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Definitions

Recall the definition of LList:

Set Implicit Arguments.

CoInductive LList (A:Set) : Set :=
LNil : LList A |
LCons : A -> LList A -> LList A.

Implicit Arguments LNil [A].

And the definition of from:

CoFixpoint from (n:nat) : LList nat := LCons n (from (S n)).

And of repeat:

CoFixpoint repeat (A:Set)(a:A) : LList A := LCons a (repeat a).
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Recall from_unfold

Lemma from_unfold: forall n:nat , from n = LCons n (from (S n)).
Proof.
intro n.
LList_unfold (from n).
simpl.
reflexivity.
Qed.
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Recall Guard conditions

A definition by cofixpoint is only accepted if all recursive calls occur inside one of the
arguments of a constructor of the co-inductive type.
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Co-inductive Predicates

• Used for properties on co-inductive types that cannot be defined inductively.

• Example: infiniteness of LLists.
– Finiteness can be proven with a finite number of applications of Finite_LCons to a

term obtained with Finite_LNil.
An inductive predicate.

– Infiniteness cannot be proven this way.
It needs a co-inductive predicate.
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Predicate for Infinite

This is a predicate that indicates that a LList is infinite.

CoInductive Infinite (A:Set) : LList A -> Prop :=
Infinite_LCons :
forall (a:A) (l : LList A), Infinite l -> Infinite (LCons a l).
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Infinite proofs

• We want to prove that from n yields infinite lists for every natural number n.

• We do this by building an inhabitant of the type forall n:nat, Infinite (from n).
• For this, we need a co-recursive function of which this is a fixpoint.
We define

Definition F_from :
(forall n:nat , Infinite (from n)) -> forall n:nat , Infinite (from n).

We have to prove that this satisfies the guard condition.
intro H.
intro n.
rewrite (from_unfold n).
split.
apply H.
Defined.
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The cofix tactic

• The cofix tactic automates much of the above:

Theorem from_Infinite_V0 : forall n:nat , Infinite (from n).
Proof cofix H : forall n:nat , Infinite (from n) := F_from H.

• To prove a property P, where P uses a co-inductive predicate, one should construct a term
of the form cofix H : P := t.

• Here, t has type P in the context with a hypothesis H : P.
The term we obtain satisfies the guard condition.

• This can also be done without explicitly mentioning P.
Theorem from_Infinite_V1 : forall n:nat , Infinite (from n).
Proof.
cofix H.
apply (F_from H).
Qed.
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And we can use this tactic in an interactive way.

Theorem from_Infinite : forall n:nat , Infinite (from n).
Proof.
cofix H.
intro n.
rewrite (from_unfold n).
apply Infinite_LCons.
apply H.
Qed.
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Guard condition violation

Lemma from_Infinite_buggy :
forall n:nat , Infinite (from n).

Proof.
cofix H.
auto with llists.

Proof completed.

Qed.

Error: Recursive definition of "H" is ill-formed. In environment

H: V n:nat , Infinite (from n)
unguarded recursive call in "H"
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The Guarded tactic

Check for guard violations after using an auto command:

Lemma from_Infinite_buggy : ..
Proof.
cofix H.
auto with llists.
Guarded.

Error: Recursive definition of "H" is ill-formed.
Undo.
intro n; rewrite (from_unfold n).
split; auto.
Guarded.

The condition holds up to here
Qed.
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LNil is not infinite

Theorem LNil_not_Infinite : forall (A:Set), ~Infinite (LNil (A:=A)).
Proof.
intros A H.
inversion H.
Qed.
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Infiniteness of repeat

• We prove that repeat a yields an infinite LList A for any a of type A.
• For this, we need an auxiliary lemma

Lemma repeat_unfold: forall A:Set , forall a:A,
repeat a = LCons a (repeat a).

Proof.
intro A.
intro a.
LList_unfold (repeat a).
simpl.
reflexivity.
Qed.
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We can use this lemma to prove the following theorem

Lemma repeat_infinite : forall (A:Set) (a:A), Infinite (repeat a).
Proof.
intro A.
cofix a.
intro b.

The proof state at this moment is

A : Set
a : forall a : A, Infinite (repeat a)
b : A
============================
Infinite (repeat b)
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A : Set
a : forall a : A, Infinite (repeat a)
b : A
============================
Infinite (repeat b)

We finish this by

rewrite (repeat_unfold b).
apply Infinite_LCons.
apply a.
Qed.
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Bisimilarity

Weaker form of equality: two things are the same if they look/behave the same.
For LLists: two LList As are bisimilar if the first element of each LList A are equal, and the
tails are bisimilar again:

CoInductive bisimilar (A:Set) : LList A -> LList A -> Prop :=
| bisim_LNil : bisimilar LNil LNil
| bisim_LCons : forall (a:A)(l l’ : LList A),

bisimilar l l’ -> bisimilar (LCons a l) (LCons a l’).
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bisimilar is an equivalence relation

We end by showing that bisimilar is an equivalence relation.
We use the built-in definitions from the Relations library.

Theorem bisimilar_equiv :
forall (A:Set), equiv (LList A) (bisimilar (A:=A)).

We prove this theorem by introducing three lemmas, that claim that bisimilar as a relation is
reflexive, symmetric and transitive.

See accompanying Coq file.
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