

Reflexive Tactics
From: Introduction to the COQ Proof-Assistant for Practical Software

Verification (by Christine Paulin-Mohring)

Timothy Fräser

Ltac

• by David Delahaye

• language for creating complex tactics without ML code

 COQ has a functional CAML kernel

• combining tactics in Ltac can be inefficient and create large proof

terms

• another idea is to program a tactic inside COQ

Why use Reflexive Tactics?

• to proof a property P:Prop

• given a mechanical way of proving P based on it's structure

• problem: cannot reason directly about the structure of P inside COQ

How to use Reflexive Tactics?

• can reason about the structure of inductive types (data)

• so we represent P as a term having an inductive type D

- called reification

- ex: an Abstract Syntax Tree

Algorithms

• Every property P needs a data representation d:D

• d2P : D → Prop

- interpretation of the data-type (converts d:D to P)

• d2b : D → bool

- given mechanical way of proving P based on it's structure

- d2b needs to be correct

- d2b needs to be efficient.

• correct : ∀d:D, d2b d = true → d2P d

Convertibility Rule

• important rule of COQ theory

• computation (for T ≡ U) becomes part of type checking

• termination: important to keep decidability of type checking

• compatible with all languages having possible computations in their

terms

Γ ⊢ U:s Γ ⊢ t:T T ≡ U
─────────────────────────
 Γ ⊢ t:U

Reflexifity “Rule”

• convertibility rule:

• reflexifity "rule":

• provability completely depends on convertibility (d2b d ≡ true)

refl_eq : true = true d2b d ≡ true
─────────────────────────────────────
 refl_eq : d2b d = true

Γ ⊢ U:s Γ ⊢ t:T T ≡ U
─────────────────────────
 Γ ⊢ t:U

Example 1: from data d to Property P

(* data-type *)
Inductive form : Set :=
 | T
 | F
 | Var : nat -> form
 | Conj : form -> form -> form.

(* environment for un-interpretable sub-propositions *)
Definition env := list Prop.
Fixpoint find_env (e:env) (n:nat) :=
 match e with
 nil => True
 | cons x xs => match n with
 0 => x
 | S p => find_env xs p
 end
 end.

Example 1: from data d to Property P

(* data-type -> P *)
Fixpoint d2P e (f:form) {struct f} : Prop :=
 match f with
 T => True
 | F => False
 | Conj p q => d2P e p /\ d2P e q
 | Var n => find_env e n
 end.

Notation "x :: xs" := (cons x xs).

(* compute data-type -> P *)
Definition e := (True :: False :: (0=0) :: nil).
Eval compute in
 (d2P e (Conj (Var 0) (Conj (Var 2) (Var 1)))).

(* outputs: "= True /\ 0 = 0 /\ False : Prop" *)

Example 2: Reification

(* compute environment from formula *)
Ltac env_form l f :=
 match f with
 True => constr:(l,T)
 | False => constr:(l,F)
 | ?A /\ ?B => match env_form l A with (?l1,?A1) =>
 match env_form l1 B with (?l2,?A2) =>
 constr:(l2, Conj A1 A2)
 end
 end
 | ?A => let n := eval compute in (length l)
 in constr:(cons A 1, Var n)
 end.

Example 2: Reification

(* P -> data-type (reify) *)
Ltac reify :=
 match goal with |- ?P =>
 match (env_form (nil (A:=Prop)) P) with
 (?l,?f) => let e := eval compute in (rev l)
 in change (d2P e f)
 end
 end.

(* compute P -> data-type (reify) *)
Lemma test1 : 0=0 /\ False -> False /\ 1=1 /\ (0=0).
reify.

(* outputs:
1 subgoal
 ============================
 d2P ((0 = 0)::(False -> False)::(1 = 1)::(0 = 0)::nil)
 (Conj (Var 0) (Conj (Var 1) (Conj (Var 2) (Var 3))))
*)

