be partially hidden with monadic notations.

– Consider the function as a relation F of type A→ B → Prop. We have then
to prove the functionality of the relation (at most one output), each time
we want to mention f(x), we shall introduce a variable y and an hypothesis
F x y. The relation also does not carry a priori an algorithm to compute the
value of the function.

Introducing Logic in Types. The Coq language allows to mix freely types
and properties.

For instance, it is possible to add an explicit precondition to a function.
Assuming our function f is only defined on a domain dom, we can define it as:

f : ∀x : A, domx→ B

Each call to f a requires a proof p of dom a and will be internally represented as:
f a p. We can partially hide the proof in a subset type: f : {x : A|domx} → B.
Internally, the call f a is represented by the term f (a, p). The Coq definition of
the subset type is:

Coq < Print sig.

Inductive sig (A : Type) (P : A -> Prop) : Type :=

exist : forall x : A, P x -> sig P

High-level tools like Program and type classes help separate programming from
solving proof obligations. Such that the user notations will remain close to ordi-
nary programming.

Using Subset Types for Specifications. A proposition can also be used to restrict
the image of a function, like in:

S : nat→ {n : nat|0 < n}
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The restriction can depend on the input:

next : ∀n : nat, {m : nat|n < m}

Other useful dependent types are the constructive unions. Objects in sumbool

are like booleans but a boolean value coming with the evidence that a property
(A for true and B for false) is true.

Coq < Print sumbool.

Inductive sumbool (A B : Prop) : Set :=

left : A -> {A} + {B} | right : B -> {A} + {B}

For instance the following property expresses the fact that the order on natural
numbers is decidable:

Coq < Check forall n m:nat , {n <= m}+{m < n}.

Objects in sumor are like option values with the None case being associated with
a property. It is useful in programs which have an exceptional case where no value
is computed but some information on the input is established. For instance the
following property expresses the fact that for any natural numbers, one can find
a smaller number or one can establish that the input is 0.

Coq < Check forall n, { m | m < n }+{ n=0 }.

Annotated Programs. The advantage of annotated programs is that both pro-
gram and proof are developed simultaneously. The specification is available each
time the program is used. The drawback is that inside Coq, the program con-
tains proof-terms: printing, checking equality, reduction can become awful. Coq
currently misses a systematic proof-irrelevance mechanism that will remove in-
ternally the dependency of terms with respect to proofs. A system like PVS for
instance completely ignore proof-terms. In HOL based systems, it is not possi-
ble to build dependent types. In Coq, the extraction mechanism [28] allows to
remove the part in programs related to logical proofs and convert the resulting
term in an equivalent Ocaml or Haskell program.

4.2 Well-founded induction and recursion

We have seen that primitive fixpoint definitions in Coq are only based on a
simple structural recursion. So we need more sophisticated ways to define general
algorithms. Typical examples are loops:

let f n = if p n then n else f (n+ 1)

or general well-founded fixpoints

let f x = t(x, f)

where call to f y in t is such that y < x for a well-founded relation (no infinite
decreasing sequence).
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The main trick is to introduce an inductive definition which captures the
termination argument and to do the structural recursion on that argument.

For instance, the loop construction only terminates when there exists m ≥ n
such that pm = true. One can define inductively a predicate Event on natural
numbers that captures the fact that P is true now or in the future.

Coq < Inductive Event P (n : nat) : Prop :=

Coq < Now : P n -> Event P n

Coq < | Fut : Event P (S n) -> Event P n.

Now we can prove that if P is not true now at time n, then it will be true
somewhere in the future of time n+ 1.

Coq < Lemma Event_next P n : ~ P n -> Event P n -> Event P (S n).

This is done by case analysis on the proof p of EventP n. The first case p = Now q
is eliminated by contradiction because we have both P n and ¬P n. The second
case p = Fut q is trivial because q is a proof of EventP (Sn). We remark that the
proof we obtain for EventP (Sn) is a subterm of the original proof of EventP n.

Coq < Print Event_next.

Event_next =

fun (P : nat -> Prop) n (notP : ~ P n) (e : Event P n) =>

match e with

| Now H => match notP H return (Event P (S n)) with end

| Fut H => H

end

: forall (P : nat -> Prop) n, ~ P n -> Event P n -> Event P (S n)

To construct the loop function, we need the P predicate to be decidable. The
following fixpoint construction is valid in Coq.

Coq < Fixpoint findP P (dec:forall n,{P n}+{~P n}) n (e:Event P n):nat:=

Coq < match dec n with

Coq < left _ => n

Coq < | right notPn => findP dec (n:=S n) (Event_next notPn e)

Coq < end.

The extraction mechanism gives us back exactly the function we wanted to write.

Coq < Extraction findP.

(* val findP : (nat -> sumbool) -> nat -> nat *)

let rec findP pdec n =

match pdec n with

| Left -> n

| Right -> findP pdec (S n)

A more general way to define a function using fixpoints is to rely on a well-
founded ordering. We want to introduce a function f : A → B satisfying the
equation:

let f x = t(x, f)

and to ensure that recursive calls are done on smaller instances, we may require
the term t to have type t : ∀x : A, (∀y : A, y < x→ B)→ B. We may actually
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generalize the type of f to cover dependent types and have f : ∀x : A,P (x). The
term t will have type: ∀x : A, (∀y : A, y < x→ P (y))→ P (x). In Coq libraries,
a combinator for well-founded fixpoint is predefined, and the fixpoint equation
is proved.

Coq < Check Fix.

Fix

: forall (A : Type) (R : A -> A -> Prop),

well_founded R ->

forall P : A -> Type ,

(forall x : A, (forall y : A, R y x -> P y) -> P x) ->

forall x : A, P x

Under the appropriate hypotheses, the fixpoint equation Fix eq states:
forall x, Fix Rwf P F x = F x (fun (y : A) (_ : R y x) => Fix Rwf P F y)

The fixpoint is on the proof of well-foundness of the relation, which is itself a
proof that every object in A is accessible for the relation R.

The Optimized Linear Search. In this problem the array has an extra property
that successive elements do not decrease by more than one (but they may increase
arbitrarily). Now the linear search can be changed to a sub-linear search: if the
first element a of the list in non-zero then instead to consider the rest of the list,
on can skip a elements.

First we can introduce an inductive definition for the limited decreasing prop-
erty:

Coq < Inductive decrease : list nat -> Prop :=

Coq < decrease_nil : decrease nil

Coq < | decrease_cons : forall a b l,

Coq < decrease (b::l) -> a <= S b -> decrease (a::b::l).

Coq < Hint Constructors decrease.

We shall use the function skipn from the List library which removes the first
elements of a list. The definition we want looks like:

Coq < Fixpoint linear2 n (l:list nat) : option nat :=

Coq < match l with nil => None

Coq < | a::m => if zerop a then Some n

Coq < else linear2 (a+n) (skipn (a-1) m)

Coq < end.

Error: Cannot guess decreasing argument of fix.

However, it is not accepted by Coq because there is no evident structural re-
cursion. Actually this function terminates because the length of (skipn (a-1) m)
is not greater than the one of m which is less than the one of l. So we have to
move to a general recursion involving a well-founded ordering (a simple measure
given by the length of the list in that case).

Coq provides special tools to write programs containing logical parts while
solving these parts using tactics. This is the Program facility designed by M.
Sozeau [35].
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Coq < Require Export Program.

Coq < Program Fixpoint linear2 n (l:list nat) {measure (length l)}

Coq < : option nat

Coq < := match l with nil => None

Coq < | a::m => if zerop a then Some n

Coq < else linear2 (a+n) (skipn (a-1) m)

Coq < end.

We have one obligation to solve in order to make sure the recursive call decreases
the measure. This property comes from the following lemma proved by induction
on l:

Coq < Check skip_length.

skip_length : forall A n (l:list A), length (skipn n l) <= length l

We now solve the obligation:

Coq < Next Obligation.

1 subgoal

n : nat

a : nat

m : list nat

H : 0 < a

linear2 : nat ->

forall l : list nat , length l < length (a :: m)

-> option nat

============================

length (skipn (a - 1) m) < length (a :: m)

Coq < intros; apply le_lt_trans with (length m); simpl;

Coq < auto with arith.

Proof completed.

If we want to prove the correctness of this program, one can proceed as before
except that we will have to follow the definition scheme of the function, namely
a well-founded induction, then a pattern-matching on l then a case analysis on
the head value.

It is more convenient to do the proof while building the function, and the
Program environment will also help doing that. We enrich the return type of the
function with the property we expect using the Coq construction for {x : A|P}.

We shall need the following properties of decrease:

Coq < Lemma decrease_skip :

Coq < forall n l, decrease l -> decrease (skipn n l).

Coq < Lemma decrease_correct_skip :

Coq < forall l, decrease l ->

Coq < forall m n, n <= hd 0 l -> correct m (skipn n l)

Coq < -> correct (n+m) l.

Coq < Lemma skip_correct :

Coq < forall n l, correct n l ->

Coq < forall m, m <= n -> correct m (skipn (n-m) l).
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The fixpoint definition looks now like:

Coq < Program Fixpoint linear3 n (l:list nat) {measure (length l)} :

Coq < {res : option nat | decrease l ->

Coq < forall k, res=Some k <-> (n<=k /\ correct (k-n) l)}

Coq < := match l with nil => None

Coq < | a::m => if zerop a then Some n

Coq < else linear3 (a+n) (skipn (a-1) m)

Coq < end.

It generates 4 proof obligations (correctness in the three branches and termina-
tion) that can be displayed using the command Obligations.

Other Examples. Direct functional programming in Coq has been used for the
development of quite impressive programs including compilers, static analyzers,
kernels of the Coq system itself or the SMT solver alt-ergo. . . All these examples
are related to symbolic computation which is not surprising. The existence of
primitive inductive definitions in Coq makes direct the definition of abstract
syntax trees or the definition of language semantics using inference rules. These
programs will be much more complicated to develop in more traditional pro-
gramming languages using first-order logic.

4.3 Imperative Programming

Coq embed a pure functional language. However, it is possible to capture non
functional behaviors using monadic constructions like in Haskell for instance.
First, we introduce for each type A, a type comp A which represents computations
leading eventually a value of type A. Then we need two standard functions
return and bind. The function return (aka unit) has type A → comp A and
return v represents the value v seen as the result of a computation; the function
bind has type comp A → (A → comp B) → comp B, bind passes the result of
the first computation to the second one. We shall use the syntax: “p <- e1;

e2” for bind e1 (fun p ⇒ e2). The monadic construction can be integrated in
Coq using the type classes mechanism.

Coq < Class Monad (comp : Type -> Type) : Type :=

Coq < {ret : forall {A}, A -> comp A;

Coq < bind : forall {A B},

Coq < comp A -> (A -> comp B) -> comp B

Coq < }.

ret is defined

bind is defined

Given a type transformer comp, the type class Monad comp encapsulates the two
operators return and bind. In general, there will be one instance of Monad

for each different comp operator. The type classe mechanism is useful to share
the same notations between different structures. Given the comp operator, the
system will be looking automatically for an object in Monad comp.
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Coq < Notation "X <- A ; B" := (bind A (fun X => B))

Coq < (at level 30, right associativity ).

Coq < Notation "’return ’ t" := (ret t) (at level 1).

We can deduce the join operator of monads in a generic way:

Coq < Definition join comp {_:Monad comp} A (t:comp (comp A))

Coq < : comp A := X <- t; X.

join is defined

The monad of errors can be defined using an option like type definition.

Coq < Inductive Error A := Raise:Error A | Val:A->Error A.

Coq < Implicit Arguments Raise [[A]].

Coq < Definition bindError A B (a:Error A) (f:A->Error B)

Coq < : Error B :=

Coq < match a with | Raise => Raise | Val a => f a end.

Coq < Instance ErrMonad : Monad Error

Coq < := {ret := Val; bind := @bindError }.

On can use this monadic construction to define naturally a map function possibly
raising errors:

Coq < Fixpoint mape A B (f:A->Error B) l : Error (list B) :=

Coq < match l with | nil => return nil

Coq < | (a::m) => b <- f a; mb <- mape f m;

Coq < return (b::mb)

Coq < end.

mape is recursively defined (decreasing on 4th argument)

Similarly, a state monad can be defined to simulate references.

Coq < Definition State st A := st -> A * st.

Similar approaches works for non-deterministic programs, probabilistic programs [4],
and other constructions.

4.4 The Linked Lists Example

Memory Representation. The previous monadic approach for states does not
consider aliases in programs. If we need to deal explicitly with possible sharing
we can introduce a functional representation of memory and addresses.

This can be done to model linked lists. We can take ZZ for the set of addresses
and add a special value for the null pointer. We define a node in a linked list as
a record with a field for the value (here a natural number) and a next field with
the address of the rest of the list. A record is a special case of inductive definition
where there is only on constructor. The system derives automatically terms for
the two projections value of type node → nat and next of type node → adr.
Then the heap is a partial function from addresses to node which is represented
as a total function from ZZ to option node.
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Coq < Definition adr := option Z.

Coq < Definition null : adr := None.

Coq < Record node : Type := mknode { value : nat ; next : adr}.

value is defined

next is defined

Coq < Definition heap := Z -> option node.

Coq < Definition val (h : heap) (a : adr) : option node

Coq < := match a with None => None | Some z => h z end.

The state of the program will be the heap.
An alternative representation of memory would be to introduce more static

separation (model à la Burstall-Bornat) by integrating the fact that the fields
value and next will never be aliased, so we can consider that we have two differ-
ent memories for each field, we keep separately a table h of allocated addresses.
The state of the program consists of these three objects.

Coq < Definition value_m := Z -> nat.

Coq < Definition next_m := Z -> adr.

Coq < Definition val_m (h:Z->bool)(vm:value_m )(nm:next_m )(a:adr)

Coq < : option node := match a with

Coq < | None => None

Coq < | Some z => if h z then Some (mknode (vm z) (nm z))

Coq < else None

Coq < end.

With any of these models, we can specify logically the validity of addresses, and
absence of aliases. If needed, high-level rules such as the one of separation logic
can be encoded. For instance the Ynot project (Morrisett, Harvard) is a Coq
library to reason on imperative programs with separation logic.

Properties of linked lists. We define the property for an object in an option type
to be different of None.

Coq < Definition alloc A (a:option A) : Prop

Coq < := match a with Some _ => True | None => False end.

It is equivalent to a 6= None but defined in a computational way: a proof of
alloc a will reduce either to True or False. We define another partial function
for access but instead to output an optional type, it takes an extra argument as
input which ensures the value exists.

Coq < Definition access h (a:adr): alloc (val h a)->node

Coq < := match (val h a) as x return alloc x -> node

Co with None => fun (H:False) => False_rect _ H

Co | Some n => fun (H:True) => n

Coq < end.
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We see here an example of dependent pattern matching:

match t as x return P with p1 ⇒ c1| . . . pn ⇒ cn end

The type of the match expression is P [x ← t] and in each branch, x is substi-
tuted by the pattern.

In the first case we have to build an object in the type alloc None →
node but because alloc None is equivalent to False this branch will never be
accessed, so we provide a dummy element built form the proof of False.

In Coq all functions have to be total and terminating. If a list is cyclic or
at some point an address is not allocated then the program will go wrong. So
we introduce a predicate depending on an address and a heap which captures
that following the links we always find allocated addresses until we reach the
null address.

Coq < Inductive LList (h : heap) (a:adr) : Prop :=

Coq < mkLL : forall (LLa : alloc a -> alloc (val h a)),

Coq < (forall (p:alloc a), LList h (next (access h a (LLa p))))

Coq < -> LList h a.

It says that (LList h a) if whenever a is not null, it is allocated in the heap and
the next address is itself a well-formed list. The strange form comes from the
fact that the access function depends on a proof that the value in not None.

We easily derive the expected properties:

Coq < Lemma LL_null : forall h, LList h null.

Coq < Lemma LL_cons : forall h a (q:alloc (val h a)),

Coq < LList h (next (access h a q)) -> LList h a.

We can also prove the other direction :

Coq < Lemma LL_alloc_val : forall h a,

Coq < LList h a -> alloc a -> alloc (val h a).

Coq < destruct 1; trivial.

Coq < Defined.

Coq < Lemma LL_next : forall h a (L:LList h a) (p:alloc a),

Coq < LList h (next (access h a (LL_alloc_val L p))).

Coq < unfold LL_alloc_val; destruct L; trivial.

Coq < Defined.

We use the keyword Defined instead of Qed. In Coq a constant can be defined
as Opaque and will never be unfolded or reduced, which is the expected behavior
for most theorems. Or it can be declared as transparent. In this case, the proof
of LList will be used inside Coq to control fixpoint definitions and need to be
transparent, which is obtained with the Defined command.

Now, in order to build a function by following the links starting from an
address a which corresponds to a well-formed list, we use a fixpoint that will be
structurally decreasing on the proof of (LListh a).

We first introduce a program to test whether or not an address is null.
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Coq < Definition nullp (a:adr) : {a=null }+{ alloc a}.

Coq < destruct a; simpl; auto.

Coq < Defined.

As a first example, we build a logical list from a well-formed linked list.

Coq < Variable h : heap.

Coq < Fixpoint LL_list (a:adr) (La: LList h a) : list nat :=

Coq < match nullp a with

Coq < left p => nil

Coq < | right p => value (access h a (LL_alloc_val La p))

Coq < :: LL_list (LL_next La p)

Coq < end.

LL_list is recursively defined (decreasing on 2nd argument)

If we want to prove the fixpoint equation, we need a case analysis in the proof
of LList.

Coq < Lemma LL_list_eq : forall (a:adr) (La: LList h a),

Coq < LL_list La = match nullp a with

Coq < left p => nil

Coq < | right p => value (access h a (LL_alloc_val La p))

Coq < :: LL_list (LL_next La p)

Coq < end.

Coq < destruct La; trivial.

Coq < Qed.

Linear Search. Doing the naive linear search follows the same scheme:

Coq < Fixpoint LL_linear (a:adr) (La:LList h a) n : option nat :=

Coq < match nullp a with

Coq < left p => None

Coq < | right p => if zerop (value (access h a (LL_alloc_val La p)))

Coq < then Some n

Coq < else LL_linear (LL_next La p) (S n)

Coq < end.

LL_linear is recursively defined (decreasing on 2nd argument)

It is possible to specify this program using the same predicate correct as before:

Coq < Lemma linear_correct : forall a (La:LList h a) n k,

Coq < LL_linear La n = Some k

Coq < <-> (n <= k /\ correct (k-n) (LL_list La)).

The proof goes by induction on the proof La of (LList h a) but because LList

has type Prop, the induction principle automatically generated by Coq is not
powerful enough.

Coq < Check LList_ind.

LList_ind : forall (h : heap) (P : adr -> Prop),

(forall (a : adr) (LLa : alloc a -> alloc (val h a)),

(forall p : alloc a, LList h (next (access h a (LLa p))))
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-> (forall p : alloc a, P (next (access h a (LLa p))))

-> P a)

-> forall a : adr , LList h a -> P a

We need a principle which allows to prove ∀a (La : LListh a), P a La. With the
property to be proved depending on the proof of (LListh a). There is a special
command to derive this more powerful principle:

Coq < Scheme LList_indd := Induction for LList Sort Prop.

LList_indd is recursively defined

Then the proof of the lemma starts with:

Coq < induction La using LList_indd; simpl; intros.

1 subgoal

a : adr

LLa : alloc a -> alloc (val h a)

l : forall p : alloc a, LList h (next (access h a (LLa p)))

H : forall (p : alloc a) (n k : nat),

LL_linear (l p) n = Some k <->

n <= k /\ correct (k - n) (LL_list (l p))

n : nat

k : nat

============================

match nullp a with

| in_left => None

| right p =>

if zerop (value (access h a (LLa p)))

then Some n

else LL_linear (l p) (S n)

end = Some k <->

n <= k /\

correct (k - n)

match nullp a with

| in_left => []

| right p => value (access h a (LLa p)):: LL_list (l p)

end

Coq < case (nullp a); intros.

2 subgoals

a : adr

LLa : alloc a -> alloc (val h a)

l : forall p : alloc a, LList h (next (access h a (LLa p)))

H : forall (p : alloc a) (n k : nat),

LL_linear (l p) n = Some k <->

n <= k /\ correct (k - n) (LL_list (l p))

n : nat

k : nat

e : a = null

============================

None = Some k <-> n <= k /\ correct (k - n) []
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subgoal 2 is:

(if zerop (value (access h a (LLa a0)))

then Some n else LL_linear (l a0) (S n)) = Some k

<->

n <= k

/\ correct (k-n) (value (access h a (LLa a0)):: LL_list (l a0))

The rest of the proof is quite similar to the proof using logical lists.

5 Automating proofs

In this section, we give an overview of different ways to use automation in Coq
including a brief overview of the tactic language Ltac and of proofs by reflection.

5.1 Existing Automated Tactics.

We have already mentioned and used basic automated tactic in Coq. The auto

and trivial tactics combine lemmas given by the user. Some tactics like tauto,
firstorder and intuition deal with the propositional structure of proposi-
tions. There are generic tactics like ring and field to deal with algebraic ma-
nipulations in specific structures; the user can extend these tactics for new data-
types and operations. A tactic like omega implements a decision procedure for
linear arithmetic. There are also more specialized tactics. gappa and interval

(G. Melquiond) deal with floating point numbers and real numbers (using compu-
tation on floating point numbers to establish results on natural numbers). Psatz
(F. Besson and E. Makarov) deals with arithmetic over ordered rings; Nsatz (L.
Pottier) solves equalities in integral domains; ergo (S. Lescuyer) implements a
small SMT solver. There is an integrated library implementing rewriting modulo
Associativity-Commutativity developed (Th. Braibant, D. Pous). These tactics
are fully integrated in Coq. Some other approaches use external tools as oracles
producing traces. Early experiments were done with resolution (M. Bezem, D.
Hendriks and H. de Nivelle). Several attempts are dealing with rewriting tools:
first with Elan (C. Alvarado, P. Crégut) and with CiME and the correspond-
ing Coq library coccinelle (E. Contejean, X. Urbain et al.) and also the color
library (F. Blanqui). As mentioned earlier, there is ongoing work on integrating
SAT/SMT solvers : MiniSat, VeriT (B. Grégoire, C. Keller et al.)

Some of the algorithms behind these tactics are quite involved. They are
mainly developed at the Ocaml level. Coq has a plugin mechanism which allows
to dynamically load new developments containing Ocaml code. So a new tactic
can be developed independently of the system itself.

An important point is that the tactic will always provide a proof-term that
is checked again by the Coq trusted kernel. So using third-party tactics will not
lead to accept a false proposition as a theorem.
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5.2 A Language for Writing Tactics.

Writing a powerful tactics like the ones mentioned before is a lot of work and re-
quires to understand part of the internals of Coq. For many simple tasks, we can
work at a higher level. The Ltac language designed by D. Delahaye [19] allows to
write complex tactics without writing ML code. The language implements many
useful schemes like (non-linear) pattern-matching on goals, generation of fresh
names (fresh name), type-checking (type of term), and the programming ca-
pabilities of Coq can be used for integrating complex data-structures. Examples
of pattern-matching constructs are:

match goal with

id:?A /\ ?B |- ?A => destruct id; trivial

| _ => idtac

end

match goal with |- context [?a+0] => rewrite ... end

These constructions are tactics that can be used anonymously everywhere in a
proof. It is also possible to declare tactics with arguments like in the following
examples related to our board example.

Coq < Ltac triple_force tac t :=

Coq < let x := fresh "x" in

Coq < let y := fresh "y" in

Coq < let z := fresh "z" in

Coq < destruct t as (x,y,z); tac x; tac y; tac z.

triple_force is defined

The tactic triple force takes as argument a tactic tac and a term t. It will
work when t has type triple M . It destructs t generating three new names
for each component and applies sequentially the tactic tac to these three new
objects. Remember a board is a triple of triples of colors. Given a term t of type
board, the tactic board force will generate a new color variable for each place
in the board and apply tac to each of them.

Coq < Ltac board_force tac t :=

Coq < let tac1 := triple_force tac in triple_force tac1 t.

board_force is defined

These user defined tactics can now be used like other tactics.

5.3 Reflexive Tactics

An important rule of the theory of Coq is the convertibility rule:

Γ ` U : s Γ ` t : T T ≡ U
Γ ` t : U

It says that a proof of a proposition T is also a proof of U when T and U
are convertible (equal modulo computation). A consequence of that rule is that
computation is part of proof verification (this is why termination is so important
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to keep decidability of type-checking). All languages with possible computations
inside formulas integrates this sort of rule. A specificity of Coq is that, the set of
terms integrates a powerful programming language (functional kernel of CAML),
so heavy computation can occur during type-checking. A good news is that this
capability can be really helpful for conducting proofs. The four-color theorem
heavily relies on this possibility and more and more tactics are developed directly
in Coq thanks to this computational power. In the meantime, it was necessary
to improve the efficiency of reduction techniques inside the kernel of Coq. B.
Grégoire introduced byte-code compiling, and more recently there has been work
for integrating machine integers and primitive arrays.

Principle of Reflexive Tactics. We illustrate the principle of reflexive tactics on
a typical example.

We want to prove a property P . We know of a (complex) mechanical way to
prove P depending on the structure of P . One could use Ltac to combine existing
tactics and build the proof but it can be inefficient and create very large proof
terms.

So another idea is to try to program the tactic inside Coq itself. One can-
not directly reason inside Coq on the structure of the proposition but one can
introduce a new concrete type A (for instance an abstract syntax tree for the
formula) and the only thing we need is an interpretation r2P from A to Prop
plus a specific element p : A such that (r2P p) is equivalent to the formula P we
want to prove.

Now that we have a concrete type A, we can concentrate on implementing
inside Coq whatever algorithm we like r2b, which should tell us for a : A whether
the corresponding proposition r2P a is provable.

So we expect the algorithm r2b to be of type A → bool and to satisfy the
correctness property:

rcor : ∀a : A, r2b a = true→ r2P a

An algorithm which always answers false will be correct but useless. However
no completeness is required.

Combining the different results, the term rcor p has type r2b p = true→ P
so we are left to prove that our complex program evaluates to true. The good
news is that this proof is just a computation as soon as p is a closed term (without
free variable). When we compute a closed term of type bool we can only get the
values true or false as a result and we can now use the computation rule:

refl eq : true = true r2b p ≡ true

refl eq : r2b p = true

The proof term is completely trivial, all the proof checking is done by the com-
putation as part of the equivalence-checking.

Finally, the term rcor p (eq refl true) is well-typed of type P exactly when
r2b p ≡ true.



44 Christine Paulin-Mohring

The first difficulty in implementing this method is that, we need to find for
each formula P to be proven, a closed term p : A such that r2P p ≡ true. This is
the reification part, usually done by ad-hoc tactics working with the proposition
P . The object p can also reflect the trace of a proof of P done by an external
tool. The term r2b p needs to reduce to a boolean value so p (or the part of p
needed for computation) should be a closed term. The term p should preferably
be small (otherwise the final proof term will be large). The main problems are
that r2b needs to be proven correct and its reduction needs to be efficient.

This techniques is used in several Coq automated tactics like Ring, (R)Omega,
Setoid Rewrite. . . and also in interfaces between Coq and other systems using
traces.

Example of Reification. We give an example of reification techniques with an
attempt to capture the structure of propositions (just True and False proposi-
tions and the conjunction). The abstract syntax tree will contain a Var n term
for each sub-proposition that cannot be interpreted and an environment (repre-
sented here by a list of propositions), will keep track of the proposition associated
with each variable.

Coq < Inductive form : Set :=

Coq < T | F | Var : nat -> form

Coq < | Conj : form -> form -> form.

Coq < Definition env := list Prop.

It is easy to define the interpretation of a formula (we first define the access
function in the environment).

Coq < Fixpoint find_env (e:env) (n:nat) :=

Coq < match e with nil => True

Coq < | cons a l =>

Coq < match n with O => a

Coq < | S p => find_env l p

Coq < end

Coq < end.

Coq < Fixpoint f2P e (f:form) {struct f} : Prop :=

Coq < match f with

Coq < T => True | F => False

Coq < | Conj p q => f2P e p /\ f2P e q

Coq < | Var n => find_env e n

Coq < end.

We can now run an example:

Coq < Definition e := (True:: False ::(0=0):: nil).

Coq < Eval compute in

Coq < (f2P e (Conj (Var 0) (Conj (Var 1) (Var 1)))).

= True /\ 0 = 0 /\ False : Prop

We show a more involved use of Ltac to do the reification automatically. Ltac
is first used to compute from a Coq proposition, both an environment and the
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corresponding formula which introduces variables each time the proposition is
not True, False or a conjunction.

Coq < Ltac env_form l f := match f with

Coq < True => constr :(l,T)

Coq < | False => constr :(l,F)

Coq < | ?A /\ ?B => match env_form l A with (?l1 ,?A1) =>

Coq < match env_form l1 B with (?l2 ,?A2) =>

Coq < constr :(l2 ,Conj A1 A2)

Coq < end

Coq < end

Coq < | ?A => let n := eval compute in (length l)

Coq < in constr :(cons A l,Var n)

Coq < end.

env_form is defined

Then the reification function computes the environment and the formula and
applies the change tactic which will fail if the two expressions are not convertible.

Coq < Ltac reify := match goal with |- ?P =>

Coq < match (env_form (nil (A:=Prop)) P) with (?l,?f) =>

Coq < let e := eval compute in (rev l) in change (f2P e f) end

Coq < end.

Reification can be tested on a concrete example.

Coq < Lemma test1 : 0=0 /\ (False -> False) /\ 1=1 /\ (0=0).

Coq < reify.

1 subgoal

============================

f2P ((0 = 0)::( False -> False )::(1 = 1)::(0 = 0):: nil)

(Conj (Var 0) (Conj (Var 1) (Conj (Var 2) (Var 3))))

We see on this example that the two instances of 0=o are not shared, a more
sophisticated reification techniques can be implemented to avoid this behavior.
Using reflexive techniques, one could design a simple tautology checker on the
type form or extending the method to do trivial simplifications in the formula.

Application to the Board. Because a board has only a finite (but large) num-
ber of possible states, it is possible to design a reflexive tactic for deciding
∀b : board, P (b) = true. The relation moves between two boards can also be
decided by looking at the appropriate invariant on the boards and this strategy
can easily be implemented using a reflexive tactic.

6 Conclusion

In this tutorial, we have presented the basic constructions of the Coq proof
assistant and we illustrated them on examples of (small) software verification
taken from different classes of problems. We did not cover all aspects of Coq
(modules, coinductive definitions, coercions, the ssreflect proof language are
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important notions not covered here) and we just quickly mentioned other impor-
tant features such as the tactic language, type classes. . . The interested user will
need to use other material like the Coq reference manual [36] or other references
mentioned in the introduction [7, 34, 13].

Our purpose was to illustrate some of the main features of Coq including
inductive definitions, dependent types but also to give an overview of more elabo-
rated libraries that can be reused and adapted to solve certain class of problems.
A proof assistant is like a programming environment: you can use it because you
like the language primitives or because it offers a good set of pre-developed
libraries (efficient, easy to reuse) that will make your programming task easier.

Why and When should I use Coq ? Coq is not a direct tool to find bugs in C,
Java, concurrent programs. But as a computer scientists specialized in formal
methods and software verification, our job is mainly to design methods, tools to
help others write correct programs!

Coq is helpful for developing complex mathematical proofs with high guar-
anty. This can be checking theorems in papers. During the last years, more
and more community of researchers have questioned their ability to check the
correctness of proofs in academic papers. It is the case in the area of theory
of programming languages (see the POPLmark Challenge [31]), computational
cryptography [5], computer arithmetic [26] and certain “computational” math-
ematical proofs like the Kepler’s conjecture (see the Flyspeck project [24]).

Coq can also be used as a back-end for program verification (when program
correctness has been reduced to logical propositions) and also to develop and
prove pure functional programs which can be abstract representation of algo-
rithms or tools fully developed in a functional style.

Coq is not a tool that will magically solve your equation or your problem,
but it is a general purpose language in which you can learn how to program your
own solution. The entry cost is a lot higher, and it is not easy but the possibility
are much larger. If you are lucky, somebody has developed a similar application
that you can reuse.

Using a Theorem Prover as a Back-End. Some software verification techniques
reduce program correctness to logical statements. Then the problem is to make
sure these logical statements are correct.

One solution is to use an automatic first-order theorem prover or a SMT
tool. These tools are automatic and very powerful. However, they may fail to
prove a correct statement in which case you will have to better understand the
algorithms in order to help the tool solve your problem. When they succeed,
there is the question of could you trust or not the result ? There is always a
possibility of a bug in the program (these tools involve complex algorithms and
optimization methods) but even without bugs in the tool, there is the possibility
that the theory you introduced for modeling your problem is inconsistent.

If instead you use a proof assistant based on a higher-order logic, the proof
will be mainly interactive. It requires more expertise and time but there are few
theoretical limitations on the extend of proofs you can do. Also it is possible
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to build models of the theory you are using that will avoid the pitfall of an
inconsistent context, so the development in general will be much more reliable.

Where Automated Deduction Meets Proof Assistants. During the last years,
there has been closer interactions between the two worlds: most first-order theo-
rem provers produce traces that can be checked by an independent party. Proof
assistants also provides automated strategies (either internal or external or with
a combination of both). One question is: Do we have to choose ?

A tool like the Why3 platform [8] gives the possibility to describe problems
in a high-level language (polymorphic multi-sorted logic including functions,
algebraic data-types, axioms, lemma, modules) and to translate them efficiently
to multiple provers including proof assistants, SMT/TPTP solvers, or specialized
tools like Gappa for floating-point arithmetic [18]. The Why3 platform is used
as a back-end for other environments for software verification like the Frama-
C platform for Static analysis tools for C programs (CEA LIST & INRIA, B.
Monate, L. Correnson [20]). Using this platform, you can submit your set of
logical problems to many different provers and be happy if at least one of them
solve each goal. You can then focus on the one which are left and try them using
interactive proofs in a proof assistant.

A frequent question is also Which proof assistant should I use? There is no
clear answer, using Coq or Isabelle/HOL for instance can be compared to the
question using Ocaml or Haskell ? The choice may depend on ideological reasons:
do you prefer classical or intuitionistic logic ? which trust base are you ready to
accept ? do you need dependent types ? Often the choice will be based on more
practical reasons: it is used in my team/company, an expert seats next door, I
learned it at school, the library I need exists in that proof assistant. . .

What is true is that great achievements have been obtained by great people
in all proof assistants Coq, HOL, PVS . . . and that biodiversity is healthy!
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Bertot, Gilles Dowek, André Hirschowitz, C. Paulin, and Laurent Théry, edi-
tors, Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, pages 113–130.
Springer, 1999.

27. Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009. See also http://compcert.inria.fr/.

28. Pierre Letouzey. Extraction in coq: An overview. In Arnold Beckmann, Costas
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