Course: Type Theory and Coq

Exercises on Principal Types

All exercises are about Simple Type Theory à la Curry.

- 1. Determine the most general unifiers of
 - (a) $(\alpha \rightarrow \beta) \rightarrow \gamma$ and $\alpha \rightarrow \beta \rightarrow \gamma$
 - (b) $(\alpha \rightarrow \beta) \rightarrow \gamma$ and $\gamma \rightarrow \alpha \rightarrow \beta$
- 2. Compute the principal type of $\mathbf{S} := \lambda x \cdot \lambda y \cdot \lambda z \cdot x z(yz)$.
- 3. Which of the following terms is typable? If it is, determine the *principal type*; if it isn't, show that the typing algorithm fails.
 - (a) $\lambda z x.z(x(\lambda y.y x))$
 - (b) $\lambda z x.z(x(\lambda y.y z))$
- 4. Compute the principal type of $M := \lambda x \cdot \lambda y \cdot x (y(\lambda z \cdot x \cdot z \cdot z))(y(\lambda z \cdot x \cdot z \cdot z))$.
- 5. Which of the following terms is typable? If it is, determine the *principal type*; if it isn't, show that the typing algorithm fails.
 - $\lambda x.(\lambda y.x(xy))(\lambda u v.u)$
 - $\lambda y.(\lambda x.x(xy))(\lambda u v.u)$