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Introduction

Our objective is to learn to write Mizar articles. The word ”Mizar” is ambiguous:

1. Mizar is language for the formalization of mathematics.

2. Mizar is a computer system connected with the processing of articles.

PC Mizar system is implemented by A. Trybulec and Cz. Byliński. Andrzej Trybulec
is author of the Mizar language.

In An Outline of PC Mizar we shall discus successively the language and the system.
I am obliged to Andrzej Trybulec and CzesÃlaw Byliński, who took trouble of reading

the preliminary version several times, which each time inspired me to further work and
also enabled me to eliminate many errors. When writing this text I based myself on
many works by A. Trybulec pertaining to Mizar, and also on his lectures dedicated to
that language and that system.

My thanks are also due to Krzysztof Prażmowski, who read the typescript and shared
with me his many valuable reflections intended to make my text easier to beginners in
the application of Mizar.
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Part One: The Language

1. Article

In a Mizar article, as in a standard mathematical article, we introduce new concepts,
prove the correctness of their definitions, and prove theorems. The proofs of those the-
orems are based on theorems earlier proved by use in the article of refer to theorems
proved in other articles or else are based directly on axioms formulated in the articles
TARSKI and AXIOMS (which are checked by the system Mizar solely from the point of view
of their linguistic correctness).

Every articles has the form:

environ environment begin text begin text ...

The environment is a sequence of directives by means of which we draw from Mizar’s
actual library the information we need. On the basis of such information we can justify
in the text the correctness of the definitions introduced and prove theorems. More on
directives can be found in the chapter ”Directives”.

Further, certain words will be written in bold type. They will be words reserved for
Mizar, that is such whose meanings are rigorously determined by definition in the Mizar
language. That typographical distinction is to draw the Reader’s attention to then, and
thus more easily to remember at last some of them.

The text contains definitions, theorems, and their proofs. To put it a little more
rigorously, the units of the text are reservations, definitions, redefinitions, schemes, end
theorems, which in the Mizar grammar are termed statements.

It is worth while saying now that, from the point of view of the Mizar grammar,
proofs, or - more broadly speaking - justifications are immanent units of definitions,
redefinitions, schemes, and statements. In other words, the said grammatical units denote
certain mathematical contents taken together with their justification.

Consider, by way of example, the meaning of the word definition. The content of a
definition consists of
definiendum (the expression to be defined) and definiens (the defining expression).
Hence definition: definiendum definiens proof of correctness
Likewise, statement means both a certain and its justification.

An abstract is another form of an article. It is obtained from a Mizar article by the
elimination of all proofs, and also all lemmas and definitions of private objects. Only
public definitions and theorems are left. It is just to the abstract that we look when
availing ourselves of other articles. Only that which has been transferred to the abstract
from a Mizar article may be used in successive articles.

2



Basic Linguistic Constructions

2. Types

In Mizar, every variables has its type. Some knowledge of the content of the Main
Mizar Library is required to know which types can be used.

New types are introduced by definitions of structure and definitions of mode.
The type of a variable may be fixed globally for the entire article by reservation, for

instance

reserve X for set, D for DOMAIN;

When formulating a sentence with the use of a variable whose type has not been reserved
earlier we must explicitly state its type, for instance:

for X st X <> ∅ ex a being Any st a ∈ X;

X is variable qualified implicitly: its type has been reserved earlier; a is a variable qual-
ified explicitly, has the type Any given in the sentence.

Types may have arguments, i.e., be derived from other objects. The symbol of the
type and its arguments are separated by the word of, e.g.,

Subset of X, Element of D, Function of X,Y

We shall now briefly discuss the basic types in Mizar.
The basic types in Mizar are to be found in the article HIDDEN, which is automatically

joined to every article. Those automatically joined types are called built-in types. The
article HIDDEN describes the following types:

Any; set; Element of X; DOMAIN;

Subset of D; SUBDOMAIN of D; Real; Nat;

where X has the type set, and D has the type DOMAIN.
The type Any is the broadest type in Mizar; every other type expands to the type

Any.
The type set is equal to the type Any.
The type DOMAIN denotes non-empty sets, that is so-called domains; SUBDOMAIN of D

(subdomains - subsets which are domains), Real (real numbers), Nat (natural numbers).
The use of the type θ introduced in another article α must be preceded by two

directives included in the environment:
vocabulary α; signature α;

The above does not apply to built-in types, that is those which have been introduced
in the article HIDDEN.

3. Terms

In the Mizar language, as in standard mathematics, functions are defined. To put it
more precisely, what is defined is the names of functions, that is functors. Symbols of
functors are used in the construction of terms. In mathematics, terms are expressions
received from the iteration of functor symbols: variables and constants are terms, and
moreover if τ1, ... , τp are terms, and ϕ is a symbol of functor of p arguments, then
ϕ (τ1, ... , τp) is also a term.

3



Thus, for instance, if x,y are variables, and + is a symbol of a binary functor, then:
x,y are terms of degree 0,
x + y, y + x are terms of degree 1,
x + (x + y), (x + x) + (x + x) are terms of degree 2, etc.

In the Mizar language the concept of term is interpreted more broadly. For instance,
the grammar of Mizar admits the term it which denotes within a definiens of mode or
functor (that term may not be used outside a definiens) the object being defined. The
sentences recorded with the use of it are simply shorter and more legible.

We shall confine ourselves to indicating the five most important kinds of terms:

• identifiers of a variable,

• terms with a public functor,

• terms with a private functor,

• terms with the Frænkel operator,

• aggregates.

The arguments of the terms with a public functor may be written:

• on the left side of the functor symbol,

• on the right side of the functor symbol,

• on both side of the functor symbol simultaneously.

If the number of the arguments on one side of the functor symbol is two or more, then
the arguments must be separated by commas, and the list of the arguments must be
placed within round brackets:

ϕ, xϕ, ϕx, xϕy, (xi1, ... , xik)ϕ(xj1, ... , xjl)

where ϕ is the functor symbol.
The arguments of the terms with a private functor may be written only on the right

side, and the (round) brackets are obligatory even if the number of arguments equals 0:
F( ), F(x), F(x1, ... , xn)

where F is the identifier of a private functor.
Let us revert to the terms with a public functor. As has been said, the arguments of

such a term are written on one side of the functor symbol (on the left - prefix recording,
on the right - postfix recording) or on both sides simultaneously (infix recording). Thus

bool X, ∪ X, -1, graph f, dom f, rng f, id X, "f, Funcs(X,Y),
χ(A,X), len p, Plane(A,B,C)

are prefix terms,
x", x*, x!

are postfix terms, and
x + y, f|X, f"X, f.(a,b)

are infix terms.
Let it be sad once more:

• a single argument may, but need not, be bracketed,

• two or more argument must be bracketed.
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For instance: one may write (x)", but x" is enough, on the other hand the inscription
Funcs X,Y instead of Funcs(X,Y) is not allowed.

The above discussed terms with a public functor consisted of a functor symbol and
arguments. In Mizar also such terms are allowed in which next to the functor and its
arguments also so-called functor brackets occur. The symbols [ and ], { and }, and [:

and :] are examples of left and right functor brackets. And here are mathematical
objects and terms describing those objects and built with the use of the said bracket:

1. ordered pairs, triples, quadruples, and further n-tuples up to ordered nonatuples
inclusive:

[x1,x2], ... ,[x1,x2,x3,x4,x5,x6,x7,x8,x9].

2. singleton, pair, and further finite sets, until the set of eight elements included:
{x1}, {x1,x2}, {x1,x2,x3}, ... , {x1,x2,x3,x4,x5,x6,x7,x8}.

3. the Cartesian product of sets:
[:X1,X2:], [:X1,X2,X3:], [:X1,X2,X3,X4:].

The simplest Frænkel term is an expression of the form
{ term : sentence }

And here is an example of a Frænkel term:
{p∼ : p is Element of [:the point of M, the point of M:]}

The variable p in this case denotes an ordered pair of points, and p∼ is the equivalence
class of the element p. Thus the above term denotes the set of all free vectors of the
structure M.

To conclude let us formulate the principle of the identification of functors, that is
reply to the question how functors are distinguished. Now the system Mizar identifiers
a functor by

• symbol,

• number of arguments,

• types of arguments.

Thus if two functors differ from one another by a symbol, the number of arguments, or
type be it of single argument only, the system treats those functors are different.

4. Atomic formulas

In the Mizar language, as in standard mathematics, relations are defined. To put it
more precisely, what is defined is the names of relations, that is predicates. Predicates
are used to construct atomic formulas, and these in turn to construct - with the use of
connectives and quantifiers - arbitrary formulas.

For the time being we shall discuss atomic formulas. The basic kinds of atomic
formulas are:

• atomic formulas with a public predicate,

• atomic formulas with a private predicate,

In the former case arguments may be written:

• on the left side of the predicate symbol,

5



• on the right side of the predicate symbol, or

• on both side of the predicate symbol simultaneously.

The list of arguments is not bracketed:
Π, xΠ, Πx, xΠy, xi1, ... , xikΠxj1, ... , xjl

where Π stands for the symbol of the predicate.
In particular, atomic formulas with a public predicate include the equational formulas:

x = y and x <> y .
In the latter case (that of atomic formulas with a private predicate) arguments may be

written solely on the right side, and (square) brackets are obligatory even if the number
of arguments is 0:

P[ ], P[x], P[x1, ... , xn]

where P stands for the identifier of a private predicate.
Further the atomic formulas include the qualifying formulas, that is expression of the

form term is type , for instance:√
(b2 - 4ac) is Real

GroupsStr ¿ REAL, addreal, compreal,0 À is AbGroup

As in the case of functors, the system identifiers a given predicate by means of a
symbol, the number of arguments, and types of arguments. Any two predicates which
differ form one another by the symbol, the number of arguments, or the type be it of
only one argument are treated by the system as different predicates.

5. Formulas

Negation, conjunction, disjunction, implication, and equivalence are denoted, respec-
tively, by not, &, or, implies, iff.

The above order corresponds to the decreasing strength of binding by those connec-
tives, with the proviso that the strength of binding of implication is the same as that of
equivalence.

Associative recording is admissible for conjunction and disjunction, which is to say
that the system itself adds the missing brackets. For instance the formula

φ1 & φ2 & φ3

is transformed by the system into
(φ1 & φ2) & φ3

On the contrary, for implies and iff the associative recording is not admissible, which
is to say that, for instance, the expression

φ1 iff φ2 iff φ3

is treated as erroneous.
There are three kinds of quantified sentences:

1. a universal simple formula, e.g.,
for x being Any holds x = x;

2. a universal limited formula, e.g.,
for x being Real st x <> 0 holds x·x" = 1;

3. an existential formula, e.g.,
ex x, y st x <> y;

The word holds preceding a quantified formula may be omitted, and hence, for instance,
for x, y being Nat st x < y holds ex z being Real st x < z & z < y;

6



may be replaced by:
for x, y being Nat st x < y ex z being Real st x < z & z < y;

The User is warned that in Mizar quantifiers bind less strongly than connectives do.
Thus

for x holds α & β

means the same as
for x holds (α & β)

but not
(for x holds α) & β .

7



Proving of Theorems

6. Simple justification

We shall discuss in turn the various kinds of simple justifications.

1. When referring to sentences previously assumed or justified we write

by %1, ... , %n;

where %1, ... , %n are references.

EXAMPLE
X = Y by A, TARSKI:2, BOOLE:def 1;

where

• the private reference A is the label of a sentence which has been proved earlier in
this article,

• the library reference TARSKI:2 indicates the second theorem in the
article TARSKI,

• the library reference BOOLE:def 1 indicates the first definitional theorem in the
article BOOLE.

2. When referring to a schema we write

from identifier-of-schema (%1, ... , %n);

where %1, ... , %n are references, if the schema has premises, or

from identifier-of-schema ;

if the schema has no premises.

EXAMPLES
ex Z st x holds x ∈ X iff x ∈ X & x ∈ Y from Separation;

thus thesis from FuncEx (A1,A2);

The words Separation and FuncEx are identifiers of schemes, while A1, A2 are la-
bels of the sentences which are premises, that is assumptions of the schema FuncEx.
Those sentences must be proved first in order to justify on the basis of that schema. On
the contrary, the schema Separation has no premises.

3. If the sentence written out is obvious to CHECKER (see 14. Basic informations of
Checker) then the entire justification may be written in the form of the semicolon, e.g.,

x c= y & x = a & y = b implies a c= b;

In Mizar, the symbol c= denotes the inclusion of sets.

4. When we refer the sentence preceding a given sentence it suffices to write then.

8



Thus instead of
A: X c= Y;

B: Y c= Z;

X c= Z by A,B,BOOLE:29;

we may write more simply:
A: X c= Y;

Y c= Z;

then X c= Z by A,BOOLE:29;

The expression then is termed linking. Owing to linking we have avoided labeling the
second sentence.

7. Formula ”thesis”, skeleton of the proof, and results
of reasoning

The word thesis means that which remains to be proved.
Self-evidently, thesis at the beginning of a proof just means the thesis of that proof.
Since Mizar admits proofs within proofs, that is nested proofs, the thesis of the proof
will sometimes be called the main thesis. Thus the main thesis is the initial value of the
dynamically changing formula thesis. The changing value of thesis is computed as we
read the text from proof to end.

1. If we prove the implication

α implies β

and assume its antecedent

assume α;

then thesis denotes its consequent β.

2. If, when proving the conjunction

α & β

we write down the conclusion

thus α;

then thesis denotes the sentence β.

3. If we prove the universal sentence

for x being θ holds β

and write out the generalization

let x be θ;

then the word thesis denotes β.
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4. If we prove the existential sentence

ex x being θ st β

we write the exemplification

take x;

the thesis denotes β.

These four constructions:

• assumption (1),

• conclusion (2),

• generalization (3), and

• exemplification (4).

from the record of the skeleton of the proof. They, as it were, cut off from the main
thesis its initial fragments and correspondingly modify the value of the formula thesis:

1’. The assumption assume α;cuts off expression

α implies

from the sentence

α implies β

leaving the expression β.
2’. The conclusion thus α; cuts off expression

α &

from the conjunction

α & β

leaving the expression β.
3’. The generalization let x be θ; cuts off the expression

for x being θ holds

from the universal sentence

for x being θ holds β

leaving the expression β.
4’. The exemplification take x; cuts off the expression

ex x being θ st

from the existential sentence

ex x being θ st β

10



leaving the expression β.

EXAMPLE

Let us analyse the following fragment of a Mizar article:

reserve x,y for Any;

theorem T23: (ex x for y holds α) implies (for y ex x st α)

::thesis = (ex x for y holds α) implies (for y ex x st α)

proof

assume ex x for y holds α;

::thesis = for y ex x st α

then consider y such that E: for y holds α;

::thesis = for y ex x st α

let y;

::thesis = ex x st α

E’: α by E;

::thesis = ex x st α

thus thesis by E’;

::thesis = VERUM

end;

(from :: until end–of–line - comments in Mizar text - not processed by PC Mizar
system).
The sentence

then consider x such that E: for y holds α ;

states the assumed existential statement
ex x for y holds α ;

yields the statement of the choice
consider x such that E: for y holds α ;

That statement chooses such a value of the variable x for which the sentence E holds.

In the above recording of our reasoning next to the assumption
assume ex x for y holds α;

the generalization
let y;

and the conclusion
thus thesis by E’;

which form the skeleton of the proof and modify thesis, there also occur the statement
of choice

then consider x such that E: for y holds α;

and the labelled sentence
E’: α by E;

which do not modify thesis (they constitute the so-called auxiliary recording of the
recording of the reasoning).

It is self-evident that when end appears in the proof the dynamic formula of thesis
should be a VERUM (precisely speaking: not contradiction). Otherwise Mizar reports
an error of REASONER #70 (Something remains to be proved).

Suppose now that we read the proof backward end the conclusion thus β; has, for
simplicity, the open form (the open form means thus thesis). As we read from end to
proof we dynamically reconstruct the changing result of the reasoning by writing to the
left of the sentence β the appropriate expressions:
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1”. The assumption assume α; adds to the sentence β the expression α implies

thus forming the expression α implies β.
2”. The conclusion thus α; adds to the sentence β the expression α & thus forming

the expression α & β.
3”. The generalization let x be θ; adds to the sentence β the expression for x

being θ holds thus forming the expression for x being θ holds β.
4”. The exemplification take x; adds to the sentence β the expression ex x being

θ st thus forming the expression ex x being θ st β.

EXAMPLE
Suppose that we have found a sheet of paper with the following proof:

proof

assume α;

let x be θ;

take y;

thus β;

end;

Unfortunately the thesis being proved was not recorded on that sheet. When reading the
proof backward we easily find the result of the reasoning, which obviously is the sentence

α implies for x being θ ex y st β;

The only thing which we have not succeeded in reconstructing is the type of the variable
y because it had been fixed in the reservation preceding the statement the proof of which
we have found on the said sheet.

The various methods of skeletoning proofs and the practical methods of computing
the formula thesis will be explained below in greater detail by reference to examples
which will help us to discuss the various tactics of proving theorems. On the other
hand, the problem of computing the result of the reasoning will reappear a little later in
connection with the discussion of diffuse statements, which consist in that their thesis is
not open.

EXAMPLE
To conclude this chapter we give the shortest statement:

not contradiction proof end;

The word contradiction denotes the logical constant falsehood. Obviously,
not contradiction denotes the logical constant truth. Note also that in the Mizar
language contradiction and not contradiction are interpreted as sentences.

8. The tactics of proving theorems

The fundamental principle in proving theorems is that we do not write out at once
the complete reasoning but only its skeleton, that is
• assumption, and
• conclusion, and also
• generalizations, if we prove universal sentences, and
• exemplifications, if we prove existential sentences.
The beginners may find it considerably difficult to skeleton the proofs. We shall

present many methods of skeletoning, even though not all of them. We shall disregard
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proofs by definitional expansion and proofs per cases. To simplify natters we shall also
disregard simple justifications, that is justification by by and by from. Such a method
of constructing proofs is also natural in so far as it is recommended to add simple justi-
fications to already verified skeletons. We begin the description.

At first we have to formulate the thesis of our proof. Then we write

proof ... end;

The dots will, of course, be replaced by the successive steps of the reasoning. The last
step is often

thus thesis;

The steps of the reasoning are separated by semicolons. What those steps are depends
self-evidently on whether the proof is direct, or by contradiction, and on the thesis of the
proof.

Proving a thesis α by contradiction reduces to the proof of the implication

not α implies contradiction

Those Readers who are familiar with Jaśkowski’s proofs by assumption will note the
convergence of the rules used in Mizar and those in Jaśkowski’s system. That applies in
particular to proving by contradiction.

We shall now successively examine the following forms of the thesis:

1. the thesis is a conjunction,

2. the thesis is an implication,

3. the thesis is an equivalence,

4. the thesis is a disjunction,

5. the thesis is a universal sentence,

6. the thesis is an existential sentence.

We shall discuss one by one the tactics of writing proofs in the cases from 1 to 6.

8.1. Proving a conjunction

In the proof we have to state the truth of every constituent of the conjunction. Thus,
if the thesis is in the form

C1 & C2 & C3

then the proof will be as follows:

proof

thus C1 ... ;
thus C2 ... ;
thus C3 ... ;

end;

The word thus indicates that the sentence that follow is a conclusion. By conclusion we
mean the thesis of the proof or its part. The dots indicate simple justification or proof.
For instance:
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T1: X = Y

& (ex Z st for x holds x ∈ Z iff x ∈ X & x ∈ Y)

& for x holds x ∈ X ∩ Y iff x ∈ X & x ∈ Y

proof

thus X = Y by A, TARSKI:2;

thus ex Z st x holds x ∈ Z iff x ∈ X & x ∈ Y from Separation;

thus thesis proof ... end;
end;

The word thesis denotes here the third constituent of the conjunction being proved,
that is the sentence for x holds x ∈ X ∩ Y iff x ∈ X & x ∈ Y.

8.2. Proving an implication

Tactics 1 - the direct method

The first step of the reasoning is

assume the-antecedent-of-the-implication ;

and the last

thus the-consequent-of-the-implication ;

The word assume points to the assumption made in the proof. The assumption may
be a single sentence (the so-called single assumption) or a sequence of labelled sentences
linked together by the word and (the so-called collective assumption). In the latter case
note that the splitting of the assumption may be convenient because it makes it possible
to refer to partial assumption of the collective one.

x ∈ X & x ∈ Y implies X ∩ Y <> ∅
proof

assume x ∈ X & x ∈ Y;

then B: x ∈ X ∩ Y by T1;

thus thesis by B, BOOLE:1;

end;

The formula thesis denotes here the sentence X ∩ Y <> ∅ . In this case the replace-
ment of the single assumption

assume x ∈ X & x ∈ Y;

by the collective assumption
assume that A1:x ∈ X and A2:x ∈ Y;

is not recommended because after the collective assumption there is no linking (see 10.
Conventions).

Tactics 2 - the indirect method

The first two steps are the assumptions:
assume the-antecedent-of-the-implication ;

assume not the-consequent-of-the-implication ;

The last step is the expression
thus contradiction;
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The following proof is incorrect:

α implies β

proof

assume not β;

..........
thus not α;

end;

Why is that so?

Mizar transforms the thesis
α implies β

into the sentence
not (α & notβ)

and expects a proof of that sentence precisely. But we have proved the sentence
not β implies not α

which is transformed by Mizar into the sentence
not (not β & α)

In the algebra of semantic correlates used by REASONER, that is the module of the
system which checks the correctness of the skeleton of the proof, conjunction is not
commutative, and this is why the system will report an error, which indicates a lack of
sufficient justification. A more precise explanation would require a deeper insight into
the semantics of Mizar.

The above proof can be saved as follows:

Tactics 3 - diffuse statement

α implies β

proof

now assume not β;

..........
thus not α;

end;

hence thesis;

end;

The construction
now assume not β; ... thus not α; end;

is called a diffuse statement (currently: proof by now). This statement is marked by the
fact that its thesis is not explicitly written down, but REASONER (the module of the
processor responsible for the skeleton of the proof) itself reconstructs the thesis of the
diffuse statement. The above diffuse statement has the following content:

not β implies not α

Mizar (or, to put it more precisely, REASONER) expects the sentence
α implies β

but the use of the linking hence thesis after the diffuse statement is a direct justification
of the theorem being proved.

In fact, CHECKER (the module of the processor responsible for direct justifications)
by referring to a tautology of the propositional calculus (which it may always do ”by
itself”) will easily transform the proved diffuse statement into the main thesis.
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8.3. Proving an equivalence

Tactics 1

If the thesis is an equivalence
α iff β

then we have to prove two implications
α implies β and β implies α

where the order in which these implication are listed is essential and must be such as
above. Thus the proof of the thesis is as follows:

proof

thus α implies β proof ... end;
thus thesis proof ... end;

end;

The word thesis self-evidently denotes here the sentence β implies α.

Tactics 2 - two diffuse statements

α iff β

proof

A: now assume α;

............
thus β;

end;

B: now assume β;

............
thus α;

end;

thus thesis by A,B;

end;

In the above proof the order in which the diffuse statements with theses A and B are
proved is inessential because CHECKER, when verifying the direct justification thus

thesis by A,B may make use of the tautologies of the propositional calculus. Note
also that the label B: is superfluous because we may refer to the thesis of the second
diffuse statement by the linking hence thesis by A.

8.4. Proving a disjunction

Tactics 1

If the thesis is in the form
D1 or D2

then it is convenient to assume the negation of one constituent of the disjunction and to
prove the other. In such a case the proof takes on the following form:

proof assume not D1; ... ; thus D2 ... ; end;

For instance

{x} \ X = ∅ or {x} \ X = {x}
proof

assume {x} \ X <> ∅;
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then B: not x ∈ X by Th24;

thus thesis by B,Th22;

end;

The word thesis denotes here the sentence {x} \ X = {x}. Here, too, the label is
superfluous; one can refer to the sentence with the label B: by the linking hence thesis

by Th22.

Tactics 2 - replacement of disjunction by two implications

Let γ be an auxiliary sentence

α or β

proof

A: γ implies α proof ... end;
B: not γ implies β proof ... end;
thus thesis by A,B;

end;

The label B: may be eliminated if the linking hence thesis by B is used.

Tactics 3 - indirect

α or β

proof

asume that A: not α and B: not β;

............
thus contradiction;

end;

8.5. Proving an universal sentence

When we want to prove a universal statement we consider any object of a given type.
In Mizar we proceed likewise.

The proof of a sentence in the form
for x being θ holds ... ;

then begins with the so-called generalization, that is the expression
let x be θ;

If the sentence being proved is in the form
for x being θ st ω holds ... ;

then the first step in the proof will be
let x be θ such that L: ω;

EXAMPLE

for X,Y,Z being set holds X c= Y & Y c= Z implies X c= Z

proof

let X,Y,Z be set;

assume A: X c= Y;

assume B: Y c= Z;

C: for x holds x ∈ X implies x ∈ Z

proof
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let x such that D: x ∈ X;

E: x ∈ Y by A,D,BOOLE:5;

thus x ∈ Z by B,E,BOOLE:5;

end;

thus X c= Z by C,BOOLE:5;

end;

The same proof may be recorded in a simpler way:

X c= Y & Y c= Z implies X c= Z

proof

assume A: X c= Y;

assume B: Y c= Z;

for x holds x ∈ X implies x ∈ Z

proof

let x such that D: x ∈ X;

x ∈ Y by A,D,BOOLE:5;

hence x ∈ Z by B,BOOLE:5;

end;

hence thesis by BOOLE:5;

end;

In fact:
a) The sentences

X c= Y & Y c= Z implies X c= Z;

for X,Y,Z being set holds X c= Y & Y c= Z implies X c= Z;

are treated by the system as equivalent. When passing to semantic correlates the system
adds the missing quantifiers.
b) After the cutting off of the sentences A: and B: from the main thesis the word thesis

in the last but one step of the proof denotes the consequent only, that is the sentence
X c= Z which is not written explicitly.

8.6. Proving an existential sentence

The proof of the existential sentence
ex x st W(x)

consists in indicating an object which satisfies the condition W. The relevant proof is thus
as follows:

proof

..............
A: W(c);

take x = c;

thus thesis by A;

end;

The symbol c denotes the object in question. The expression take x = c; indicates
that objects. But how is that object to be found?

Two methods of finding such an object can be indicated.
The first consists in the construction of the constant c from the constants of the

theory under consideration, if that theory has some constants or makes it possible to
define them. This method might be termed effective.
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The second, non-effective, consists in availing oneself from an existential sentence
which has been proved earlier or assumed.

EXAMPLE of the effective proof:

ex x, y, z being Nat st x <> y & x <> z & y <> z

proof

take x = 0, y = 1, z = 2;

thus thesis;

end;

The word thesis denotes here the sentence 0 <> 1 & 0 <> 2 & 1 <> 2 , which is
obvious to Mizar.

EXAMPLE of the non-effective proof:
Let Π stand for symbol of any binary predicate.

(ex x st for y holds xΠy) implies (for y ex x st xΠy)

proof

assume ex x st for y holds xΠy;

then consider x such that A: for y holds xΠy;

thus thesis

proof

let y;

B: xΠy by A;

hence thesis;

end;

end;

The label A: cannot be eliminated because after consider linking is not allowed. The
word thesis in its first occurrence denotes the sentence for y ex x st xΠy because
the assumption cut off the antecedent of the implication from the main thesis. The word
thesis in its second occurrence (in the nested proof) denotes, after the generalization
let y, the sentence ex x st xΠy. That sentence follows by linking from the sentence
B: because CHECKER applies the rule called the law of abstraction from concreteness (see
14. Basic informations of Checker below).

EXAMPLE as a warning!
Let us read carefully the following two sentences:

ex x being θ st α;

ex x being Any st (x is θ & α);

Their equivalence in the predicate calculus self-evidently does not give rise to any doubt.
The brackets in the second sentence are superfluous, but they had better to be retained
because the alarmed Reader could look for the solution of the puzzle in a wrong place.
And the puzzle is: are these two sentences equivalent from Mizar’s point of view? Now
they are not. When proving the first sentence we use the exemplification take x;, where
x has the type θ, and we prove the sentence α. When proving the second sentence we
use the exemplification take x; where x has the type Any, and we prove two sentences:
x is θ and α.
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9. Change of type

In practice it is often necessary to change the type of the objects occurring in the
reasoning. This is achieved by the construction reconsider, i.e., the statement of a
change of type, which has the form:

reconsider x = τ as θ by ... ;
or

reconsider x = τ as θ from ... ;
where τ is a certain term.

The construction reconsider introduces a new variable x which denotes the same
as τ but has the type θ. The statement of a change of type is justified by the qualifying
formula:

τ is θ

EXAMPLE
let R be Subset of X;

A: R c= X by ... ;
X = [:X1,X2:] by ... ;
then reconsider R’ = R as Relation of X1, X2 by A ... ;

By means of reconsider we change the type locally, that is within the reasoning. A
global change is achieved by redefinition (see 25. Redefinitions).

Suppose that the term τ is the variable x and has the type θ. The statement of a
change of type may be recorded thus:

reconsider x as θ′ by ... ;
or

reconsider x as θ′ from ... ;

The name statement of a change type, which is to be used in accordnace with the
Mizar grammar, may in this case be misleading because the ”working” of that statement
is such that the variable x acquires the new type θ′ without losing its old type θ. We thus
have to do in fact not with the change of one type into another but with the expansion
of the set of the types ascribed to the given variable. The operation of expansion of the
set of types, presented above, ”works” only on variables; it does not work on arbitrary
terms.

10. Conventions

10.1. Reservation

Reservation makes it possible to shorten formulas. The expression
reserve x for θ;

establishes that the variable x has type θ in those occurrences in which the type of the
variable x is not stated explicitly.

reserve x for set;

A: for x st x <> ∅ ex a being Any st a ∈ x;

B: for x being Any holds x = x;

In the sentence A: the variable x has the type set stated in the reservation (the variable
x is a variable qualified implicitly). In the sentence B: the variable x has the type Any
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(here x is qualified explicitly). The ascribing to x of the type Any in the sentence B:

does not cancel the initial reservation. In fact, in the successive sentence

C: ex x st x = ∅;

the system will identify x as a variable of the type set.

10.2. Linking by then

The preceding of a sentence Z by the word then means that in the justification of Z
we avail ourselves of the sentence A: which immediately precedes the sentence Z. This
way of justifying is called linking.

It must be emphasized that linking requires that the expression A: be a sentence. It
is thus not allowed to use linking after proof. Nor is it allowed to use linking after a
collective assumption for then it could not be clear to which of the partial assumptions
we refer. Finally, it is not allowed to use linking after those constructions which - as we
put it - do not leave a sentence:

• after the generalization let ... ;

• after the exemplification take ... ;

• after the statement of choice consider ... ;

• after the existential assumption given ... ;

• after the statement of a change of type reconsider ... ;

After the conclusion thus ... ; and hence ... ; linking is admissible.

10.3. Linking by hence

If one of the premises of the conclusion is the sentence which precedes that conclusion
then one can use linking by replacing thus by hence. Figuratively speaking

then and thus is equal hence

10.4. Existential assumption

The construction
given ... such that ... ;

is called existential assumption. It replaces the assumption on the existence of certain
objects (assume ex ...) combined with the choice of one of those objects (consider ...).
Linking after an existential assumption is not allowed.

EXAMPLE
Suppose that the statement expresses the commutativity of multiplication.

(ex y st x·y = x) implies (ex y st y·x = x)

proof

given x such that A: x·y = x;

thus thesis by A,T3;

end;
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11. Nested proofs

Mizar admits the construction of proofs within other proofs, called nested proofs.
The rules of the construction of inner proofs are the same as those for main proofs.

12. Diffuse statement

It sometimes occurs that we prove a theorem which has not been formulated openly.
In Mizar, such a construction is called a diffuse statement and we begin it with the word
now. It looks thus:

L: now ... thus β; end;

The word now is followed by the proof of the conclusion β (the word proof is not written
after now).

EXAMPLE
L: now assume α; ... take x; thus β; end;

The direct justification by L is consists in the reference to the sentence
α implies ex x st β

REMARK 1
The conclusion β must be written out openly and may not be replaced by the word

thesis. We shall explain why.
The reference to the label L: is a reference to a thesis proved by the construction now,

or, to put it more precisely, to the result of such a reasoning. Of course, if the result of
that reasoning is to be computable β must be formulated openly.

REMARK 2
It is not allowed to precede now by the symbols then, thus, and hence.

To conclude these brief comments on diffuse statements we shall try to make the
Reader sensitive to a certain danger connected with the use of that construction. Please,
examine the following reasoning:

x <> y implies γ

proof

assume x <> y;

then E: x < y or y < x by AXIOMS:21;

A: now

assume x < y;

............
thus γ;
end;

now

assume y < x;

hence γ by A;

end;

hence thesis by A,E;

end;

The above reasoning is incorrect. Under the label A: there is the sentence
x < y implies γ;
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In that sentence x,y are constants. Hence from that sentence it does not follow that
for x,y holds x < y implies γ;

Hence the sentence
y < x implies γ;

does not follow either. Thus the justification of the conclusion
hence γ by A;

is erroneous. And here is the corrected version of the above proof:

x <> y implies γ

proof

assume x <> y;

then E: x < y or y < x by AXIOMS:21;

A: now

let a,b;

assume a < b;

.........
thus γ;

end;

thus thesis by A,E;

end;

The sentence A: is the following universal sentence:
for x,y holds x < y implies γ;

and that is why it is applicable in the conclusion below:
thus thesis by A,E;

13. Iterative equality

Iterative equality is the construction of the following form:
τ0 = τ1 justification
.= τ2 justification

..............
.= τn justification ;

where τ0, ... , τ1 are terms.

EXAMPLE

x+y = (the add of G Real).(x,y) by ADD

.= x’+y’ by AR,A

.= y’+x’ by REAL 1:2

.= addreal.(y’,x’) by AR

.= y+x by ADD,O,A;

The content of iterative equality is the equality of the first and the last term occurring
in that construction.

14. Basic informations of Checker

1. Every tautology of the propositional calculus is accepted by CHECKER without
justification.

2. A sentence beginning with a quantifier requires justification.
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3. When verifying the correctness of a justification CHECKER takes into consideration
only the following premises:

• those specified after by or from,

• those resulting from linking (then, hence).

4. The relation of equality is treated by CHECKER as reflexive, symmetrical, transi-
tive, and extensional. For instance, owing to extensionality CHECKER accepts the
following sentence

x = y & x <> ∅ implies y <> ∅;

5. CHECKER usually does not accept a justification which among its premises has more
than one universal sentence. CHECKER will, however, accept the justification

C1 & C2 by O1, O2 ;

if O1 is the justification of C1 and O2 is the justification of C2.

6. CHECKER automatically, i.e., without reference to justification, applies the following
two rules of inference of the classical functional calculus:

R1: The law of abstraction from concreteness,
R2: The law of transition from the general to the particular.

If c stands for a constant of the type θ, then the above rules can be recorded in Mizar
as follows:

rule R1:
W(c);

then ex x being θ st W(x);

rule R2:
for x being θ holds W(x);

then W(x);

15. Schemes

Schemes are sentences of second order. First comes the reserved word scheme and
the identifier of the schema. They are followed by the list (in square brackets) of the
parameters of the schema (functors or predicates) which play in the schema the role
of variables of second order. Next come, after the colon, successively the thesis of the
schema and possibly the premises (that is, the assumptions of the schema). Finally comes
the justification of the schema.

Here are examples of schemes (with justifications replaced by dots), namely Separa-

tion, without premises, and FuncEx, with two premises.
Let F stand for the identifier of a private functor (see 3. Terms), and P, for the

identifier of a private predicate (see 4. Atomic formulas).

scheme Separation { F() − > set, P[Any] } :

ex X st for x holds x ∈ X iff x ∈ F() & P[x] justification ;

scheme FuncEx { F() − > set, P[Any,Any] } :

ex f st dom f = F() & for x st x ∈ F() holds P[x,f.x] provided

A1: for x,y1,y2 st x ∈ F() & P[x,y1] & P[x,y2] holds y1 = y2

and

A2: for x st x ∈ F() ex y st P[x,y] justification ;
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The premises A1:, A2: are preceded by the word provided and separated from one
another by the separator and.

Finally one more example perfectly well known to secondary school pupils, namely
the schema of induction:

scheme Ind { P[Nat] } : for k holds P[k] provided

B1: P[0]

and

B2: for k st P[k] holds P[k+1] justification ;

The Reader has probably noted that the scope of the applications of a given schema is
determined by the parameters of the latter. For instance, the schema of induction allows
one to prove sentences of the form

for k being Nat holds φ(k)

where φ is any sentence with one free variable k. The justification of that sentence is a
follows. We first prove the sentences:

C1: φ(0);

C2: for k st φ(k) holds φ(k + 1);

These sentences are premises which allow us to avail ourselves of the schema Ind:

for k being Nat holds φ(k) from Ind(C1,C2);

The schema of induction has been proved in the article NAT 1. In order to make use of
that schema one must join it to the environment, which is to say that one has to write
the directive schemes NAT 1 between the words environ and begin.
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Definitions

16. Review of definitions

In the Mizar language, as in standard mathematics, we define relations (strictly speak-
ing, names of relations, that is predicates) and functions (strictly speaking, names of func-
tions, that is functors). Moreover, in Mizar, more explicitly than it is usually done in
mathematics, we use definitions to introduce structures (such as the structure of group),
used in turn to define other objects. In our example they will be groups. On the other
hand, the peculiarity of Mizar consists in types, which are defined, too: Mizar is based
on an system of types.

The definitions of predicates and structures do not require the verification of their
correctness. The definitions of functors and types require a proof of the condition of
existence, and those of functors also a proof of the condition of uniqueness.

In the Mizar language the basic objects are types, predicates, and functors. Some of
those objects - let us call them primary - have been built-in in the system. Their full
description is to be found in the articles HIDDEN, TARSKI, and AXIOMS. The review of the
built-in types is to be found in the chapter on Types.

Secondary objects are introduced by definitions.
The defined objects are classed into private and public.
Private definitions (of a variable, a private predicate, a public functor) introduce

useful notations, but their scope is local, that is limited to a single article. In the present
text we shall discuss only the definition of variable.

17. Definition of variable

The construction
set x = τ;

where x is the identifier of a variable, and τ is a term, introduces the variable x as the
designation of the term τ .

As the example we shall give the beginning of a theorem which begins with the
definition of the variable designated by the identifier X. The Reader may look for further
occurrences of that variable.

theorem Th17: h·(g·f) = (h·g)·f
proof

set X = dom(h·(g·f));
x ∈ X iff x ∈ dom((h·g)·f)
proof

thus x ∈ X implies x ∈ dom((h·g)·f)
proof assume x ∈ X;

......

18. Public definitions

We now proceed to discuss public definitions, from definitions of types to those of
predicate and functors.

Types are introduced by:

• definition of structure,
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• definition of mode,

• definition with is, which forms abbreviations of existing types,

• registration of clusters.

These four kinds of definitions of types will be discussed successively.

19. Definition of structure

In Mizar, structure are finite sequences of objects of a fixed type, called selectors
of a given structure. The definition of a structure does not require any conditions and
correctness. In particular, the condition of existence need not be justified because the
Mizar language.

Structures may be classed into:

• structures without parameter, and

• structures with parameter.

The structure without parameter are defined thus:
struct Σ¿ σ1− > θ1, ... , σp− > θp À;

where
Σ is the symbol of structure,
σ1 , ... , σp are symbols of selectors, and
θ1 , ... , θp are types.

The symbol of structure and those of selectors should be included in the vocabulary
and preceded by the classifiers G and U, respectively.

EXAMPLE 1
struct IncStruct ¿ Points, Lines, Planes − > DOMAIN,

Inc1 − > (Relation of the Points, the Lines),

Inc2 − > (Relation of the Points, the Planes),

Inc3 − > (Relation of the Lines, the Planes) À
It is convenient to follow the definition of a structure with a series of definitions which
facilitate the ”service” of the structure defined. The author of the article from which
the above example is drawn introduced, after the definition of structure, the following
reservation:

reserve S for IncStr;

Next he defined the modes:
POINT of S , LINES of S , PLANES of S

and the public predicates:
A on L , A on P , L on P

which correspond to the selectors Inc1, Inc2, Inc3 for the structure S fixed by the
reservation. Usually a structure is defined only in order to become the mother type of
the mode of the structures which satisfy the axioms of a given theory. In the example
under consideration, drawn from the article INCSP 1 (Axioms of Incidency), they are
incidency spaces IncSpace. The Reader is advised to consult that article in order to
become acquainted in the way in which that well-known fragment of geometry is rendered
in the Mizar language.

The above example was that of a definition of a structure without a parameter. There
are situations in which it is more convenient to make use of a definition of a structure
with a parameter. Structures with a parameter are defined as follows.
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definition let x1 be θ1, ... , xn be θn;

struct Σ over xi1, ... , xik

¿ σ1− > θ′1(x1, ... , xn), ... , σp− > θ′p(x1, ... , xn) À;

end;

where xi1, ... , xik ∈ {x1, ... , xn} , and the remaining variables are reconstructible (see
the example of the superposition of permutation in the chapter on 25. Redefinitions).

EXAMPLE 2

definition let F be FieldStr;

struct VectrSpStr over F ¿ carrier − > AbGroup, mult − >

Function of [:the carrier of F, the carrier of the carrier:]

the carrier of the carrier À;

end;

After the symbol of structure (in this case: VectSpStr) we write the reserved word over,
followed by the parameters (in the case under consideration there is only one parameter,
namely F).

20. Definition of mode

Here is the form of the most often used definition of mode:

definition let x1 be θ1 , ... , xn be θn;

mode Γ of xi1, ... ,xik − > θ(x1, ... ,xn) means

:L: δ(x1, ... ,xn,it);

existence ... ;
end;

Γ is the symbol of mode and should be included in the vocabulary, preceded by the
classifier M.
NOTE: We shall often replace recurrent constructions by dots. In the case under con-
sideration the justification after the word existence was thus replaced.

In the above definition of mode only the condition of existence, specified by the word
existence, is required. The condition of existence should include a justification of the
following theorem:

ex x being θ(x1, ... ,xn) st δ(x1, ... ,xn,x);

And here is the form of a definitional theorem:
for x1 being θ1, ... ,xn being θn, y being θ(x1, ... ,xn) holds

y is Γ of xi1, ... ,xik iff δ(x1, ... ,xn,y);

EXAMPLE

definition

mode Function − > set means

:FUNC: (for p st p ∈ it ex x,y st [x,y] = p) &

(for x,y1,y2 st [x,y1] ∈ it iff [x,y2] ∈ it holds y1 = y2);

existence ... ;
end;
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The word Function is the symbol which denotes the type being introduced. The type
function expands to the type set, or, if you prefer it that way, the type set is the mother
type of the type function. The word means is followed by the definiens with the label
:FUNC:. The object it of the type set has the type function if it is a set of ordered
pairs

for p st p ∈ it ex x,y st [x,y] = p;

and meets the condition of uniqueness for the second element of the pair
for x,y1,y2 st [x,y1] ∈ it iff [x,y2] ∈ it holds y1 = y2;

The word existence is followed by the justification of the non-emptiness of the type
being defined. The system expects a justification of the following sentence:

ex F being set st

(for p st p ∈ F ex x,y st [x,y] = p) &

(for x,y1,y2 st [x,y1] ∈ F iff [x,y2] ∈ F holds y1 = y2);

In the justification (see 8. The tactics of proving theorems and Proving an existential
sentence) it suffices to take empty set as an object of the type set:

take ∅;
The above definition has its analogue in the following definitional theorem:

for F being set holds F is Function iff

(for p st p ∈ F ex x,y st [x,y] = p)

& (for x,y1,y2 st [x,y1] ∈ F iff [x,y2] ∈ F holds y1 = y2);

Definitional theorems are automatically generated by the system. In order to avail
oneself of a definitional theorem one has to find its number in the abstract of the article
concerned.

21. Abbreviations (definitions with ”is”)

We shall now describe a very convenient method of defining modes which are exten-
sionally equal to other modes:

definition let x1 be θ1, ... , xn be θn;

mode Γ of xi1, ... ,xik is θ(x1, ... , xn);

end;

Γ is the symbol of mode and should be included in the vocabulary preceded by the
classifier M.

The above definition does not include any definiens and hence, practically, it will play
the role of a construction which enables one conveniently to introduce abbreviations.

The definition of mode by is does not require conditions of correctness.
The system, when processing a given article, replaces the abbreviations by the original

type. It is, therefore, sometimes said that

the construction with is enforces
a single expansion of the type.

EXAMPLE
definition let H be Group;

mode Endomorphism of H is Homomorphism of H,H;

end;

The system replaces the expression Endomorphism of H by the expression
Homomorphism of H,H.
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WARNINGS

1. It is incorrect to redefine (see 25. Redefinitions) types defined by is. This can
easily be explained by reference to the example given above. Now the expression
Homomorphism of H,H is not a pattern of a mode because the argument H occurs
in that expression twice. By redefining the mode Endomorphism of H we would
in fact redefine the mode Homomorphism of H,H, and thus we would redefine an
expression which is not a pattern of a mode.

2. It is, moreover, incorrect to redefine by the construction is.

22. Attributes and clusters

22.1. Attributes

The definition of attribute has the following form:

definition let x1 be θ1, ... , xn be θn;

attr ∆ − > θ(x1, ... , xn) means δ(x1 , ... , xn,it);

end;

where ∆ is the symbol of attribute and should be entered in the vocabulary and preceded
by the classifier V.

The types θ1, ... , θn are called the parameters of the attribute ∆.
The expression ”− > θ(x1, ... , xn)” in the definition of the attribute ∆ indicates

that that attribute may be added to any type that expands to the type θ(x1, ... , xn).
Let Θ(∆) be the set of all types expanding to the type θ(x1, ... , xn). The type

θ(x1 , ... , xn) will be called the mother type of the attribute ∆. Thus Θ(∆) is the set
of all types expanding to the mother type of the attribute ∆.

Let τ be a term, and ϑ(τ), the type of the term τ . The expression
τ is ∆

where ϑ(τ) ∈ Θ(∆), will be called attributive formulas. The following equivalence holds:
τ is ∆ iff δ(x1, ... ,xn,τ)

EXAMPLE 1

definition

attr distributive − > Lattice means

for a,b,c being Element of the carrier of it holds

at(buc) = (atb)u(atc);
end;

The type Lattice is the mother type of the attribute distributive. Let
Θ(distributive)

be the set of all types that expand to the mother type Lattice. The attribute distri-

butive is a function defined on the set of those terms whose types expand to the mother
type of the attribute distributive and have values in the set of the attributive formulas
A:

distributive: {τ : ϑ(τ) ∈ Θ(distributive)} − > A.
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EXAMPLE 2
definition

attr non-empty − > set;

end;

The type set is the mother type of the attribute non-empty. This example is drawn
from the article HIDDEN.

EXAMPLE 3
definition

attr finite − > set means ex p being FinSequence st rng p = it;

end;

The type set is the mother type of the attribute finite.

22.2. Registrations

Attributes are used to construct types. This will be explained by the example below.

EXAMPLE 4
definition

cluster non-empty θ;

existence ... ;
end;

where θ is a type such that θ ∈ Θ (non-empty).
In particular, when taking typ θ = Set-Family, which expands to the type set, that

is θ ∈ Θ (non-empty), we obtain the type non-empty Set-Family.
The condition of existence in the above definition states that there is an object x of

the type θ such that x is non-empty, which is to say that x 6= ∅.
Such definitions will be termed registrations.
Of course, it may sometimes be convenient to introduce an abbreviation for the regis-

tered attribute. On the basis of the above definition we may introduce the abbreviations
of the types non-empty θ for θ ∈ Θ (non-empty):

EXAMPLE 5
definition

mode abbreviation is non-empty θ;

end;

In particular, for θ = set and θ = Subset of X we obtain the following abbrevia-
tions:
definition

mode DOMAIN is non-empty set;

end;

and
definition let X be DOMAIN;

mode SUBDOMAIN of X is non-empty Subset of X;

end;

The types DOMAIN and SUBDOMAIN have been introduced in the article HIDDEN.
Let us consider an example of an attribute with a parameter.

definition let T be TopSpace;

attr open − > Subset of T means it ∈ topology of T;

end;

31



At present there is temporary restriction pertaining to the use of attributes with a
parameter: they may be defined, but it is not allowed to register types which includes
attributes with a parameter.

22.3. Clusters

A cluster is a set {α1 , ... , αn}, where α1 , ... , αn are attributes. Clusters are used
in the construction of types.

The registration in Example 4 is the registration of a cluster with one attribute. And
here is an example of the registration of a cluster with two attributes.

EXAMPLE 6
definition

cluster non-empty finite θ;

existence ... ;
end;

where θ is a type such that θ ∈ Θ (non-empty) ∩Θ (finite).
The above registration has the same effect as the registration with a changes order of
attributes:
definition

cluster non-empty finite θ;

existence ... ;
end;

The present example is intended to emphasize that the order of attributes in a cluster
has no significance whatever for the system.

22.4. Application of attributes

The attributes are use for:
a) construction of attributed types:

non-empty θ,
distributive Λ,
non-empty finite θ,
distributive complemented Λ,

where θ ∈ Θ(non-empty), Λ ∈ Θ(distributive).
In particular, the attributed types are

non-empty set,
distributive Lattice,
non-empty finite set,
distributive complemented Lattice.

For each of these attributed types one can register some abbreviation. The first two of
the above attributed types will be abbreviated into DOMAIN and D Lattice, respectively.

b) formation of attributive formulas:
τ is non-empty,
λ is distributive,
τ is non-empty finite,
λ is distributive complemented,

where τ , λ are terms such that
ϑ(τ) ∈ Θ(non-empty), ϑ(λ) ∈ Θ(distributive).
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22.5. Attributive formulas versus qualifying formulas

Note that a qualifying formula is any formula of the form ξ is θ, where ξ is any term
and θ is any type.

The Reader is warned against confusing the attributive formulas (see point b above),
which are formulas of a new kind, with the qualifying formulas formed by attributed
types (see point a above):

ξ is non-empty θ,
ξ is distributive Λ,
ξ is non-empty finite θ,
ξ is distributive complemented Λ,

where θ ∈ Θ (non-empty), Λ ∈ Θ (distributive), and ξ is any term.
In particular the qualifying formulas are:

ξ is a non-empty set,
ξ is a distributive Lattice,
ξ is a non-empty finite set,
ξ is distributive complemented Lattice,

where ξ is any term.
Formulas of both kinds are three-place ones, the first place being a term and the

second place being is. The differences between these two kinds are as follows:

• The type of the term in an attributive formula must expand into the mother type
of the attribute.
The term in the qualifying formula is arbitrary.

• The third place in an attributive formula is an attribute.
The third place in a qualifying formula is a type.

22.6. Order of attributes

Generally speaking, the attributed type has the form:
θ′ = α1 , ... , αn θ,

where α1 , ... , αn are attributes, while θ is a type without an attribute.
The attributes α1 , ... , αn will be termed attributes of the type θ′, and the type θ, the
core of the type θ′.
Obviously, the use of the type θ′ is allowed only after the defining of the clusters of the
attributes α1 , ... , αn.

At this point it must once more be emphasized that the order of the attributes in the
attributed type is of no significance for the system.

The general form of the attributive formula is
τ is α1 , ... , αn

where α1 , ... , αn are attributes, and
ϑ(τ) ∈ Θ(α1 , ... , αn) = Θ(α1)∩...∩Θ(αn).

The content of this formula is the conjunction
τ is α1 & ... & τ is αn

From the non-commutativity of conjunction in the Mizar language it follows accord-
ingly that the order of the attributes in an attributive formula is essential.
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22.7. Principle of the inheritance of registrations

Let K = {α1 , ... , αn} be a cluster, and P = {αi1 , ... , αin
} be any subcluster, so

that P ⊆ K. The registration of the cluster K makes the registration of the subcluster P
superfluous. Thus after having registered the type finite non-empty Set-Family we need
register neither the type finite Set-Family nor the type non-empty Set-Family.

The principle of the inheritance of registration is very convenient as it simplifies the
introduction of attributed types.

23. Definition of predicate

Here is the most frequent definition of predicate:

definition let x1 be θ1, ... , xn be θn;

pred xi1, ... ,xikΠxj1, ... ,xjl means

:L: δ(x1, ... ,xn);

end;

where Π is the symbol of predicate and should be entered in the vocabulary and preceded
with the classifier R.

In the definitions of predicates no condition of correctness is required. And here is
the form of the definitional theorem:

for x1 being θ1, ... , xn being θn holds

xi1, ... , xikΠxj1, ... , xjl iff δ(x1 , ... , xn);

EXAMPLE
The definition of a public predicate given below

definition let f;

pred f is one to one means

:ONE TO ONE: for x1,x2 st x1 ∈ dom f & x2 ∈ dom f & f.x1 = f.x2

holds x1 = x2;

end;

has the following corresponding definitional theorem:
f is one to one iff

for x1,x2 st x1 ∈ dom f & x2 ∈ dom f &

f.x1 = f.x2 holds x1 = x2;

24. Definition of functor

Here is the most frequent form of a definition of a public functor:

definition let x1 be θ1, ... , xn be θn;

func (xi1, ... ,xik)ϕ(xj1, ... , xjl) − > θ(x1, ... ,xn) means

:L: δ(x1, ... ,xn,it);

existence ... ;
uniqueness ... ;
end;
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where ϕ is the symbol of a functor and should be entered in the vocabulary and preceded
by the classifier O.

In the above definition of public functor two conditions of correctness are required:
that of existence and that of uniqueness. Now let δ(x1, ... ,xn,x) be the definiens
occurring in a simple definition of a public functor.

The condition of existence should include the justification of the following theorem:
ex x being θ(x1, ... , xn) st δ(x1, ... , xn,x);

EXAMPLE

definition let f be Function;

func graph f − > set means

:GRAPH: f = it;

existence;

uniqueness;

end;

The condition of uniqueness should include the justification of the following theorem:

for y,z being θ(x1, ... , xn) st δ(x1 , ... , xn,y) &

δ(x1, ... , xn,z) holds y = z;

EXAMPLE

definition let f,Y;

func f"Y − > set means

:INVERSE IMAGE: for x holds x ∈ it iff x ∈ dom f & f.x ∈ Y;

existence from Separation;

uniqueness

proof

let X1,X2 such that

A1: x ∈ X1 iff x ∈ dom f & f.x ∈ Y and

A2: x ∈ X2 iff x ∈ dom f & f.x ∈ Y;

x ∈ X1 iff x ∈ X2;

proof x ∈ X1 iff x ∈ dom f & f.x ∈ Y by A1;

hence thesis by A2;

end;

hence X1 = X2 by TARSKI:2;

end;

end;

And here is the form of a definitional theorem for public functors:

for x1 being θ1, ... , xn being θn, y being θ(x1, ... , xn) holds

y = (xi1, ... , xik) ϕ(xj1, ... , xjl) iff δ(x1, ... , xn,y);

EXAMPLE
Let us consider the following definition:

definition let f;

func dom f − > set means
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:DOM: for x holds x ∈ it iff ex y st [x,y] ∈ graph f;

existence ... ;
uniqueness ... ;
end;

It has the corresponding definitional theorem:

X = dom f iff for x holds x ∈ X iff ex y st [x,y] ∈ graph f;

25. Redefinitions

Redefinitions are an important kind of definitions. A redefinition in most cases con-
sists in a change of a specification, that is in the narrowing down of the original mother
type. Sometimes it consists in a change of a definiens into an equivalent one. In the
former case we justification that the new mother type expands to the original one, and in
the latter, that the new and the original definiens are equivalent to one another. These
are conditions of the correctness of a redefinition: correctness in the case of a change
of a specification, and compatibility, in the case of a change of a definiens.

From the syntactic point of view redefinitions are a kind of definitions, the only
discriminant of a redefinition being the reserved word redefine, which should be placed
before the word mode, pred, or func.

We shall confine ourselves here to the discussion of redefinitions by a change of a
specification.

Let it be said once more: the admissible change of a specification consists in the
narrowing down of the type. In other words, the new type, that is the one introduced in
the redefinition, is a narrowing down of the original type, given in the original definition.

The principle of the narrowing down of the type yields the following recommendations
pertaining to the introduction of concepts:

definitions should be as general as possible and then they should be gradually narrowed
down.

The practice of writing Mizar articles has proved so far that the non-observance of
that principle results in essential complications.

In the change of a specification we usually omit the definiens. As has been said above,
in such a case the original definiens is the definiens understood.

Here is the most frequent form of the redefinition of a mode:

definition let x1 be θ1, ... , xn be θn;

redefine mode Γ of xi1, ... ,xik − > θ(x1, ... ,xn);

coherence justification ;

end;

In the justification of this redefinition we prove the following sentence:

for x being Γ of xi1, ... , xik holds x is θ(x1, ... , xn);

And here comes the typical redefinition of a public functor:

definition let x1 be θ1, ... , xn be θn;

redefine func (xi1, ... ,xik)ϕ(xj1, ... ,xjl) − > θ(x1, ... ,xn);

coherence justification ;

end;
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In the justification we prove:

(xi1, ... , xik) ϕ (xj1, ... , xjl) is θ(x1, ... , xn) .

EXAMPLE 1

definition let X be set; let f,g be Permutation of X;

redefine func g·f − > Permutation of X;

cohenrence

proof

g is one to one & f is one to one & rng g = X & rng f = X by PERM;

then g·f is one to one & rng(g·f) = X by FUNCT 1:46,T29;

hence g·f is Permutation of X by PERM;

end;

end;

Note that in the pattern of the functor g·f the variable X does not occur. This is
permissible because the variable X is ”reproducible” by means of the variable f or the
variable g.
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Data Base

26. Content of the Data Base

The Data Base of the Mizar system is organized in the directory \MIZAR. It consists
of two subdirectories:

\DICT
\PREL

The subdirectory \DICT contains vocabulary files with the extensions .voc.
They are prepared by the author of a given article (or else he avails himself of the already
existing ones to suit his needs).

The files with the extensions .voc contain declarations of symbols of modes, pred-
icates, functors, attributes, structures, selectors, and function brackets to be used in a
given article. The declaration of a symbol consists of the classifier of that symbol itself.
Moreover the files contain indications of the priorities of functors. Priority in that case
means the information about the strength of binding.

The subdirectory \PREL contains files with the extensions:

.nfr, .def, .dno, .dco, .the, .sch, .dcl

They are formed by the LIBRARIAN from a given article and contain definitions (.nfr,
.def, .dno, .dco), theorems (.the), and schemes (.sch), adequately processed and en-
coded. The appropriate files from that directory are drawn by the Mizar ACCOMMODA-

TOR if in the declaration of the environment there are directives joining definitions,
theorems, and schemes in the article to which one refers.

Some users organize in the Mizar directory their own subdirectories, such as
\MML
\ABSTR

They form Main Mizar Library, play the role of documents and are not used by the
system.

The \MML subdirectory includes files with the extensions .miz, which contain Mizar
articles.

The subdirectory \ABSTR contains files with extensions .abs. They are abstracts of
articles and are obtained from the original text of a given article by the elimination
of lemmas, definitions of private objects, and all proofs, and by the current numbering
of theorems and definitions. The user should refer to those numbers of theorems and
definitions if he needs them in his own article (the numbering in the original file is of
local importance, only within the text of a given article).

27. Directives

In the environment we may place directives of five kinds, namely:
– vocabulary directive

vocabulary α1, ... ,αn;

– signature directive
signature β1, ... ,βn;

– definition directive
definitions β1, ... ,βn;

– theorem directive
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theorems β1, ... ,βn;

– schema directive
schemes β1, ... ,βn;

– cluster directive
clusters β1, ... ,βn;

where α1, ... ,αn are names of vocabularies, and β1, ... ,βn are names of articles.
In the course of processing the system observes the order of directives. That may

be essential with reference to the signature directives, which contain information about
the definitions (including redefinitions) of the same symbol. As has been said, one and
the same symbol may be defined many times, and the binding definition is always that
of the last signature specified in the environment. If the order is incorrect, then earlier
directives may be overridden by later ones.

EXAMPLE
The symbol U is a symbol of a functor. We defined A U B twice:

1. in the article α.miz

• as the DOMAIN which is a sum of domains, and

2. in the article β.miz

• as the set which is a sum of sets.

As is known, the type DOMAIN expands to the type set.
Suppose that in the article γ1.miz and γ2.miz we have adopted the directives signature

α, β; and signature β; , respectively. Let A, B be domains.
The term A U B in γ1.miz is of the type set. Why is that so? The PROCESSOR

tries to adjust the types of the variables A, B to the definition 2. It obviously succeeds
in that because the types of the variables A, B expand to the type set.

The term A U B in γ2.miz is of the type DOMAIN, because the processor can apply
to that term the definition 1.

NOTE: The term
A U B exactly DOMAIN

has in γ1.miz the type DOMAIN.

39. Name of article

The file with an article must have the extension .miz and is termed Mizar article.
The name of a Mizar article consists of at most eight signs: letters, figures, connectors
and apostrophe ’. The name of a Mizar article may be neither a numeral nor a reserved
word.

REMARK: The usage is that the letters occurring in the name of a file should be
capital letters. Hence TARSKI is agreement with that usage while tarski and Tarski

are not.

29. Vocabulary

The vocabulary lists the symbols together with their qualifiers. It also indicates the
binding strength of the functor symbols.
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29.1. Name of the vocabulary

The vocabulary forms the file α.voc

where α is the name-of-vocabulary-file. The name α may, but need not, be a name of a
Mizar article. For instance, the name of the file FUNC.voc is not derived from a Mizar
article: in the Data Base there are articles FUNCT 1.miz, FUNCT 2.miz, ... , but - at least
for the time being - there is no article FUNC.MIZ.

29.2 Qualifiers

The symbols M,R,O,G,U,K,L,V called qualifiers, are used to introduce symbols, respec-
tively:

M mode,
R predicate,
O functor,
G structure,
U selector,
K right functor bracket,
L left functor bracket,
V attribute.

EXAMPLE
Below there is the vocabulary file FUNC.voc:

Ograph 128

Oid 128

O. 100

MFunction

Ris one to one

The first column houses qualifiers, and those from the second to the space house symbols.
After the space we may indicate the binding strength, also called priority. This applies
only to the symbols of functors. The binding strength of a given functor is indicated by
the number which follows its symbols.

Now graph, id, . are functor symbols. Function is a mode symbol, and is one -

to one is a predicate symbol. The numbers 128 and 100 denote the magnitude of
priority. Priority is indicated only in the case of functor symbols; thus the functor symbols
graph and id have the priority 128, and the functor symbol . has the priority 100.

REMARK

1. The binding strength of predicate symbols is not indicated because these always
bind more weakly than functor symbols do.

2. The number indicating the priority of a given functor must be separated from the
symbol of that functor by at least a single space.

3. There may not be even a single space between a qualifier and the corresponding
vocabulary symbol.
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29.3. Strength of binding

The greater the number indicating the binding strength the greater the binding
strength of the functor symbol concerned. The priority of a functor is a natural number
ranging from 0 to 255. In the case of some functor symbol the number indicating its
priority may be missing. That means that that symbol has the standard priority. The
standard binding strength is 64.

The concept of the binding strength of functor symbols is linked to the sequence of
the operation with a given binding strength. The memorization of the priorities of at
least some symbols may be largely used for the elimination of superfluous brackets.
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Part Two: The System

30. Preliminary information on the system

The Mizar computer system processes and verifies formalized theorems in the Mizar
language, or, to be more precise, the Mizar article which contains those theorems. That
is achieved by two programs of the PC Mizar system, called ACCOMMODATOR and PRO-

CESSOR. The ACCOMODATOR draws from Data Base the necessary information on the
basis of the directive to be found in the environment of the article, and the PROCESSOR

verifies the text of the article.
Mizar articles are usually written by means of editors integrated with the system.

The most popular ones are multiEdit, or so-called Mem, and Brief.
Suppose that we write an article GEOM.miz. We successively call the programs AC-

COMMODATOR and PROCESSOR by
accom geom and mizar geom,
respectively.
After the termination of the processing of each program the listing will show the inscrip-
tion THANKS OK or SORRY, according to whether the article is correct or contains errors.
The numbers of the errors are indicating in the text, which makes their correction easier.

But it may also occur that the processing is interrupted. One of the reasons of the
interruption of the processing is the bad installation of the system or discrepancy between
the private Data Base and the public Data Base. So-called bugs, or errors in the system,
are another, very rare, cause. If the system does not accept your proof and you think
that it should you are advised to consult the authors of the implementation of the system
PC Mizar, namely A. Trybulec or Cz. Byliński.

A continuous verification of the article being written is recommended. That makes
it possible to eliminate errors currently and facilitates formalization. Working without
notes, that is with the computer, is recommended, too. Of course, major problems may
be solved more conveniently on a separate sheet of paper or on a blackboard.

31. Programs of the PC Mizar system

The PC Mizar system cover Data Base and a number of programs, of which three are
essential, i.e., closely linked to the system:

ACCOM.exe (ACCOMMODATOR),
MIZAR.exe (PROCESSOR), and
EXTRACT.exe (EXTRACTOR).

To simplify the description we assume that all files are placed in standard directories.

32. Installation of the PC Mizar system

The PC Mizar system is implemented on computers compatible with IBM PC XT/AT;
Mizar articles can be written on such computers only.

The PC Mizar system may be installed on hard disc on the directory C:\MIZAR. That
directory includes the basic programs of the system, system files, and input macrocom-
mands. The files of the Data Base of the Main Mizar Library are also placed in that
directory.

Note that <name-of-article> is the name of the file containing a Mizar text. The text
should have the extension to .miz, e.g., BOOLE.miz. That extension is always implicitly
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joined by the ACCOMMODATOR, PROCESSOR, and EXTRACTOR to the name of the text.
The name of the text is written without extension.

33. Accommodator

The ACCOMMODATOR is called:
accom <name-of-article>

We shall now briefly describe the basic program ACCOM.exe. The ACCOMMODATOR

draws from Data Base the required items of information on the basis of the directives
written out in the environment of the article concerned. The items of information thus
received are recorded by the ACCOMMODATOR on the following files:

<name-of-article>.dic,
<name-of-article>.frm,
<name-of-article>.atr,
<name-of-article>.eno,
<name-of-article>.dfs,
<name-of-article>.thl,
<name-of-article>.ths,
<name-of-article>.vcl,
<name-of-article>.sgl,
<name-of-article>.ecl.

The information contained in the above files covers, among other things, a summary
vocabulary and descriptions of formats, signatures, definienses, statements, and schemes.

Next to that the ACCOMMODATOR forms the file <name-of-article>.err, which
record the errors in the environment. In that file the successive lines have triplets of
numbers which in turn indicate respectively the number of the line, the number of the
column, and the number of the error. Indentifying the errors on the basis of that file is,
as can be seen, not very convenient, and this is why we suggest another method.

Following the command:
errp <my-directory>\<name-of-article>.miz c:\mizar\mizar

the program forms the file <name-of-article>.lst, so-called listing, with errors entered
on the copy of the text of the article in question. Further the file with the explanation
of errors, MIZAR.msg, is joined following command

c:\mizar\mizar
When using the ACCOMMODATOR one has always to bear in mind the fact that

the PROCESSOR communicates with the library solely through the files prepared by the
ACCOMMODATOR. Hence changes in the environment and/or the Data Base require a
new accommodation.

By restricting the calling of the ACCOMMODATOR to possible changes in the envi-
ronment and/or the Data Base we considerably speed up the processing of the article.
Obviously, in order to avail ourselves of those advantages we must see to it that the
ACCOMMODATOR and the PROCESSOR be installed independently of one another and
called by two different commands.

34. Processor

The calling of the processor of PC Mizar (and next of the so-called ERRPRINTER,
which forms the so-called listing - both terms will be explained below) has the following
form:

miz <name-of-article>
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When the text is being processed we can, at any moment, interrupt the functioning
of the PROCESSOR by pressing the keys Ctrl Break. This interrupts the analysis of the
text by the PROCESSOR, an error as the signal of that interruption (error #1255) being
indicated in the line in which the interruption took place.

The PROCESSOR yields the list of the errors discovered during the processing of the
text. The list of the errors is placed in the file bearing the same name as the file with
the input text and the extension .err. It is formed in the same directory as the Mizar
text. If the text is correct the file remains empty. The file with the errors includes the
list of the descriptions of those errors in the form of triplets of numbers. The description
of a given error includes its position in the text (i.e., the number of the line and that
of the column) and the number of the error. The file of errors may be used for various
purposes:

1. through the editors (e.g., Mem) or other programs, for finding and identifying their
position in the text and their identification by the number;

2. for forming a listing by the so-called ERRPRINTER (program ERRP).

The ERRPRINTER reads the text and the file with the errors and produces the listing. The
listing thus formed is a document which includes a copy of the text with the indication
of the errors (in the listing) and joined explanation of the errors found in the text. If the
text is correct, then the listing, instead of the explanations of errors, is concluded by the
inscription Thanks OK . The listing has the same name as the input text but with the
extension .lst. The listing is formed in the same directory as the text being analysed.

35. Extractor

The EXTRACTOR is called by:
extract <name-of-article>

The EXTRACTOR forms the following files:
<name-of-article>.nfr - formats,
<name-of-article>.dno - patterns of modes, predicates, and functors,

and types of the arguments occurring in the
patterns,

<name-of-article>.def - definienda,
<name-of-article>.dco - description of the types of the results,
<name-of-article>.sch - list of schemes and their description,
<name-of-article>.the - list of theorems and their description,
<name-of-article>.dcl - list of clusters.

These files should be transferred to the directory \PREL.

36. Preparation of abstracts

If a Mizar article is correct, then it can be turned into an abstract using the program
MIZ2ABS, called ABSTRACTOR (see 26.Content of the Data Base) on the directory \ABSTR.
The program also forms the file of the errors found in the course of processing.

The ABSTRACTOR turns a Mizar article into its abstract. The abstract has the same
name as the article plus the extension .abs. That file is formed in the same directory
as the file with the Mizar article in question. The abstract is practically a copy of that
part of the article which contains definitions of public objects and theorems. Lemmas,
proofs, and definitions of private objects are disregarded.
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37. Use of a correct articles

A verified article may be passed to the Main Mizar Library. Moreover, it may be
included in the local library with which one works. This facilitates, and in most cases
is indispensable for, the writing of the next article: usually it is so that our articles are
thematically interconnected, not to say that they are continuations of earlier ones.

For that purpose we have:

1. To form the files of the Data Base.

2. To transfer of the files of the Data Base to the local data base.

Moreover it is worth while to prepare an abstract.

38. Practical advice for users

1. Start writing an article from the basic definitions and the basic theorems (i.e.,
statements and schemes).

2. Form the vocabulary and place in it the symbols with their qualifiers. In the case
of operations possibly include in the vocabulary their respective priorities.

3. Write out the directives.

4. Add the reservations.

5. Precede definitions with theorems which may be useful in justifying the conditions
of the correctness of those definitions.

6. Write out full skeletons of the proofs, but without by and from, i.e., without the
so-called simple justifications. If the errors marked #4 are the only ones, then the
skeleton are correct. Fight the errors until only the ”fours” are left.

7. Add auxiliary theorems so as to shorten the proofs by eliminating recurrent modules
of reasonings. In Mizar it pays because Mizar proofs are fully formalized.

8. It is worth while introducing a number of private objects - variables, predicates,
functors - in order to shorten the proofs.

9. Finally add simple justification and start eliminating the ”fours”. The main source
of errors is making use of two universal sentences after one by. Unfortunately,
proofs must sometimes be lengthened - do not expect too much of Mizar. A stronger
CHECKER could be programmed but at the cost of a longer waiting time.
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Afterword

We have disregarded here the following subjects which, we think, are less important
for the beginners in using Mizar:

• proving per cases,

• proving by definitional expansion,

• compound definitions,

• definitions with assumption,

• definitions of private functors and predicates,

• understood properties,

• antonyms and synonyms.

The author presents this Outline of PC Mizar to the Readers with mixed feelings.
The text seems immature and probably requires various modifications. But I have been
told that even such a text may prove useful in the use of Mizar. I hope that the reading
of this Outline will do more good than harm. The Readers are warmly requested to send
all their comments, which are likely to be important in my further work on this Outline,
to the address:

M. Muzalewski,
c/o Warsaw University,

BiaÃlystok Campus,
Institute of Mathematics,
ul. Akademicka 2,
15-267 BiaÃlystok,
Poland.
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