
Resit Type Theory and Coq 2018-2019
10-07-2019

1. This exercise is about simple type theory and propositional logic.

(a) Give a proof in minimal propositional logic that contains a detour of
the formula:

(a→ a→ b)→ a→ b

(Note: if you do not know what a detour is, or you cannot find a proof
with a detour, you can get partial points for a proof of this formula
without a detour.)

[a→ bg] [ax]

b
E→

(a→ b)→ b
I[g]→

[a→ a→ bf] [ax]

a→ b
E→

b
E→

a→ b
I[x]→

(a→ a→ b)→ a→ b
I[f]→

(b) Give the proof term in (Church-style) simple type theory of the proof
from the previous subexercise, which is a lambda term with type:

(a→ a→ b)→ a→ b

λf : a→ a→ b. λx : a. (λg : a→ b. gx)(fx)

(c) Give the normal form of the term from the previous subexercise. Ex-
plain your answer.

By contracting the sole β redex (λg : a→ b. gx)(fx)→β fxx, one gets
the normal form (= term without redexes):

λf : a→ a→ b. λx : a. fxx

(d) Give a derivation of the typing judgement of the term in normal form
from the previous subexercise.

Using the abbreviation

Γ := f : a→ a→ b, x : a

1

we get:

Γ ` f : a→ a→ b Γ ` x : a

Γ ` fx : a→ b Γ ` x : a

Γ ` fxx : b

f : a→ a→ b ` (λx : a. fxx) : a→ b

` (λf : a→ a→ b. λx : a. fxx) : (a→ a→ b)→ a→ b

(e) Give the most general type of the lambda term:

λxyz. x(yzz)y

You do not need to show that this is the most general type, or how you
obtained it, just giving the type is sufficient.

(a→ (b→ b→ a)→ c)→ (b→ b→ a)→ b→ c

2. This exercise is about dependent types and predicate logic.

(a) Give a proof in minimal predicate logic of the formula:

(∀x.∀y. r(x, y))→ ∀x. r(x, x)

[∀x.∀y. r(x, y)H]

∀y. r(x, y)
E∀

r(x, x)
E∀

∀x. r(x, x)
I∀

(∀x.∀y. r(x, y))→ ∀x. r(x, x)
I[H]→

(b) Give the proof term in λP of the proof from the previous subexercise.
Use the type D for the domain that is being quantified over.

λH : (Πx : D.Πy : D. rxy). λx : D.Hxx

(c) Give the full λP typing judgement (i.e., including the λP context) of
the term in normal form from the previous subexercise.

(Note: you do not need to give the derivation of this judgment.)

2

D : ∗, r : D → D → ∗ ` λH : (Πx : D.Πy : D. rxy). λx : D.Hxx

: (Πx : D.Πy : D. rxy)→ Πx : D. rxx

(d) Give the four proof rules of minimal predicate logic, including variable
condition(s).

[AH]
...
B

A→ B
I[H]→

...
A→ B

...
A

B
E→

...
A

∀x.A
I∀

...
∀x.A

A[x := t]
E∀

The variable condition: in the I∀ rule, the variable x should not be free
in any open assumptions.

And in the I[H]→ rule, the assumption [AH] is allowed to occur zero,
one or more times in the subderivation.

(e) What is the formula in minimal predicate logic that has as proof term:

λH1 : (Πx:D. px→ qx). λx : D.λH2 : (qx→ ⊥). λH3 : px.H2(H1xH3)

In this term ⊥ is a type that corresponds to an atomic formula ⊥. In
your answer you may abbreviate formulas A → ⊥ as ¬A, but this is
not required. (

∀x. p(x)→ q(x)
)
→

(
∀x.¬q(x)→ ¬p(x)

)
3. This exercise is about polymorphism and second order propositional logic.

(a) Give a proof in minimal second order propositional logic of the formula:

∀a. a→ (∀b. b→ b→ b)

3

[by]

b→ b
I[z]→

b→ b→ b
I[y]→

∀b. b→ b→ b
I∀

a→ (∀b. b→ b→ b)
I[x]→

∀a. a→ (∀b. b→ b→ b)
I∀

(b) Give the proof term in λ2 for the proof from the previous subexercise.

λa : ∗. λx : a. λb : ∗. λy : b. λz : b. y

Or, in other notation:

Λa. λx : a.Λb. λy : b. λz : b. y

(c) Call the proof term of the previous subexercise M , and its type A. Is
the term MAMAM well-typed or not? If so, what is its type? Or if
not, why not? Explain your answer.

Yes, it is well-typed. We have:

M := λa : ∗. λx : a. λb : ∗. λy : b. λz : b. y

A := Πa : ∗. a→ Πb : ∗. b→ b→ b

So we have the typings:

A : ∗
M : Πa : ∗. a→ Πb : ∗. b→ b→ b

MA : A→ Πb : ∗. b→ b→ b

MAM : Πb : ∗. b→ b→ b

MAMA : A→ A→ A

MAMAM : A→ A

Or, in the other notation:

M := Λa. λx : a.Λb. λy : b. λz : b. y

A := ∀a.a→ ∀b. b→ b→ b

4

with typings:

A : ∗
M : ∀a. a→ ∀b. b→ b→ b

MA : A→ ∀b. b→ b→ b

MAM : ∀b. b→ b→ b

MAMA : A→ A→ A

MAMAM : A→ A

(d) One can define lists over a given type A impredicatively in λ2 as:

listA := Πl : ∗. l→ (A→ l→ l)→ l

Give definitions of nilA and consA with types:

nilA : listA

consA : A→ listA → listA

nilA := λl : ∗. λn : l. λc : (A→ l→ l). n

consA := λh : A. λt : listA. λl : ∗. λn : l. λc : (A→ l→ l). ch(tlnc)

(e) Explain why abstracting the type of the elements in the list by defining

list := λa : ∗. Πl : ∗. l→ (a→ l→ l)→ l

which would have type
list : ∗ → ∗

is not allowed in λ2.

The type ∗ → ∗ is not allowed in λ2, as it requires the ‘rule’ (�,�,�)
that is not available in λ2.

4. This exercise is about the typing rules of pure type systems and the lambda
cube.

For the typing rules of the lambda cube, see page 10 of this exam.

(a) Give a derivation in λω of the judgement:

b : ∗ ` (λa : ∗. b) : (∗ → ∗)

5

` ∗ : �

b : ∗ ` b : ∗
` ∗ : � ` ∗ : �

b : ∗ ` ∗ : �

b : ∗, a : ∗, ` b : ∗

` ∗ : � ` ∗ : �

b : ∗ ` ∗ : �

` ∗ : � ` ∗ : �

b : ∗ ` ∗ : �

` ∗ : � ` ∗ : �

b : ∗ ` ∗ : �

b : ∗, a : ∗ ` ∗ : �

b : ∗ ` ∗ → ∗ : �

b : ∗ ` λa : ∗. b : ∗ → ∗

Alternatively, one can weaken the judgement b : ∗ ` ∗ → ∗ : � first:

` ∗ : �

b : ∗ ` b : ∗
` ∗ : � ` ∗ : �

b : ∗ ` ∗ : �

b : ∗, a : ∗ ` b : ∗

` ∗ : �

` ∗ : � ` ∗ : �

a : ∗ ` ∗ : �

` ∗ → ∗ : � ` ∗ : �

b : ∗ ` ∗ → ∗ : �

b : ∗ ` λa : ∗. b : ∗ → ∗

(b) Disjunction can be impredicatively defined as:

λa : ∗. λb : ∗.Πc : ∗. ((a→ c)→ (b→ c)→ c)

List the systems of the lambda cube in which this term is typable.
Explain your answer.

Like in the corresponding exercise from the first exam, the systems in
which this term is typable are λω and λPω = λC.

(c) The systems of the lambda cube all satisfy the Church-Rosser property.
State what this means.

If M →→β M1 and M →→β M2, there is an N with M1 →→β N and
M2 →→β N .

(d) The systems of the lambda cube all satisfy the property of decidability
of type checking. State what this means.

Given a precontext Γ and preterms M and A, it is decidable whether
the judgment Γ `M : A is derivable.

5. This exercise is about inductive types and recursive functions.

(a) We want a datatype for lists of Booleans. Define an inductive type
listb of type Set using Coq syntax for this datatype. An example of
an element of this type might be:

6

Consb true (Consb false (Consb true Nilb))

Remember that the Coq type for Booleans is called bool.

Inductive listb : Set :=

Nilb : listb | Consb : bool -> listb -> listb.

(b) Give the type of the recursion principle listb rec for the inductive
type from the previous subexercise.

forall A : listb -> Set,

A Nilb ->

(forall (b : bool) (l : listb), A l -> A (Consb b l)) ->

forall l : listb, A l

(c) Define a function count trues that counts the number of trues using
Fixpoint and match. The count for the example list should be two,
as there are two trues in this list. Remember that the Coq type for
natural numbers is called nat, and the function for addition on natural
numbers is called plus.

Fixpoint count_trues (l : listb) {struct l} : nat :=

match l with

| Nilb => O

| Consb true l’ => S (count_trues l’)

| Consb false l’ => count_trues l’

end.

(d) Define the same function using listb rec.

Definition count_trues’ : listb -> nat :=

listb_rec (fun _ => nat)

O (fun b _ n => if b then S n else n).

The term if b then . . . else . . . also can be written as:

match b with

| true => ...

| false => ...

end

7

(e) Define an inductive predicate

all true : listb→ Prop

that states that the list only consist of true elements. For example the
following type should be inhabited:

all_true (Consb true (Consb true Nilb))

Inductive all_true : listb -> Prop :=

| all_true_Nilb : all_true Nilb

| all_true_Consb : forall l : listb,

all_true l -> all_true (Consb true l).

(f) Give a definition of inequality ≤ on natural numbers as an inductively
defined relation.

Inductive le (n : nat) : nat -> Prop :=

| le_n : le n n

| le_S : forall m : nat, le n m -> le n (S m).

6. This exercise is about guarded type theory.

(a) In recursive definitions over inductive types, Coq requires structural re-
cursion to enforce strong normalization of the reduction relation. Name
the counterparts of ‘structural recursion’ and ‘normalization’ for co-
inductive types in Coq, and explain what the terms for these counter-
parts mean.

The counterpart of ‘structural recursion’ is ‘guardedness’, and the coun-
terpart of ‘normalization’ is ‘productivity’.

Guardedness means that a recursive call only is allowed under a con-
structor. Productivity means that after a finite computation always an
extra constructor will be produced.

(b) The counterpart of the natural numbers as a coinductive type in Coq
would be:

CoInductive conat : Set :=

O : conat | S : conat -> conat.

Use CoFixpoint to define an element of type conat that does not have
a counterpart in the inductive natural numbers nat.

8

CoFixpoint S_omega : conat := S S_omega.

This corresponds to the ‘infinite’ term S(S(S(S · · ·))).

We will now look at a guarded type theory (in Curry-style). The syntax of
the types and terms and ‘clock contexts’ of this theory is:

A ::= a | A→ A | 1 | A+ A | A× A | µa.A | .A | �A
M ::= x | λx.M |MM |

? | inlM | inrM | caseM ofx.M ;x.M | (M,M) | fstA | sndA

nextM |M ~M | boxM | unboxM | forceM |
consµa.AM | primrecµa.AM | dfixM

∆ ::= ∅ | κ

In this a and x are respectively type and term variables.

Unlike in the paper by Niccolò and Niels that we have studied in the course,
we here leave functions related to ‘weakening’ of clock contexts implicit, so
we do not explicitly write ↑, up or down.

(c) We define two types in this system:

µa. 1 + a

µa. 1 + .a

Explain what these two types represent, and what is the difference
between them.

The first type is the standard way to define the type of natural numbers
using µ. The second type is the coinductive counterpart to the natural
numbers that we already saw in the previous subexercise.

(d) Complete the typing rule of dfix by filling in the dots in the rule:

Γ `κ M : . . .

Γ `κ dfixM : .A

Γ `κ M : .A→ A

Γ `κ dfixM : .A

9

(e) If we use the abbreviation N := µa. 1 + .a we can define a function

S : .N→ N

Use this function together with dfix to define a term Sω with

Sω : N

that corresponds to the ‘infinite’ term S(S(S(S · · ·))).

Sω := S (dfixS)

Incidentally, it is not required for the exercise, but the definition of S
is:

S := λx. consN (inr x)

10

