
Formal proof sketches

Freek Wiedijk

University of Nijmegen

Abstract. We define the notion of formal proof sketch for the mathe-

matical language Mizar. We show by examples that formal proof sketches

are very close to informal mathematical proofs. We discuss some ways

in which formal proof sketches might be used to improve mathematical

proof assistants.

1 Introduction

1.1 Problem

Large mathematical formalizations are often difficult to understand. They gen-
erally consist of several files, each containing a long series of definitions and
lemmas, with for each lemma a proof which is a maze of steps. As such, they
are like large computer programs, which consist of several files, each containing
a long series of declarations and functions, with for each function an implemen-
tation which is a maze of statements. However the analogy is not perfect. It is
much easier to follow the steps through the implementation of a program than
to follow the steps through the formalization of a theorem.
There are two levels on which it is difficult to understand a large mathe-

matical formalization. It is difficult to understand the overall structure of the
formalization, i.e., to know what are the important definitions and lemmas and
in which files to find them. And it is difficult to find one’s way through the
formal proof of a lemma, i.e., to understand what the structure of that proof is.
In this note we address this second difficulty.
Something that makes a formalization easier to understand, does not nec-

essarily make it easier to create. The approach presented in this note makes it
easier to read a mathematical formalization, but it will not make it easier to
write one. This means that the representation of proofs that this note proposes
are not meant to be a ‘better way’ for writing a formal proof. A representation
that can be checked by machine is much more involved than the representation
that we study here, and it will be as difficult to write as ever. In other words,
our work is on right hand side of the following diagram:

formalizing
--
formalization

presenting

==

2 Freek Wiedijk

and it is not especially relevant for the left hand side.
Here are some of the main ways to present a formalization in such a way that

it becomes easier to understand for a human:

– Removing the proofs.
For instance in the Coq system one can generate a so-called ‘.g’ file, which
is just the Coq input script with the proofs removed. Likewise, in the Mizar
system one generates so-called ‘abstracts’, again just the formalizations with
all proofs removed.

– Rendering the formulas with mathematical symbols.
For instance in the prover interface Proof General one can use the X-Symbols
feature of emacs, showing mathematical symbols instead of ASCII strings.
In a similar approach, the Theorema system uses the Mathematica front-end
to present its formulas in mathematical style. Some systems (like Agda and
NuPRL) even have a full-fledged structure editor that displays mathematical
formulas in a structural way.

– Generating natural language text from the formalization.
– Merging natural language text with the formalization in the spirit of ‘literate

programming’.

Generally the problem with a formal proof is that it is big (because the steps
are small), and that one looses grip on the whole because of this. The last two
approaches in this list tend to make a formalization even bigger. In contrast
with this we believe that to make a formalization accessible, one has to make it
smaller.
Many people think that in order to make a formalization easier to understand,

one has to transform it. However this means that one creates distance between
the formalization and its presentation. This can be a problem if we add a third
arrow to the diagram:

formalizing
--
formalization

presenting

==

editing

CC

To be able to successfully edit a formalization, one has to look at the presentation
(in order to be able to understand it), but one also has to work in the underlying
formalization itself (because that is where things really happen). If those two
versions of the proof differ too much, then the presentation does not help. In that
case, for a user who just understands the presentation, the formalization will be
a static thing (because it cannot easily be modified) instead of a ‘living proof’.
Therefore, we claim that the presentation should be as close to the original
formalization as possible.
In this paper we are looking for a presentation of a formalization which is:

Formal proof sketches 3

– Shorter than the full formalization, in the sense that the most trivial details
of the proof are not shown.

– Close to the full formalization, in the sense that it is easy to go back and
forth between the two and to find matching locations in both versions.

1.2 Approach

We introduce the notion of formal proof sketch. A formal proof sketch is a notion
related to the mathematical language Mizar [5, 7]. A formal proof sketch is a
completely correct Mizar text, apart from errors *4 and *1. These errors say
that reasoning steps are not justified. (Therefore, in a formal proof sketch one
can leave out all labels and justifications to make it more readable.)
A formal proof sketch falls between a formalization with full proofs and an

abstract with all proofs removed. In a formal proof sketch some of the steps, as
well as the connections between the steps, have been removed.
A formal proof sketch is called correct, if one can add labels, justifications and

steps to it, in such a way that one gets a correct Mizar formalization. We call such
a formalization the completion of the sketch. Being correct is a semi-decidable
notion. If a sketch is correct one can show so by exhibiting a completion, but if
it is not, there is no guaranteed way to find out.
The observation of this note is that, given an informal natural language proof,

it is possible to write a correct formal proof sketch which is linguistically very
close to it. In this note we will show two examples of this, one in Section 2, and
one in Section 9.
The process of formalizing an informal proof, and then presenting it through

a formal proof sketch, is represented in the following diagram:

informal statement

of theorem

²²

formal
‘abstract’

informal
English proof

//

formalizing
..

_ _ _ _ _ _Â
Â
Â

Â
Â
Â

_ _ _ _ _ _

formal
proof sketch

&&MMMMMMMMMM

_ _ _ _ _ _Â
Â
Â

Â
Â
Â

_ _ _ _ _ _

formal
proof sketch

OO

full
formalization

presenting

BB

For our first example the informal English proof and the formal proof sketch are
in Section 2, while the full formalization is in Section 4. For our second example,
all three representations are next to each other in Section 9.
When completing a formal proof sketch into a full formalization, sometimes

one modifies the structure of the proof a bit. This makes the formal proof sketch
change too: hence the two boxes for the formal proof sketch in the diagram. We
show an example of such a change in Section 9.

4 Freek Wiedijk

1.3 Related Work

Rob Nederpelt has a language called weak type theory or WTT [6], that is meant
to formalize mathematics in a way that is closer to natural language than cur-
rently is the case in formal systems. It is basically a formalization language
like the others, but without any proofs. We are not convinced that having a
separate language for this purpose is desirable or even necessary. To us Mizar
abstracts (which also are formalizations without proofs) are at least as readable
as Nederpelt’s WTT formalizations.
Paul Jackson told us that in the NuPRL community it is customary to present

proofs by showing the statements from the goals interleaved with the tactics from
the proof script. To improve the presentation one then ‘groups’ the tactics and
gets a much shorter presentation. This is very similar to what we describe in this
note. The main difference is that in the case of NuPRL it is not easy to write
the proof sketch before working out the full formalization. In the case of Mizar
it is. Another difference is that in the case of Mizar the result is much closer to
that informal English version of the proof than in NuPRL.

1.4 Contribution

Our contribution is twofold:

– We note that it is possible to get very close to informal mathematical English
using Mizar syntax, as long as one does not mind omitting justifications for
the steps.

– We note that one can give a formal definition of a notion called formal proof
sketch for this. (Note that in this note we do not give this formal definition,
but it does exist.)

1.5 Outline

The plan of the paper: in Section 2 we present an informal English proof with its
formal proof sketch approximation. In Section 3 we discuss how the typographical
differences obfuscate the similarity of those two versions of the proof. In Section 4
we give the full Mizar formalization of the proof. In Section 5 and Section 6 we
study whether we can make the full formalization be closer to the formal proof
sketch by using a complete first order prover (instead of the restricted inference
engine of Mizar) and by using computer algebra. In Sections 7 and 8 we look at
possibilities of using formal proof sketches in the interface of a proof assistant.
Finally, in Section 9 we present a second example of a formal proof sketch.

2 A formal proof sketch

In Hardy and Wright’s An Introduction to the Theory of Numbers [3], the irra-
tionality of

√
2 is proved on pp. 39–40 in the following way:

Formal proof sketches 5

Theorem 43 (Pythagoras’ theorem).
√
2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows. If
√
2 is

rational, then the equation
a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and therefore
a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is also even, contrary
to the hypothesis that (a, b) = 1. 2

If one writes this text in Mizar syntax, it turns out to be almost identical:

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

consider a,b such that

4_3_1: a^2 = 2*b^2 and

a,b are_relative_prime; ←1
a^2 is even; ←2
a is even; ←3
consider c such that a = 2*c; ←4
4*c^2 = 2*b^2; ←5
2*c^2 = b^2; ←6
b is even; ←7
thus contradiction; ←8
end;

With an appropriate environ header, this is correct Mizar, except for eight
‘reasoning errors’, as indicated by the numbered arrows. We call such a Mizar
text that only has reasoning errors a formal proof sketch.

3 Comparing typography

The informal proof and the corresponding formal proof sketch are more similar
than might seem at a first glance, because one of them is printed as natural
language in a text font, while the other is printed with one step per line in a
typewriter font. To stress the similarity of the texts, here they are next to each
other:

6 Freek Wiedijk

Theorem 43. theorem Th43:√
2 is irrational. sqrt 2 is irrational

proof

If
√
2 is rational, assume sqrt 2 is rational;

then the equation consider a,b such that

(4.3.1) a2 = 2b2 is soluble in 4_3_1: a^2 = 2*b^2 and

integers a, b with (a, b) = 1. A1: a,b are_relative_prime;

Hence a2 is even, a^2 is even;

and therefore a is even. a is even;

If a = 2c, consider c such that a = 2*c;

then 4c2 = 2b2, 4*c^2 = 2*b^2;

2c2 = b2, 2*c^2 = b^2;

and b is also even, b is even;

contrary to the hypothesis thus contradiction

that (a, b) = 1. by A1;

2 end;

On the left there is the Hardy & Wright original, on the right is the formal proof
sketch translation. We also can write the ‘Mizar’ of the formal proof sketch in
‘natural language typography’ like this:

Theorem
√
2 is irrational.

Proof Assume
√
2 is rational. Then consider a, b such that

a2 = 2b2

and a, b are relative prime. a2 is even. Then a is even. Then consider
c such that a = 2c. 4c2 = 2b2. Then 2c2 = b2. Then b is even. Hence
contradiction. 2

This text exactly follows the Mizar syntax. The only changes are that the formu-
las have been written with symbols and that the capitalization and punctuation
has been modified slightly.

4 The full proof

If we ‘fill out’ the formal proof sketch from Section 2 to a full Mizar article, we
get:

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider a,b such that

B1: b <> 0 and

B2: sqrt 2 = a/b and

A1: a,b are relative prime by Def1;

B3: b^2 <> 0 by B1,SQUARE_1:73;

Formal proof sketches 7

2 = (a/b)^2 by B2,SQUARE_1:def 4

.= a^2/b^2 by SQUARE_1:69;

then

4 3 1: a^2 = 2*b^2 by B3,REAL_1:43;

a^2 is even by 4_3_1,ABIAN:def 1;

then

A2: a is even by PYTHTRIP:2;

then consider c such that

A3: a = 2*c by ABIAN:def 1;

B4: 4*c^2 = (2*2)*c^2

.= 2^2*c^2 by SQUARE_1:def 3

.= 2*b^2 by A3,4_3_1,SQUARE_1:68;

2*(2*c^2) = (2*2)*c^2 by AXIOMS:16

.= 2*b^2 by B4;

then 2*c^2 = b^2 by REAL_1:9;

then b^2 is even by ABIAN:def 1;

then b is even by PYTHTRIP:2;

then 2 divides a & 2 divides b by A2,Def2;

then

B5: 2 divides a gcd b by INT_2:33;

a gcd b = 1 by A1,INT_2:def 4;

hence contradiction by B5,INT_2:17;

end;

In this, the formal proof sketch parts have been underlined. This proof needs two
‘lemmas’ (in the form of redefinitions) that are not present in the Mizar library:

redefine attr x is rational means

:Def1: ex a,b st b <> 0 & x = a/b & a,b are_relative_prime;

and:

redefine attr a is even means

:Def2: 2 divides a;

5 Bigger steps from a stronger first order prover

One can show the relation between the full proof and the formal proof sketch
by studying relations between graphs. We draw graphs in which the steps of a
proof are represented by the vertices, and where justifications are represented
by the edges. The graph that we give here is not the graph of the example (that
one would be too big), but a simplified version of the upper part of it.
The graph on the left corresponds to the full article. The steps that are

in the formal proof sketch as well, have been put in boxes. The graph on the
right corresponds to the formal proof sketch. The graph in the middle is an
intermediate version: here the appropriate connections have been left in. These
justifications are too ‘big’ for Mizar to be verified. If Mizar inferences would be

8 Freek Wiedijk

allowed to be arbitrarily difficult first order inferences, the article corresponding
to this graph would be correct Mizar.

a

²²

a

²²

a

b

¡¡¡¡
¡¡

¡
²² ÁÁ>

>>
>>

b

ºº

ÁÁ>
>>

>>
b

c

²²

d

²²

e

¡¡££
££

£

²²

e

©©³³
³³
³³
³³
³³
³

ªª

e

f

ÁÁ=
==

==
g

²²
h

²²

h

¹¹.
..

..
..

..
. h

i

ÁÁ=
==

==
j

²²
k k k

The Mizar text for the example that corresponds to the middle graph is:

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider a,b such that

4_3_1: a^2 = 2*b^2 and

A1: a,b are_relative_prime by Def1,SQUARE_1:73,

SQUARE_1:def 4,SQUARE_1:69,REAL_1:43; ←1
a^2 is even by 4_3_1,ABIAN:def 1; ←2
then

A2: a is even by PYTHTRIP:2; ←3
then consider c such that

A3: a = 2*c by ABIAN:def 1; ←4
4*c^2 = 2*b^2 by A3,4_3_1,SQUARE_1:def 3,SQUARE_1:68; ←5
then 2*c^2 = b^2 by AXIOMS:16,REAL_1:9; ←6
then b is even by ABIAN:def 1,PYTHTRIP:2; ←7
hence contradiction by A1,A2,ABIAN:def 1,INT_1:def 9,

INT_2:33,INT_2:def 4,INT_2:17; ←8
end;

The lists of references to theorems in the justifications get quite long, because the
justifications of several steps have been ‘put together’. In practice determining
those lists is as much work as doing the intermediate steps one-selves. Therefore
no-one would write a proof like this, even if Mizar could justify arbitrarily big
first order steps.
Still it is interesting to see how well a full first order prover can do on these

steps. The HOL Light system by John Harrison [4] implements a full first order

Formal proof sketches 9

prover called MESON_TAC. We gave the first order problems corresponding to the
eight inference steps to this prover. The steps in TPTP format were provided to
us by Josef Urban. The result of this test was:

Mizar Meson
1→ − −
2→ + + 61 1.49 s
3→ + + 20 0.14 s
4→ + + 142 1.02 s
5→ − −
6→ − −
7→ − + 18839 4.71 s
8→ − −

The last two columns are number of inferences for the step and the time it took
to find those inferences. For the steps for which HOL Light could not find a
justification, we let MESON_TAC run for at least an hour on a 1GHz machine, and
we let it try at least ten million inferences.
Surprisingly, although the first order prover in HOL Light can in theory do

arbitrarily complicated first order problems, in practice it does about as well as
Mizar.

6 Bigger steps from computer algebra

Most of the eight ‘problems’ from the previous section do not involve logical
quantifiers, but are basically algebraic in character:

1→ b 6= 0 ∧
√
2 =

a

b
` a2 = 2b2

2→ b ∈ Z ∧ a2 = 2b2 ` 2 | a2

3→ a ∈ Z ∧ 2 | a2 ` 2 | a

5→ a2 = 2b2 ∧ a = 2c ` 4c2 = 2b2
6→ 4c2 = 2b2 ` 2c2 = b2

7→ b ∈ Z ∧ c ∈ Z ∧ 2c2 = b2 ` 2 | b
8→ (a, b) = 1 ∧ 2 | a ∧ 2 | b ` ⊥

The omitted fourth step (and the omitted part of the first step) involves an
existential quantifier.
It is not practical to use a first order reasoning tool to find the steps to

get from a2 = 2b2 and a = 2c to 4c2 = 2b2. This is a problem to be solved
algorithmically, and not by searching.
To be able to be allowed steps like this in a formalization, one would like

to have an algebraic decision procedure that knows about the notions in these
inferences. If one had such a decision procedure, one would be able to get closer
to the formal proof sketch.

10 Freek Wiedijk

7 Hyperlinks between formal proof sketch and full
formalization

We will now turn to the question of how to integrate formal proof sketches into
an interface to make a formalization more accessible.
The simplest is to put two windows next to each other in the interface:

one with the full formalization and one with the formal proof sketch. In such an
interface it would be nice if those two windows were ‘synchronized’ in such a way
that when scrolling one, the corresponding part of the other always appear next
to it. Alternatively one could have ‘hyperlinks’ between the two representations
to easily go from a position in the one to the corresponding position in the other.
In such an interface the underlined parts of the proof from Section 4 would be
links to the corresponding place in the abstract.
One would like to have a tool to extract a formal proof sketch from a Mizar

formalization. For that one would like to have some syntax in the Mizar language
to ‘mark’ the steps that should appear in the formal proof sketch. Such a tool
has to be a bit subtle, because it should also extract all constructions like ‘let’,
‘consider’ and ‘set’ which introduce variables that are used in the extracted
steps in the formal proof sketch.

8 Folding in the interface

Alternatively one could have only one window, with a ‘folding interface’. On
request of the user some parts of the full formalization might be ‘hidden’, to
make the text look more like the formal proof sketch, and therefore easier to
understand.
The naive way to do this, is to complete the formal proof sketch with subproofs

and then hide the subproofs on request. That way the proof will look like:

theorem Th43:

sqrt 2 is irrational

proof

assume

C1: sqrt 2 is rational;

. . . ; then consider a,b such that

4_3_1: a^2 = 2*b^2 and

A1: a,b are_relative_prime;

a^2 is even by 4_3_1,ABIAN:def 1;

then

A2: a is even by PYTHTRIP:2;

then consider c such that

A3: a = 2*c by ABIAN:def 1;

B4: 4*c^2 = 2*b^2 . . . ;

C3: 2*c^2 = b^2 . . . ;

C4: b is even . . . ;

Formal proof sketches 11

thus contradiction . . . ;

end;

Here the ellipsis symbols ‘. . .’ represent hidden subproofs of on average six lines
each. The disadvantage of this approach is that the full formalization will not
be ‘ordinary’ Mizar. In a normal Mizar article subproofs occur much less often
than here.
A more natural way for Mizar to fold parts of a proof is to fold away steps.

That way one gets:

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider a,b such that

. . . and . . . and

A1: a,b are_relative_prime by Def1;

. . . ; ; then

4_3_1: a^2 = 2*b^2 by B3,REAL_1:43;

a^2 is even by 4_3_1,ABIAN:def 1;

then

A2: a is even by PYTHTRIP:2;

then consider c such that

A3: a = 2*c by ABIAN:def 1;

B4: 4*c^2= 2*b^2 by A3,4_3_1,SQUARE_1:68;

. ; then 2*c^2 = b^2 by REAL_1:9;

. . . ; then b is even by PYTHTRIP:2;

. . . ; . . . ; . . . ; hence contradiction by B5,INT_2:17;

end;

Note that this still is basically the same structure as the formal proof sketch,
although it looks much ‘messier’. In this version the folded parts are all the same
size, one line long:

. . . 1 ≡ B1: b <> 0

. . . 2 ≡ B2: sqrt 2 = a/b

. . . 3 ≡ B3: b^2 <> 0 by B1,SQUARE_1:73

. . . 4 ≡ 2 = (a/b)^2 by B2,SQUARE_1:def 4

. . . 5 ≡ .= a^2/b^2 by SQUARE_1:69

. . . 6 ≡ = (2*2)*c^2

. . . 7 ≡ .= 2^2*c^2 by SQUARE_1:def 3

. . . 8 ≡ 2*(2*c^2) = (2*2)*c^2 by AXIOMS:16

. . . 9 ≡ .= 2*b^2 by B4

. . .10 ≡ then b^2 is even by ABIAN:def 1

. . .11 ≡ then 2 divides a & 2 divides b by A2,Def2

. . .12 ≡ then B5: 2 divides a gcd b by INT_2:33

12 Freek Wiedijk

. . .13 ≡ a gcd b = 1 by A1,INT_2:def 4

A third way of folding is to keep the proof the way it is, but to hide all labels
and justifications:

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

consider a,b such that

b <> 0 and

sqrt 2 = a/b and

a,b are_relative_prime;

b^2 <> 0;

2 = (a/b)^2

.= a^2/b^2;

a^2 = 2*b^2;

a^2 is even;

a is even;

consider c such that

a = 2*c;

4*c^2 = (2*2)*c^2

.= 2^2*c^2

.= 2*b^2;

2*(2*c^2) = (2*2)*c^2

.= 2*b^2;

2*c^2 = b^2;

b^2 is even;

b is even;

2 divides a & 2 divides b;

2 divides a gcd b;

a gcd b = 1;

thus contradiction;

end;

This is rather long, but it is much more readable than the formalization with
the labels and justifications shown.

9 Another example

We will now present a second example, taken from the linear algebra part of a
textbook [2]. This textbook currently has not been published on paper yet, but
it is available on the WWW.
On p. 16, we find the lemma:

Lemma 2.1. Given a linearly independent family (ui)i∈I of elements of
a vector space E, if v ∈ E is not a linear combination of (ui)i∈I , then

Formal proof sketches 13

the family (ui)i∈I ∪k (v) obtained by adding v to the family (ui)i∈I is
linearly independent (where k 6∈ I).
Proof. Assume that µv+

∑
i∈I

λiui = 0, for any family (λi)i∈I of scalars
in K. If µ 6= 0, then µ has an inverse (because K is a field), and thus
we have v = −∑

i∈I
(µ−1λi)ui, showing that v is a linear combination

of (ui)i∈I and contradicting the hypothesis. Thus, µ = 0. But then, we
have

∑
i∈I

λiui = 0, and since the family (ui)i∈I is linearly independent,
we have λi = 0 for all i ∈ I. 2

The formal proof sketch that corresponds to this is:

theorem Lem21:

u is linearly-independent & not v in Lin(u) implies

u \/ {v} is linearly-independent

proof

assume u is linearly-independent & not v in Lin(u);

assume u \/ {v} is linearly-dependent;

consider m being Element of K,

l being Linear_Combination of u such that

m*v + Sum(l) = 0.E;

now

assume m <> 0.K;

v = -m"*Sum(l);

v in Lin(u);

thus contradiction;

end;

m = 0.K;

Sum(l) = 0.E;

Carrier(l) = {};

thus contradiction;

end;

To show the similarity between the two, here is the informal English version next
to the formulas from the formal proof sketch:

Assume that µv +
∑

i∈I
λiui = 0, m*v + Sum(l) = 0.E

for any family (λi)i∈I of scalars in K.
If µ 6= 0, m <> 0.K

then µ has an inverse (because K is a field),
and thus we have v = −∑

i∈I
(µ−1λi)ui, v = -m"*Sum(l)

showing that v is a linear combination of (ui)i∈I v in Lin(u)

and contradicting the hypothesis. contradiction

Thus, µ = 0 m = 0.K

But then, we have
∑

i∈I
λiui = 0, Sum(l) = 0.E

and since the family (ui)i∈I is linearly independent,
we have λi = 0 for all i ∈ I. Carrier(l) = {}

Here is the full formalization that one gets by completing the formal proof sketch:

14 Freek Wiedijk

theorem

u is linearly-independent & not v in Lin(u) implies

u \/ {v} is linearly-independent

proof

assume

A1: u is linearly-independent & not v in Lin(u);

assume u \/ {v} is linearly-dependent;

then consider l’ being Linear_Combination of u \/ {v}

such that

A2: Sum(l’) = 0.E & Carrier(l’) <> {} by VECTSP_7:def 1;

consider m’ being Linear_Combination of {v},

l being Linear_Combination of u such that

A3: l’ = m’ + l by Th2;

set m = m’.v;

A4: m*v + Sum(l) = Sum(m’) + Sum(l) by VECTSP_6:43

.= 0.E by A2,A3,VECTSP_6:77;

now

assume

A5: m <> 0.K;

m*v = -Sum(l) by A4,RLVECT_1:def 10;

then v = m"*(-Sum(l)) by A5,VECTSP_1:67

.= -m"*Sum(l) by VECTSP_1:69;

then

A6: v = (-m")*Sum(l) by VECTSP_1:68;

Sum(l) in Lin(u) by VECTSP_7:12;

then v in Lin(u) by A6,VECTSP 4:29;

hence contradiction by A1;

end;

then

A7: m = 0.K;

Sum(l) = 0.E + Sum(l) by VECTSP_1:7

.= 0.E by A4,A7,VECTSP_1:59;

then

A8: Carrier(l) = {} by A1,VECTSP_7:def 1;

now

let x be set;

A9: Carrier(m’) c= {v} by VECTSP_6:def 7;

not v in Carrier(m’) by A7,VECTSP_6:20;

hence not x in Carrier(m’) by A9,TARSKI:def 1;

end;

then Carrier(m’) = {} by BOOLE:def 1;

then Carrier(l) \/ Carrier(m’) = {} by A8;

then Carrier(l’) c= {} by A3,VECTSP_6:51;

hence contradiction by A2,BOOLE:30;

end;

Formal proof sketches 15

The steps that have been underlined in this proof can be omitted (as pointed
out by the relinfer tool). When one omits them, and then again extracts the
formal proof sketch, one gets:

theorem Lem21:

u is linearly-independent & not v in Lin(u) implies

u \/ {v} is linearly-independent

proof

assume u is linearly-independent & not v in Lin(u);

given l’ being Linear_Combination of u \/ {v} such that

Sum(l’) = 0.E & Carrier(l’) <> {};

consider m’ being Linear_Combination of {v},

l being Linear_Combination of u such that

l’ = m’ + l;

set m = m’.v;

m*v + Sum(l) = 0.E;

now

assume m <> 0.K;

v = -m"*Sum(l);

thus contradiction;

end;

Sum(l) = 0.E;

Carrier(l) = {};

thus contradiction;

end;

This is clearly less readable than the first version of the formal proof sketch.
When one does the experiment with HOL Light’s MESON_TAC for this example,

one discovers that HOL Light is not even able to do the steps that Mizar can
do. The reason for this is that the typing of the objects in this proof is quite
involved, and it is too complicated to discover the necessary deductions to get
the necessary typing judgments by first order proof search.
The two steps in this example which are of the ‘algebraic problem’ type, are:

µv +
∑

λ = 0 ∧ µ 6= 0 ` v = −µ−1
∑

λ

µv +
∑

λ = 0 ∧ µ = 0 `
∑

λ = 0

These may seem trivial, but Mizar is not powerful enough to do either one
of them in one step. Also, note that these are not algebraic problems about
numbers, but about abstract entities like elements of an arbitrary field, vectors
in an arbitrary vector space, and ‘linear combinations of vectors’.

16 Freek Wiedijk

10 Conclusion

10.1 Discussion

We presented the notion of formal proof sketch and looked at some possibilities
to use this to make a better interface for presentations of formalizations. The
main things that one should consider are:

– The dual window approach from Section 7.
– The third variant of the folding interface from Section 8, where the labels
and justifications can be hidden.

To get a ‘better’ proof checker one should:

– Study algebraic decision procedures as discussed in Section 6.

10.2 Future work

We want to investigate the existing algebraic decision procedures (like for in-
stance in the ICS system [1]) to find out how well they can do the algebraic
problems from Section 6.

10.3 Acknowledgments

Thanks to Josef Urban for his translation of the proof obligations in a Mizar
article to TPTP format. Thanks to Dan Synek for the example from Section 9.
Thanks to Henk Barendregt for encouraging remarks.

References

1. Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, and N. Shankar. ICS: integrated

canonizer and solver. To be presented at CAV’2001, 2001.

2. Jean Gallier. Basics of Algebra and Analysis For Computer Science. University of

Pennsylvania, 2001. Published at:

URL: <http://www.cis.upenn.edu/~jean/gbook.html>.

3. G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Clarendon
Press, Oxford, fourth edition, 1960.

4. John Harrison. The HOL Light manual (1.1), 2000.
URL: <http://www.cl.cam.ac.uk/users/jrh/hol-light/manual-1.1.ps.gz>.

5. M. Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,

1993.

URL: <http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz>.

6. Rob Nederpelt. Weak Type Theory, a formal language for mathematics. Draft

version, July 2001.

7. F. Wiedijk. Mizar: An Impression.

URL: <http://www.cs.kun.nl/~freek/mizar/mizarintro.ps.gz>, 1999.

Formal proof sketches 17

A The smallest first order problem from Section 5

We will now show an example of the problems that we gave to MESON_TAC in
Section 5. It is the smallest of these first order problems, which is step number
3 in the formal proof sketch. That problem is (where the variable a has type
Integer):

a^2 is even

for i being Integer holds i is even iff i^2 is even

a is even

The corresponding problem that we gave to MESON_TAC looks much more com-
plicated:

v1_abian (k5_square_1 c1) /\

(!U:V. v1_int_1 U

==> ~(v1_abian U /\ ~v1_abian (k5_square_1 U)) /\

~(v1_abian (k5_square_1 U) /\ ~v1_abian U)) /\

v1_int_1 c1 /\

v1_int_1 c2 /\

(!U. m1_subset_1 U k1_arytm ==> m1_subset_1 (k5_square_1 U) k1_arytm) /\

(!U. m1_subset_1 U k5_ordinal2 ==> m1_subset_1 (k5_square_1 U) k5_ordinal2) /\

(!U. v1_int_1 U ==> m1_subset_1 (k5_square_1 U) k5_ordinal2) /\

(!U. v1_int_1 U ==> v1_arytm U) /\

(!U V W.

(~v1_subset_1 U /\ ~v1_subset_1 V /\ m1_subset_1 V (k1_zfmisc_1 U)) /\

m1_subset_1 W V

==> m1_subset_1 W U) /\

m1_subset_1 k5_ordinal2 (k1_zfmisc_1 k1_arytm) /\

(!U. m1_subset_1 U k5_ordinal2

==> v1_ordinal1 U /\

v2_ordinal1 U /\

v3_ordinal1 U /\

v4_ordinal2 U /\

v1_arytm U /\

v1_int_1 U) /\

(!U. m1_subset_1 U k1_arytm ==> v1_arytm U) /\

(!U. v1_arytm U ==> v1_arytm (k5_square_1 U)) /\

~v1_subset_1 k1_arytm /\

~v1_subset_1 k5_ordinal2 /\

(!U. v4_ordinal2 U ==> v1_int_1 U) /\

(!U. v4_ordinal2 U ==> v1_arytm U) /\

(!U V. r2_hidden U V = m1_subset_1 U V /\ ~v1_subset_1 V) /\

(!U V. r1_tarski U V = m1_subset_1 U (k1_zfmisc_1 V)) /\

(!U V. v1_subset_1 U /\ ~(U = V) ==> ~v1_subset_1 V) /\

(!U. r1_tarski U U) /\

(!U. v3_ordinal1 U ==> r1_tarski U U) /\

(!U V. v3_ordinal1 U /\ v3_ordinal1 V ==> r1_tarski U V \/ r1_tarski V U) /\

(!U V. r2_hidden U V ==> ~r2_hidden V U) /\

18 Freek Wiedijk

(!U V W.

r2_hidden U V /\ m1_subset_1 V (k1_zfmisc_1 W)

==> m1_subset_1 U W /\ ~v1_subset_1 W)

==> v1_abian c1

The reason for this is that we use MESON_TAC as an untyped prover (the HOL
type system is not powerful enough to accommodate the Mizar type system), so
all relevant typing judgments have to be given as first order sentences.
The syntax that is used here does not use Mizar notation, but gives each ‘con-

structor’ with a code. These codes translate back to the original Mizar notation
according to the following table:

k1_zfmisc_1 bool

k5_ordinal2 NAT

k1_arytm REAL

k5_square_1 ^2

r2_hidden in

r1_tarski c=

m1_subset_1 Element

v1_subset_1 empty

v1_ordinal1 epsilon-transitive

v2_ordinal1 epsilon-connected

v3_ordinal1 ordinal

v4_ordinal2 natural

v1_int_1 integer

v1_arytm real

v1_abian even

We now transform the HOL problem back to Mizar using this translation. Note
the following Mizar type equivalences:

Nat ≡ Element of NAT

Integer ≡ integer set

Real ≡ Element of REAL

Subset of X ≡ Element of bool X

The problem that we gave to MESON_TAC is in Mizar notation:

Formal proof sketches 19

a^2 is even

for i being integer set holds i is even iff i^2 is even

a is integer

b is integer

for x being Element of REAL holds x^2 is Element of REAL

for n being Element of NAT holds n^2 is Element of NAT

for a being integer set holds a^2 is Element of NAT

for IT being integer set holds IT is real

for D being non empty set, X being non empty Element of bool D,

IT being Element of X holds IT is Element of D

NAT is Element of bool REAL

for IT being Element of NAT holds IT is epsilon-transitive

epsilon-connected ordinal natural real integer

for IT being Element of REAL holds IT is real

for x being real set holds x^2 is real

REAL is non empty

NAT is non empty

for IT being natural set holds IT is integer

for IT being natural set holds IT is real

for U,V being set holds U in V iff (U is Element of V & V is non empty)

for U,V being set holds U c= V iff U is Element of bool V

for U,V being set st U is empty & U <> V holds V is non empty

for U being set holds U c= U

for U being ordinal set holds U c= U

for U being ordinal set, V being ordinal set holds U c= V or V c= U

for U being set, V being set st U in V holds not V in U

for U,V,W being set st U in V & V is Element of bool W holds

U is Element of W & W is non empty

a is even

