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Ltac 

 

• by David Delahaye 

 

 

• language for creating complex tactics without ML code 

 

        COQ has a functional CAML kernel 

 

 

• combining tactics in Ltac can be inefficient and create large proof 

terms 

 

 

• another idea is to program a tactic inside COQ 

 



Why use Reflexive Tactics? 

 

 

 
• to proof a property P:Prop 

 

 
• given a mechanical way of proving P based on it's structure 

 

 
• problem: cannot reason directly about the structure of P inside COQ 



How to use Reflexive Tactics? 

 

 

 

 

• can reason about the structure of inductive types (data) 

 

 
• so we represent P as a term having an inductive type D 

 
- called reification 

 

- ex: an Abstract Syntax Tree 



Algorithms 

• Every property P needs a data representation d:D 
 

 
• d2P : D → Prop 
 
-     interpretation of the data-type (converts d:D to P) 

 

 
• d2b : D → bool 
 
-     given mechanical way of proving P based on it's structure 

 
-     d2b needs to be correct 
 

-     d2b needs to be efficient. 

 

 
• correct : ∀d:D, d2b d = true → d2P d 

 



Convertibility Rule 

• important rule of COQ theory 

 

 

 

 

 

 

 
• computation (for T ≡ U) becomes part of type checking 

 

• termination: important to keep decidability of type checking 

 

• compatible with all languages having possible computations in their 

terms 

Γ ⊢ U:s   Γ ⊢ t:T   T ≡ U 
───────────────────────── 
          Γ ⊢ t:U 
 



Reflexifity “Rule” 

•  convertibility rule: 

 

 

 

           

 

• reflexifity "rule": 

     

 

 

     

 

 
• provability completely depends on convertibility (d2b d ≡ true) 

refl_eq : true = true    d2b d ≡ true 
───────────────────────────────────── 
       refl_eq : d2b d = true 
 

Γ ⊢ U:s   Γ ⊢ t:T   T ≡ U 
───────────────────────── 
          Γ ⊢ t:U 
 



Example 1: from data d to Property P 

(* data-type *) 
Inductive form : Set := 
    | T 
    | F 
    | Var  : nat  -> form 
    | Conj : form -> form -> form. 
 
 
(* environment for un-interpretable sub-propositions *) 
Definition env := list Prop. 
Fixpoint find_env (e:env) (n:nat) := 
    match e with  
      nil       => True 
    | cons x xs => match n with  
                    0   => x 
                  | S p => find_env xs p 
                  end 
    end. 



Example 1: from data d to Property P 

(* data-type -> P *) 
Fixpoint d2P e (f:form) {struct f} : Prop := 
    match f with 
      T        => True 
    | F        => False 
    | Conj p q => d2P e p /\ d2P e q 
    | Var n    => find_env e n 
    end. 
 
Notation "x :: xs" := (cons x xs). 
 
(* compute data-type -> P *) 
Definition e := (True :: False :: (0=0) :: nil). 
Eval compute in 
    (d2P e (Conj (Var 0) (Conj (Var 2) (Var 1)))). 
      
(* outputs: "= True /\ 0 = 0 /\ False : Prop" *) 



Example 2: Reification 

(* compute environment from formula *) 
Ltac env_form l f := 
    match f with 
      True     => constr:(l,T) 
    | False    => constr:(l,F) 
    | ?A /\ ?B => match  env_form l  A with (?l1,?A1) => 
                    match env_form l1 B with (?l2,?A2) => 
                      constr:(l2, Conj A1 A2) 
                   end 
                  end 
    | ?A       => let n := eval compute in (length l) 
                    in constr:(cons A 1, Var n) 
    end. 



Example 2: Reification 

(* P -> data-type (reify) *) 
Ltac reify := 
    match goal with |- ?P => 
      match (env_form (nil (A:=Prop)) P) with 
        (?l,?f) => let e := eval compute in (rev l) 
                    in change (d2P e f) 
      end 
    end. 
     
(* compute P -> data-type (reify) *) 
Lemma test1 : 0=0 /\ False -> False /\ 1=1 /\ (0=0). 
reify. 
 
(* outputs: 
1 subgoal 
  ============================ 
   d2P ((0 = 0)::(False -> False)::(1 = 1)::(0 = 0)::nil) 
       (Conj (Var 0) (Conj (Var 1) (Conj (Var 2) (Var 3)))) 
*) 
 


