
Type Theory and Coq 2017-2018
02-07-2018

1. This exercise is about simply typed lambda calculus and propositional logic.

(a) Give the most general type of the untyped lambda term:

λxyz. (λv. yx)(λw. zw)

a→ (a→ b)→ (c→ d)→ b

(b) Write the term from the previous subexercise in Church-style typed
lambda calculus, i.e., with explicit types in the lambda bindings, such
that it has the type from your answer to the previous subexercise.

λx : a. λy : a→ b. λz : c→ d. (λv : c→ d. yx)(λw : c. zw)

(c) Give a proof of the propositional formula

a→ (a→ c)→ (b→ c)→ c

that contains a detour.

[a→ cy] [ax]

c
E→

(b→ c)→ c
I[v]→

[b→ cz]

c
E→

(b→ c)→ c
I[z]→

(a→ c)→ (b→ c)→ c
I[y]→

a→ (a→ c)→ (b→ c)→ c
I[x]→

The detour is the E→ elimination that directly follows the I[v]→ in-
troduction.

(d) Give the normal form of this proof.

[a→ cy] [ax]

c
E→

(b→ c)→ c
I[z]→

(a→ c)→ (b→ c)→ c
I[y]→

a→ (a→ c)→ (b→ c)→ c
I[x]→

1

(e) Give the proof term that correspond to the normalized proof from the
previous subexercise.

λx : a. λy : a→ c. λz : b→ c. yx

(f) Give the full type derivation in simply typed lambda calculus of the
term from the previous subexercise.

You may use abbreviations for contexts, if convenient.

We use the abbreviation

Γ := x : a, y : a→ c, z : b→ c

The derivation then is:

Γ ` y : a→ c Γ ` x : a

Γ ` yx : c

x : a, y : a→ c ` λz : b→ c. yx : (b→ c)→ c

x : a ` λy : a→ c. λz : b→ c. yx : (a→ c)→ (b→ c)→ c

` λx : a. λy : a→ c. λz : b→ c. yx : a→ (a→ c)→ (b→ c)→ c

(g) Is it possible to have two different λ→ terms M1 and M2, i.e., with
M1 6=α M2, that are both in normal form and that are convertible, i.e.,
with M1 =β M2? If so, give an example of two such terms. If not,
explain why this is not possible.

No, that is not possible, because λ→ has the Church-Rosser property.

This implies that if M1 =β M2, then M1 and M2 will have a common
reduct M ′, i.e., M1 →→∗β M ′ and M2 →→∗β M ′. But if M1 and M2 are
both in normal form, then they do not reduce and in both cases there
are zero steps before reaching M ′. Hence M1 =α M

′ and M2 =α M
′,

and therefore M1 =α M2.

2. This exercise is about dependent types and predicate logic.

(a) Give a proof in predicate logic of the formula:

∀x. ((∀y.¬p(y))→ ¬∀y. p(y))

In this formula we have used the abbreviation ¬A := A→ ⊥.

2

[∀y.¬p(y)H0]

¬p(x)
E∀

[∀y. p(y)H1]

p(x)
E∀

⊥
E→

¬∀y. p(y)
I[H1]→

(∀y.¬p(y))→ ¬∀y. p(y)
I[H0]→

∀x. ((∀y.¬p(y))→ ¬∀y. p(y))
I∀

(b) Give the proof term in λP that corresponds to this proof.

λx : D.λH0 : (Πy : D. py → ⊥). λH1 : (Πy : D. py). H0x(H1x)

(c) Give the full context needed to type the term from the previous subex-
ercise in λP .

⊥ : ∗, D : ∗, p : D → ∗

(d) Give two λP proof terms and their context for the predicate logic for-
mula:

∀x. p(x)→ p(x)

Give one proof term that uses the Curry-Howard isomorphism for λP ,
and another proof term in which λP is used as a logical framework with
context

Γpred :=
prop : ∗
proof : prop→ ∗

D : ∗
implies : prop→ prop→ prop
forall : (D → prop)→ prop

implies intro : ΠA : prop.ΠB : prop. (proof A→ proof B)→ proof (impliesAB)
implies elim : ΠA : prop.ΠB : prop. proof (impliesAB)→ proof A→ proof B
forall intro : ΠP : (D → prop). (Πx : D. proof (Px))→ proof (forallP)
forall elim : ΠP : (D → prop). proof (forallP)→ Πx : D. proof (Px)

D : ∗, p : D → ∗ ` (λx : D.λH : px.H) : Πx : D. px→ px

3

Γpred, p : D → prop `
forall intro (λx : D. implies (p x)(p x))

(λx : D. implies intro (p x)(p x) (λH : proof (p x). H))

: proof (forall (λx : D. implies (p x)(p x)))

3. This exercise is about polymorphism and second order propositional logic.

We define disjunction impredicatively in λω:

or2 := λa : ∗. λb : ∗.Πc : ∗. (a→ c)→ (b→ c)→ c

(a) Give the type of or2 in λω.

∗ → ∗ → ∗

(b) Give the formula of second order propositonal logic that corresponds to
the type

or2 a b→ or2 b a

after expanding or2, where a and b are variables of type ∗.

(∀c. (a→ c)→ (b→ c)→ c)→ ∀c. (b→ c)→ (a→ c)→ c

(c) Give a proof in second order propositional logic of the formula from the
previous subexercise.

[∀c. (a→ c)→ (b→ c)→ cH0]

(a→ c)→ (b→ c)→ c
E∀

[a→ cH2]

(b→ c)→ c
E→

[b→ cH1]

c
E→

(a→ c)→ c
I[H2]→

(b→ c)→ (a→ c)→ c
I[H1]→

∀c. (b→ c)→ (a→ c)→ c
I∀

(∀c. (a→ c)→ (b→ c)→ c)→ ∀c. (b→ c)→ (a→ c)→ c
I[H0]→

4

(d) Give a λω term with type

Πa : ∗.Πb : ∗. or2 a b→ or2 b a

λa : ∗. λb : ∗. λH0 : (Πc : ∗. (a→ c)→ (b→ c)→ c).
λc : ∗. λH1 : b→ c. λH2 : a→ c.H0cH2H1

The same term in a different notation:

Λa.Λb. λH0 : (∀c. (a→ c)→ (b→ c)→ c).
Λc. λH1 : b→ c. λH2 : a→ c.H0cH2H1

4. This exercise is about the typing rules of pure type systems and the lambda
cube.

(a) Give a full type derivation of

a : ∗ ` (λx : ∗. a) : ∗ → ∗

in the calculus of constructions.

See below for the lambda cube and the typing rules of the pure type
systems from the lambda cube. If you want, you may first give sub-
derivations first, instead of replicating them all the time.

We first give the subderivation of the judgment a : ∗ ` ∗ : � :

` ∗ : � ` ∗ : �

a : ∗ ` ∗ : �

A deriviation of a : ∗ ` (λx : ∗. a) : ∗ → ∗ then is:

` ∗ : �

a : ∗ ` a : ∗

...

a : ∗ ` ∗ : �

a : ∗, x : ∗ ` a : ∗

...

a : ∗ ` ∗ : �

...

a : ∗ ` ∗ : �

...

a : ∗ ` ∗ : �

a : ∗, x : ∗ ` ∗ : �

a : ∗ ` ∗ → ∗ : �

a : ∗ ` (λx : ∗. a) : ∗ → ∗

(b) In which of the systems of the lambda cube is this type derivation
allowed?

The rule that was used in the product rule (the derivation of ∗ → ∗ : �)
was (�,�,�), so the systems in which this derivation is allowed are:

λω, λPω, λω, λPω

5

5. This exercise is about inductive types and recursive functions.

(a) Give the type of the dependent recursor nat rec of the inductively de-
fined natural numbers:

Inductive nat : Set := O : nat | S : nat -> nat.

In mathematical notation:

nat rec : ΠP : nat→ ∗. P O→ (Πn : nat. P n→ P (Sn))→ Πn : nat. P n

In Coq notation:

nat_rec :

forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) ->

forall n : nat, P n

(b) Use this recursor nat rec to define the predecessor function

pred(n) :=

{
0 if n = 0

n− 1 if n > 0

In mathematical notation:

pred := λn : nat. nat rec (λn : nat.nat)O (λn : nat. λr : nat. n)n

In Coq notation:

Definition pred (n : nat) : nat :=

nat_rec (fun n : nat => nat)

O (fun (n : nat) (r : nat) => n) n.

An alternative definition, without the eta expansion:

pred := nat rec (λn : nat.nat)O (λn : nat. λr : nat. n)

Definition pred : nat -> nat :=

nat_rec (fun n : nat => nat)

O (fun (n : nat) (r : nat) => n).

(c) Give the ι-reduction rules for nat rec.

nat recP g hO→ι h

nat recP g h (Sn)→ι hn (nat rec g h n)

6

(d) Give another definition of the predecessor function, this time using
Fixpoint and match.

Fixpoint pred (n : nat) {struct n} :=

match n with

| O => O

| S n => n

end.

Actually the definition is not recursive, so an alternative is:

Definition pred (n : nat) :=

match n with

| O => O

| S n => n

end.

(e) We now want to model the partial predecessor function that is undefined
on input 0 in the form of a relation pred rel. Give an inductive Coq
definition of this relation.

Inductive pred_rel : nat -> nat -> Prop :=

| S_pred : forall n : nat, pred_rel (S n) n.

(f) Give both the dependent and non-dependent induction principles that
belong to the relation pred rel from the previous exercise.

Dependent in mathematical notation:

pred rel ind :
ΠP : (Πn : nat.Πm : nat. pred relnm→ ∗).

(Πn : nat. P (Sn)n (S predn))→
Πn : nat.Πm : nat.ΠH : pred relnm.P nmH

And in Coq notation:

pred_rel_ind :

forall P : (forall (n m : nat), pred_rel n m -> Prop),

(forall n : nat, P (S n) n (S_pred n)) ->

forall (n m : nat) (H : pred_rel n m), P n m H

Non-dependent in mathematical notation:

pred rel ind :
ΠP : nat→ nat→ ∗.

(Πn : nat. P (Sn)n)→
Πn : nat.Πm : nat. (pred relnm)→ P nm

7

And in Coq notation:

pred_rel_ind :

forall P : nat -> nat -> Prop,

(forall n : nat, P (S n) n) ->

forall (n m : nat), pred_rel n m -> P n m

6. This exercise is about the CPS translation.

The types of the two systems that we will study in this exercise are:

A ::= a | ⊥ | A→ A

where ¬A := A → ⊥ will be the type of continuations. These systems will
have Curry-style typing, so the terms of the systems are untyped lambda
terms.

The terms, values and evaluation contexts differ between CBN and CBV
versions of the system. For CBN these are:

M ::= V | x |MM | callccM | throwM
V ::= λx.M

E ::= � | EM

For CBV these are:

M ::= V |MM | callccM | throwM
V ::= x | λx.M
E ::= � | EM | V E

The reduction rules of the system are for CBN:

E[(λx.M)N]→ E[M [x := N]]

E[callccM]→ E[M(λx.E[x])]

E[throwM]→M

For CBV they are the same, but the beta rule is more restricted:

E[(λx.M)V]→ E[M [x := V]]

E[callccM]→ E[M(λx.E[x])]

E[throwM]→M

Now answer the following questions:

8

(a) Give the reduction paths to normal form, both under CBN reduction
and under CBV reduction, of

callcc (λk. (λx. true)(throw (k false)))

where true := λxy. x and false := λxy. y , In both reductions give for
each reduction step explicitly the evaluation context.

CBN:

callcc (λk. (λx. true)(throw (k false)))→ E[�] = �
(λk. (λx. true)(throw (k false)))(λx. x)→ E[�] = �

(λx. true)(throw ((λx. x) false))→ E[�] = �
true

CBV:

callcc (λk. (λx. true)(throw (k false)))→ E[�] = �
(λk. (λx. true)(throw (k false)))(λx. x)→ E[�] = �

(λx. true)(throw ((λx. x) false))→ E[�] = (λx. true)�
(λx. x) false→ E[�] = �

false

(b) Give an untyped lambda term that is normalizing under CBN reduction,
but not normalizing under CBV reduction.

(λxy. y)((λx. xx)(λx. xx))

(c) Give the types of callccM and throwM in terms of the type of M .

M : ¬A→ A ⇒ callccM : A
M : ⊥ ⇒ throwM : A

(d) In this simply typed lambda calculus with callcc and throw, is there a
term with type ¬¬a→ a? Explain your answer.

Yes! The previous exercise gives under the Curry-Howard isomorphism
the proof rules:

¬A→ A

A
callcc

⊥
A

throw

and he first of these gives classical logic. So we can prove:

9

[¬¬ak0] [¬ak1]
⊥

E→

a
throw

¬a→ a
I[k1]→

a
callcc

¬¬a→ a
I[k0]→

The term corresponding to this is:

λk0. callcc (λk1. throw (k0k1))

The CPS translation also differs between the CBN and CBV versions of the
systems. We will use the notation |V | for the translation of values, and [[M]]
as the translation of arbitrary terms (‘computations’). For CBN these are:

[[V]] = λk. k|V |
[[x]] = x

[[M1M2]] = λk. [[M1]](λv1. v1[[M2]]k))

[[callccM]] = λk.[[M]](λv. v(λk′. k′(λxy.xk))k)

[[throwM]] = λk.[[M]](λv. v)

|λx.M | = λx. [[M]]

For CBV these are:

[[V]] = λk. k|V |
[[M1M2]] = λk. [[M1]](λv1. [[M2]](λv2. v1v2k))

[[callccM]] = λk.[[M]](λv. v(λxy. kx)k)

[[throwM]] = λk.[[M]](λv. v)

|x| = x

|λx.M | = λx. [[M]]

The remainder of the exercise consists of the following questions:

(e) Give the CPS translation

[[(λx. x)(λy. y)]]

10

for the CBN system, and normalize this term (where you also reduce
under lambdas).

First:

[[λx. x]] = λk. k |λx. x|
= λk. k (λx. [[x]])

= λk. k (λx. x)

With this we compute:

[[(λx. x)(λy. y)]] = λk. [[λx. x]](λv. v [[λy. y]] k)

= λk.(λk′. k′(λx. x))(λv. v(λk′. k′(λx. x))k)

→ λk.(λv. v(λk′. k′(λx. x))k)(λx. x)

→ λk.(λx. x)(λk′. k′(λx. x))k)

→ λk.(λk′. k′(λx. x))k)

→ λk. k(λx. x)

(f) We have type translations (with corresponding translations of the types
in the context) that correspond to the term translations given above,
i.e., such that if

Γ ` V : A

then
|Γ| ` |V | : |A|

(note that the term translation |V | is different from the type translation
|A|, despite the identical notation), and if

Γ `M : A

then for CBN
[[Γ]] ` [[M]] : [[A]]

and for CBV
|Γ| ` [[M]] : [[A]]

Give these type translations both for the CBN translation and for the
CBV translation in the form

|a| = . . .

|⊥| = . . .

|A→ B| = . . .

[[A]] = . . .

11

|a| = a

|⊥| = ⊥

CBN: |A→ B| = [[A]]→ [[B]]

CBV: |A→ B| = |A| → [[B]]

[[A]] = ¬¬|A|

(g) Why might the CPS translation be used in some compilers for functional
languages?

• It gives a way to implement non-local control flow like callcc/throw !

• The CPS translated terms always reduce at the outside. This means
that the implementation does not need to search for redexes, and
execution can be more efficient.

12

