Ten Formal Proof Sketches

Freek Wiedijk
Radboud University Nijmegen

Abstract

This note collects the formal proof sketches that I have done.

1 Algebra: Irrationality of $\sqrt{2}$

1.1 Source

G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers. 4th edition, Clarendon Press, Oxford, 1960. Pages 39-40.

1.2 Informal Proof

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$
\begin{equation*}
a^{2}=2 b^{2} \tag{4.3.1}
\end{equation*}
$$

is soluble in integers a, b with $(a, b)=1$. Hence a^{2} is even, and therefore a is even. If $a=2 c$, then $4 c^{2}=2 b^{2}, 2 c^{2}=b^{2}$, and b is also even, contrary to the hypothesis that $(a, b)=1$.

1.3 Formal Proof Sketch: Informal Layout

theorem Th43: sqrt 2 is irrational :: Pythagoras' theorem
PROOF assume sqrt 2 is rational; consider a, b such that

4_3_1:
 $a^{\wedge} 2=2 * b^{\wedge} 2$

and a, b are_relative_prime; $a^{\wedge} 2$ is even; a is even; consider c such that $a=2 * c$; $4 * c^{\wedge} 2=2 * b^{\wedge} 2 ; 2 * c^{\wedge} 2=b^{\wedge} 2 ; b$ is even; thus contradiction; END;

1.4 Formal Proof Sketch: Formal Layout

```
theorem Th43: sqrt 2 is irrational
proof
    assume sqrt 2 is rational;
    consider a,b such that
4_3_1: a^2 = 2*b^2 and
    a,b are_relative_prime;
```

a^2 is even; *4
a is even; *4
consider c such that a = 2*c; *4
4*c^2 = 2*b^2; *4
2*c^2 = b^2; *4
b is even; *4
thus contradiction; *1
end;

```

\subsection*{1.5 Formal Proof}
```

theorem Th43: sqrt 2 is irrational
proof
assume sqrt 2 is rational;
then consider a,b such that
A1: b <> 0 and
A2: sqrt 2 = a/b and
A3: a,b are_relative_prime by Def1;
A4: b^2 <> 0 by A1,SQUARE_1:73;
2 = (a/b) ^2 by A2,SQUARE_1:def 4
.= a^2/b^2 by SQUARE_1:69;
then
4_3_1: a^2 = 2*b^2 by A4,REAL_1:43;
a^2 is even by 4_3_1,ABIAN:def 1;
then
A5: a is even by PYTHTRIP:2;
then consider c such that
A6: a = 2*c by ABIAN:def 1;
A7: 4*C^2 = (2*2)*C^2
.= 2^ 2*c^2 by SQUARE_1:def 3
.= 2*b^2 by A6,4_3_1,SQUARE_1:68;
2*(2*c^2) = (}2*2)*\mp@subsup{c}{}{\wedge}2 by AXIOMS:16
.= 2*b^2 by A7;
then 2*c^2 = b^2 by REAL_1:9;
then b^2 is even by ABIAN:def 1;
then b is even by PYTHTRIP:2;
then 2 divides a \& 2 divides b by A5,Def2;
then
A8: 2 divides a gcd b by INT_2:33;
a gcd b = 1 by A3,INT_2:def 4;
hence contradiction by A8,INT_2:17;
end;

```

\subsection*{1.6 Mizar Version}
6.1.11-3.33.722

\section*{2 Algebra: Infinity of Primes}

\subsection*{2.1 Source}

The slides of a talk by Herman Geuvers, Formalizing an intuitionistic proof of the Fundamental Theorem of Algebra.

\subsection*{2.2 Informal Proof}

Theorem There are infinitely many primes: for every number \(n\) there exists a prime \(p>n\)

Proof [after Euclid]
Given \(n\). Consider \(k=n!+1\), where \(n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n\).
Let \(p\) be a prime that divides \(k\).
For this number \(p\) we have \(p>n\) : otherwise \(p \leq n\);
but then \(p\) divides \(n\) !,
so \(p\) cannot divide \(k=n!+1\), contradicting the choice of \(p\). QED

\subsection*{2.3 Formal Proof Sketch: Informal Layout}

THEOREM \(\{n: n\) is prime \(\}\) is infinite PROOF
for \(n\) ex \(p\) st \(p\) is prime \(\& p>n\)
pROOF :: [after Euclid]
let \(n\); set \(k=n!+1\);
consider \(p\) such that \(p\) is prime \& \(p\) divides \(k\);
take \(p\); thus \(p\) is prime; thus \(p>n\) PROOF assume \(p<=n\); \(p\) divides \(n\) !;
not \(p\) divides \(n!+1\);
thus contradiction; END; END; thus thesis; END;

\subsection*{2.4 Formal Proof Sketch: Formal Layout}
```

theorem {n: n is prime} is infinite
proof
for n ex p st p is prime \& p > n
proof
let n;
set k = n! + 1;
consider p such that p is prime \& p divides k; *4
take p;
thus p is prime; *4
thus p > n
proof
assume p <= n;

```
```

 p divides n!; *4
 not p divides n! + 1; *4
 thus contradiction; *1
 end;
 end;
thus thesis; *4
end;

```

\subsection*{2.5 Formal Proof}
```

theorem {p: p is prime} is infinite
proof
A1: for n ex p st p is prime \& p > n
proof
let n;
set k = n! + 1;
n! > 0 by NEWTON:23;
then n! >= 0 + 1 by NAT_1:38;
then k >= 1 + 1 by REAL_1:55;
then consider p such that
A2: p is prime \& p divides k by INT_2:48;
take p;
thus p is prime by A2;
assume
A3: p<= n;
p <> 0 by A2,INT_2:def 5;
then
A4: p divides n! by A3,NAT_LAT:16;
p > 1 by A2,INT_2:def 5;
then not p divides 1 by NAT_1:54;
hence contradiction by A2,A4,NAT_1:57;
end;
thus thesis from Unbounded(A1);
end;

```

\subsection*{2.6 Mizar Version}
6.1.11-3.33.722

\section*{3 Algebra: Image of Left Unit Element}

\subsection*{3.1 Source}

Rob Nederpelt, Weak Type Theory: A formal language for mathematics. Computer Science Report 02-05, Eindhoven University of Technology, Department of Math. and Comp. Sc., May 2002. Page 42.

\subsection*{3.2 Informal Proof}

Theorem. Let \(G\) be a set with a binary operation • and left unit element \(e\). Let \(H\) be a set with binary operation \(*\) and assume that \(\phi\) is a homomorphism of \(G\) onto \(H\). Then \(H\) has a left unit element as well.

Proof. Take \(e^{\prime}=\phi(e)\). Let \(h \in H\). There is \(g \in G\) such that \(\phi(g)=h\). Then
\[
e^{\prime} * h=\phi(e) * \phi(g)=\phi(e \cdot g)=\phi(g)=h,
\]
hence \(e^{\prime}\) is left unit element of \(H\).

\subsection*{3.3 Formal Proof Sketch: Informal Layout}
let \(G, H\) be non empty HGrStr; let \(e\) be Element of \(G\) such that \(e\) is_left_unit_of \(G\); let \(p h i\) be map of \(G, H\) such that \(p h i\) is_homomorphism \(G, H\) and \(p h i\) is onto; thus ex \(e^{\prime}\) being Element of \(H\) st \(e^{\prime}\) is_left_unit_of \(H\)

PROOF take \(e^{\prime}=p h i . e\); now let \(h\) be Element of \(H\); consider \(g\) being Element of \(G\) such that phi.g \(=h\); thus
\[
e^{\prime} * h=p h i . e * p h i . g .=p h i .(e * g) .=p h i . g .=h
\]
end; hence \(e^{\prime}\) is_left_unit_of \(H\);
END;

\subsection*{3.4 Formal Proof Sketch: Formal Layout}
```

let G,H be non empty HGrStr;
let e be Element of G such that e is_left_unit_of G;
let phi be map of G,H such that
phi is_homomorphism G,H and phi is onto;
thus ex e' being Element of H st e' is_left_unit_of H
proof
take e' = phi.e;
now
let h be Element of H;
consider g being Element of G such that phi.g = h; *4
thus e' * h = phi.e * phi.g .= phi.(e * g) .= phi.g .= h; *4*4*4*4
end;
hence e' is_left_unit_of H; *4
end;

```

\subsection*{3.5 Formal Proof}
```

 let G,H be non empty HGrStr;
 let e be Element of G such that
 H1: e is_left_unit_of G;
let phi be map of G,H such that
H2: phi is_homomorphism G,H and

```
```

H3: phi is onto;
thus ex e' being Element of H st e' is_left_unit_of H
proof
take e' = phi.e;
now
let h be Element of H;
consider g being Element of G such that
A1: phi.g = h by H3,Th1;
thus e' * h = phi.(e * g) by A1,H2,Def2
= h by A1,H1,Def1;
end;
hence e' is_left_unit_of H by Def1;
end;

```

\subsection*{3.6 Mizar Version}
6.1.11-3.33.722

\section*{4 Algebra: Lagrange's Theorem}

\subsection*{4.1 Source}
B.L. van der Waerden, Algebra. 5th edition, Springer-Verlag, Berlin, 1966. Page 26.

\subsection*{4.2 Informal Proof}

Zwei Nebenklassen \(a \mathfrak{g}, b \mathfrak{g}\) können sehr wohl gleich sein, ohne daß \(a=b\) ist. Immer dann nämlich, wenn \(a^{-1} b\) in \(\mathfrak{g}\) liegt, gilt
\[
b \mathfrak{g}=a a^{-1} b \mathfrak{g}=a\left(a^{-1} b \mathfrak{g}\right)=a \mathfrak{g} .
\]

Zwei verschiedene Nebenklassen haben kein Element gemeinsam. Denn wenn die Nebenklassen \(a \mathfrak{g}\) und \(b \mathfrak{g}\) ein Element gemein haben, etwa
\[
a g_{1}=b g_{2}
\]
so folgt
\[
g_{1} g_{2}^{-1}=a^{-1} b
\]
so daß \(a^{-1} b\) in \(\mathfrak{g}\) liegt; nach dem Vorigen sind also \(a \mathfrak{g}\) und \(b \mathfrak{g}\) identisch.
Jedes Element \(a\) gehört einer Nebenklasse an, nämlich der Nebenklasse \(a \mathfrak{g}\). Diese enthält ja sicher das Element \(a e=a\). Nach dem eben Bewiesenen gehört das Element \(a\) auch nur einer Nebenklasse an. Wir können demnach jedes Element \(a\) als Repräsentanten der \(a\) enthaltenden Nebenklass \(a \mathfrak{g}\) ansehen.

Nach dem vorhergehenden bilden die Nebenklassen eine Klasseneinteilung der Gruppe \(\mathfrak{G}\). Jedes Element gehört einer und nur einer Klasse an.

Je zwei Nebenklassen sind gleichmächtig. Denn durch \(a \mathfrak{g} \rightarrow b \mathfrak{g}\) ist eine eineindeutige Abbildung von \(a \mathfrak{g}\) auf \(b \mathfrak{g}\) definiert.

Die Nebenklassen sind, mit Ausnahme von \(\mathfrak{g}\) selbst, keine Gruppen; denn eine Gruppe müßte das Einselelement enthalten.

Die Anzahl der verschiedenen Nebenklassen einer Untergruppe \(\mathfrak{g}\) in \(\mathfrak{G}\) heißt der Index von \(\mathfrak{g}\) in \(\mathfrak{G}\). Der Index kann endlich oder unendlich sein.

Ist \(N\) die als (endlich angenommene) Ordnung von \(\mathfrak{G}, n\) die von \(\mathfrak{g}, j\) der Index, so gilt die Relation
\[
\begin{equation*}
N=j n \tag{2}
\end{equation*}
\]
denn \(\mathfrak{G}\) ist ja in \(j\) Klassen eingeteilt, deren jede \(n\) Elemente enthält.
Man kann für endliche Gruppen aus (2) den Index \(j\) berechnen:
\[
j=\frac{N}{n}
\]

Folge. Die Ordnung einer Untergruppe einer endlichen Gruppe ist ein Teiler der Ordnung der Gesamtgruppe.

\subsection*{4.3 Formal Proof Sketch: Informal Layout}
now let \(\mathrm{a}, \mathrm{b}\); assume \(a^{\wedge-1} * b\) in \(G\); thus
\[
b * G=a * a^{\wedge}-1 * b * G .=a *\left(a^{\wedge}-1 * b * G\right) .=a * G ; \quad \quad \text { end } ;
\]
for \(a, b\) st \(a * G<>b * G\) holds \((a * G) / \backslash(b * G)=\{ \}\)
proof let a,b; now assume \((a * G) / \backslash(b * G)<>\{ \}\); consider \(g_{1}, g_{2}\) such that
\[
\begin{gathered}
a * g_{1}=b * g_{2} \\
g_{1} * g_{2}{ }^{\wedge-1}=a^{\wedge-1} * b
\end{gathered}
\]
\(a^{\wedge}-1 * b\) in \(G\); thus \(a * G=b * G\); end; thus thesis; end;
for \(a\) holds \(a\) in \(a * G\) proof let \(a ; a * e(G)=a\); thus thesis; end;
\(\{a * G: a\) in \(H\}\) is a partition of \(H\);
for \(a, b\) holds \(\operatorname{card}(a * G)=\operatorname{card}(b * G)\) proof let \(a, b\); consider \(f\) being Function of \(a * G, b * G\) such that for \(g\) holds \(f .(a * g)=b * g ; f\) is bijective; thus thesis; end;
set 'Index' \(=\operatorname{card}\{a * G: a\) in \(H\}\);
now let \(N\) such that \(N=\) card \(H\); let \(n\) such that \(n=\operatorname{card} G\); let \(j\) such that \(j=\) 'Index'; thus
\[
N=j * n ; \quad \text { end; }
\]
thus card \(G\) divides card \(H\);

\subsection*{4.4 Formal Proof Sketch: Formal Layout}
```

now
let a,b;
assume a^-1*b in G;
thus b*G = a*a^-1*b*G .= a*(a^-1*b*G) .= a*G
end;
for a,b st a*G <> b*G holds (a*G) /\ (b*G) = {}
proof
let a,b;
now
assume (a*G) /\ (b*G) <> {};
consider g1,g2 such that a*g1 = b*g2; *4
g1*g2^-1 = a^-1*b; *4
a^-1*b in G;
thus a*G = b*G; *4
end;
thus thesis
end;
for a holds a in a*G
proof
let a;
a*e(G) = a;
*4
thus thesis; *4
end;
{a*G : a in H} is a_partition of H; *4
for a,b holds card(a*G) = card(b*G)
proof
let a,b;
consider f being Function of a*G,b*G such that
for g holds f. (a*g) = b*g; *4
f is bijective; *4
thus thesis;
*4
end;
set 'Index' = card {a*G : a in H};
now
let N such that N = card H;
let n such that n = card G;
let j such that j = 'Index';
thus
'2': N = j*n*4
end;
thus card G divides card H;

```

\subsection*{4.5 Formal Proof}

A1: now
let \(a, b\);
assume
A2: \(\mathrm{a}^{\wedge}-1 * \mathrm{~b}\) in G ;
```

 thus b*G = e(H)*b*G by GROUP_1:def 5
 .= a*a^-1*b*G by GROUP_1:def 6
 .= a*(a^-1*b)*G by GROUP_1:def 4
 = a*(a^-1*b*G) by GROUP_2:127
 .= a*(carr G) by A2,GROUP_2:136
 .= a*G by GROUP_2:def 13;
 end;
A3: for a,b st a*G <> b*G holds (a*G) /\ (b*G) = {}
proof
let a,b;
now
assume (a*G) /\ (b*G) <> {};
then consider x such that
A4: x in (a*G) /\ (b*G) by XBOOLE_0:7;
A5: x in a*G \& x in b*G by A4,XBOOLE_0:def 4;
consider g1 such that
A6: x = a*g1 by A5,Th5;
consider g2 such that
A7: x = b*g2 by A5,Th5;
set g1G = g1;
set g2G = g2;
reconsider g1 as Element of H by GROUP_2:51;
reconsider g2 as Element of H by GROUP_2:51;
A8: a*g1 = a*g1G by Th2
.= b*g2 by A6,A7,Th2;
g1G*g2G^-1 = g1*g2G^-1 by Th3
.= g1*g2^-1 by Th2,GROUP_2:57
.= e(H)*g1*g2^-1 by GROUP_1:def 5
.= a^-1*a*g1*g2^-1 by GROUP_1:def 6
.= a^-1*(a*g1)*g2^-1 by GROUP_1:def 4
.= a^-1*(b*g2*g2^-1) by A8,GROUP_1:def 4
.= a^-1*(b*(g2*g2^-1)) by GROUP_1:def 4
.= a^-1*(b*e(H)) by GROUP_1:def 6
= a^-1*b by GROUP_1:def 5;
then a^-1*b in G by STRUCT_0:def 5;
hence a*G = b*G by A1;
end;
hence thesis;
end;
A9: for a holds a in a*G
proof
let a;
a*e(G) = a*e(H) by Th2,GROUP_2:53
.= a by GROUP_1:def 5;
hence thesis;
end;
set X = {a*G : a in H};
X c= bool the carrier of H
proof
let A;

```
```

 assume A in X;
 then consider a such that
 A10: A = a*G \& a in H;
thus A in bool the carrier of H by A10,ZFMISC_1:def 1;
end;
then reconsider X as Subset-Family of H;
A11: X is a_partition of the carrier of H
proof
thus union X = the carrier of H
proof
thus union X c= the carrier of H;
let x;
assume
A12: x in the carrier of H;
then reconsider a = x as Element of H;
x in H by A12,STRUCT_0:def 5;
then a in a*G \& a*G in X by A9;
hence x in union X by TARSKI:def 4;
end;
let A be Subset of the carrier of H;
assume A in X;
then consider a such that
A13: A = a*G \& a in H;
thus A <> {} by A13;
let B be Subset of the carrier of H;
assume B in X;
then consider b such that
A14: B = b*G \& b in H;
assume A <> B;
then A
B = {} by A3,A13,A14;
hence A misses B by XBOOLE_0:def 7;
end;
then reconsider X as a_partition of H;
{a*G : a in H} is a_partition of H by A11;
A15: for a,b holds card(a*G) = card(b*G)
proof
let a,b;
defpred P[Element of a*G,Element of b*G] means
for g st \$1 = a*g holds \$2 = b*g;
A16: now
let x be Element of a*G;
consider g such that
A17: x = a*g by Th5;
reconsider y = b*g as Element of b*G;
take y;
thus P[x,y] by A17,Th4;
end;
consider f being Function of a*G,b*G such that
A18: for x being Element of a*G holds P[x,f.x qua Element of b*G]
from FUNCT_2:sch 3(A16);

```
```

 for g holds f.(a*g) = b*g by A18;
 f is bijective
 proof
 hereby
 let x,x' be Element of a*G;
 consider g such that
 A19: x = a*g by Th5;
consider g' such that
A20: x' = a*g' by Th5;
A21: f.x = b*g \& f.x' = b*g' by A19,A20,A18;
assume f.x = f.x';
hence x = x' by A19,A20,A21,Th4;
end;
let y be Element of b*G;
consider g such that
A22: y = b*g by Th5;
take a*g;
thus thesis by A18,A22;
end;
hence thesis by EUCLID_7:3;
end;
set 'Index' = card {a*G : a in H};
'Index' = card X;
then reconsider 'Index' as natural number;
now
let N such that
A23: N = card H;
let n such that
A24: n = card G;
let j such that
A25: j = 'Index';
A26: card H = card the carrier of H by STRUCT_O:def 17;
now
let A;
assume A in X;
then consider a such that
A27: A = a*G \& a in H;
e(H)*G = carr(G) by GROUP_2:132
.= the carrier of G by GROUP_2:def 9;
then card(e(H)*G) = card G by STRUCT_O:def 17;
hence card A = n by A15,A24,A27;
end;
hence N = j*n by A23,A25,A26,Th1;
end;
then card H = 'Index'*card G;
hence card G divides card H by INT_1:def 9;

```

\subsection*{4.6 Mizar Version}
7.11.01-4.117.1046

\section*{5 Analysis: successor has no fixed point}

\subsection*{5.1 Source}

Fairouz Kamareddine, Manuel Maarek and J.B. Wells, MathLang: experiencedriven development of a new mathematical language, draft. Page 11.

Quoted from: Edmund Landau, Foundations of Analysis. Translated by F. Steinhardt, Chelsea, 1951.

\subsection*{5.2 Informal Proof}

Theorem 2
\[
x^{\prime} \neq x
\]

Proof Let \(\mathfrak{M}\) be the set of all \(x\) for which this holds true.
I) By Axiom 1 and Axiom 3,
\[
1^{\prime} \neq 1
\]
therefore 1 belongs to \(\mathfrak{M}\).
II) If \(x\) belongs to \(\mathfrak{M}\), then
\[
x^{\prime} \neq x
\]
and hence by Theorem 1 ,
\[
\left(x^{\prime}\right)^{\prime} \neq x^{\prime}
\]
so that \(x^{\prime}\) belongs to \(\mathfrak{M}\).
By Axiom 5, \(\mathfrak{M}\) therefore contains all the natural numbers, i.e. we have for each \(x\) that
\[
x^{\prime} \neq x .
\]

\subsection*{5.3 Formal Proof Sketch: Informal Layout}

Theorem_2:
\[
x^{\prime}<>x
\]
proof set \(\mathfrak{M}=\left\{y: y^{\prime}<>y\right\}\);
I: now
\[
1^{\prime}<>1
\]
by Axiom_1, Axiom_3; hence 1 in \(\mathfrak{M}\);
end;
II: now let \(x\); assume \(x\) in \(\mathfrak{M}\); then
\[
x^{\prime}<>x
\]
then
\[
\left(x^{\prime}\right)^{\prime}<>x^{\prime}
\]
by Theorem_1; hence \(x^{\prime}\) in \(\mathfrak{M}\);
end;
for \(x\) holds \(x\) in \(\mathfrak{M}\) by Axiom_5; hence
\[
x^{\prime}<>x ; \quad \text { end; }
\]

\section*{5．4 Formal Proof Sketch：Formal Layout}
```

Theorem_2: x , <> x
proof
set M = {y : y , <> y};
I: now
1 ' <> 1 by Axiom_1, Axiom_3;
hence 1 in M;
end;
II: now let x;
assume x in M;
then x , <> x; *4
then (x ')' <> x ' by Theorem_1;
hence x ' in M;
end;
for x holds x in M by Axiom_5; *4
hence x ' <> x; *4
end;

```

\section*{5．5 Formal Proof}

Theorem＿2： x ，＜＞ x
proof
    set \(M=\{y: y,\langle>y\}\);
I: now
    1 ' <> 1 by Axiom_3;
    hence 1 in \(M\) by Axiom_1;
    end;
    now let \(x\);
    assume \(x\) in \(M\);
    then ex \(y\) st \(x=y \& y,<>y\);
    then ( x '), \(<>\mathrm{x}\), by Axiom_4;
    hence \(x\), in \(M\);
    end;
    then \(x\) in \(M\) by \(I, A x i o m \_5 ;\)
    then ex y st \(x=y \& y{ }^{\prime}\) < \(y\);
    hence \(x\), <> \(x\);
end;

\section*{5．6 Mizar Version}

6．4．01－3．60．795

\section*{6 Analysis：successor has no fixed point}

\section*{6．1 Source}

A message Formal verification on the FOM mailing list by Lasse Rempe－Gillen〈L．Rempe＠liverpool．ac．uk〉，dated 21 October 2014 and with Message－ID〈675123965B518F43B235C5FCB5D565DCBF14577E＠CHEXMBX1．livad．liv．ac．uk \(\rangle\) ．

\subsection*{6.2 Informal Proof}

Let \(f\) be a real-valued function on the real line, such that \(f(x)>x\) for all \(x\). Let \(x_{0}\) be a real number, and define the sequence \(\left(x_{n}\right)\) recursively by \(x_{n+1}:=f\left(x_{n}\right)\). Then \(x_{n}\) diverges to infinity.
A standard proof might go along the following steps: 1) By assumption, the sequence is strictly increasing; 2) hence the sequence either diverges to infinity or has a finite limit; 3) by continuity, any finite limit would have to be a fixed point of \(f\), hence the latter cannot occur.

\subsection*{6.3 Formal Proof Sketch: Informal Layout}
now let \(f\) be continuous Function of REAL,REAL; assume for \(x\) holds \(f .(x)>x\); let \(x_{0}\) be Element of REAL; set \(x=\) recursively_iterate \(\left(f, x_{0}\right) ; x_{.(n+1)}=f .\left(x_{. n}\right)\); thus \(x\) is divergent_to+infty
proof \(x\) is increasing; \(x\) is divergent_to+infty or \(x\) is convergent; \(x\) is convergent implies \(f .(\lim x)=\lim x ; x\) is not convergent; thus thesis; end; end;

\subsection*{6.4 Formal Proof Sketch: Formal Layout}
now
let \(f\) be continuous Function of REAL,REAL;
assume for \(x\) holds \(f .(x)>x\);
let x 0 be Element of REAL;
set \(x=\) recursively_iterate (f,x0);
\(\mathrm{x} .(\mathrm{n}+1)=\mathrm{f} .(\mathrm{x} . \mathrm{n})\);
thus x is divergent_to+infty
proof
x is increasing; *4
x is divergent_to+infty or x is convergent; \(\quad * 4\) x is convergent implies f . ( \(\lim \mathrm{x}\) ) = \(\lim \mathrm{x}\); \(\quad * 4\) x is not convergent; *4 thus thesis; \(* 4\)
    end;
end;

\subsection*{6.5 Formal Proof}
```

now
let f be continuous Function of REAL,REAL;
assume
A1: for x holds f.(x) > x;
let x0 be Element of REAL;
set x = recursively_iterate(f,x0);
A2: x. (n + 1) = f.(x.n) by Def1;
thus x is divergent_to+infty
proof

```
```

 now let n;
 x.(n + 1) = f.(x.n) by A2;
 hence x. (n + 1) > x.n by A1;
 end;
 then
 A3: x is increasing by SEQM_3:def 6;
then x is bounded_above implies x is convergent;
then
A4:
x is divergent_to+infty or }x\mathrm{ is convergent by A3,LIMFUNC1:31;
x is convergent implies f. (lim x) = lim x
proof
assume
A5: x is convergent;
A7: rng x c= dom f by A6,RELAT_1:def 19;
A8: now let n;
reconsider m = n as Element of NAT by ORDINAL1:def 12;
x. (m + 1) = f. (x.m) by A2
.= (f /* x).m by A7,FUNCT_2:108;
hence x. (n + 1) = (f/* x).n;
end;
f is_continuous_in lim x by A6,XREAL_0:def 1,FCONT_1:def 2;
hence f.(lim x) = lim (f /* x) by A5,A7,FCONT_1:def 1
.= lim (}\mp@subsup{x}{}{~}
1) by A8,NAT_1:def
.= lim x by A5,SEQ_4:22;
end;
then x is not convergent by A1;
hence thesis by A4;
end;
end;

```

\subsection*{6.6 Mizar Version}
8.1.02-5.22.1191

\section*{7 Linear Algebra: Linear Independence}

\subsection*{7.1 Source}

Jean Gallier, Basics of Algebra and Analysis For Computer Science. Published at <http://www.cis.upenn.edu/~jean/gbook.html>, University of Pennsylvania, 2001. Page 16.

\subsection*{7.2 Informal Proof}

Lemma 2.1. Given a linearly independent family \(\left(u_{i}\right)_{i \in I}\) of elements of a vector space \(E\), if \(v \in E\) is not a linear combination of \(\left(u_{i}\right)_{i \in I}\), then the family \(\left(u_{i}\right)_{i \in I} \cup_{k}\)
(v) obtained by adding \(v\) to the family \(\left(u_{i}\right)_{i \in I}\) is linearly independent (where \(k \notin I)\).
Proof. Assume that \(\mu v+\sum_{i \in I} \lambda_{i} u_{i}=0\), for any family \(\left(\lambda_{i}\right)_{i \in I}\) of scalars in \(K\). If \(\mu \neq 0\), then \(\mu\) has an inverse (because \(K\) is a field), and thus we have \(v=-\sum_{i \in I}\left(\mu^{-1} \lambda_{i}\right) u_{i}\), showing that \(v\) is a linear combination of \(\left(u_{i}\right)_{i \in I}\) and contradicting the hypothesis. Thus, \(\mu=0\). But then, we have \(\sum_{i \in I} \lambda_{i} u_{i}=0\), and since the family \(\left(u_{i}\right)_{i \in I}\) is linearly independent, we have \(\lambda_{i}=0\) for all \(i \in I\).

\subsection*{7.3 Formal Proof Sketch: Informal Layout}
theorem Lem21: \(u\) is linearly-independent \& not \(v\) in \(\operatorname{Lin}(u)\) implies \(u \backslash /\{v\}\) is linearly-independent
proof assume \(u\) is linearly-independent \& not \(v\) in \(\operatorname{Lin}(u)\); assume \(u \backslash /\{v\}\) is linearly-dependent; consider \(m\) being Element of \(K, l\) being Linear_Combination of \(u\) such that \(m * v+\operatorname{Sum}(l)=0 . E\); now assume \(m<>0 . K ; v=-m " * \operatorname{Sum}(l)\); \(v\) in \(\operatorname{Lin}(u)\); thus contradiction; end; \(m=0 . K ; \operatorname{Sum}(l)=0 . E ; \operatorname{Carrier}(l)=\{ \}\); thus contradiction; end;

\subsection*{7.4 Formal Proof Sketch: Formal Layout}
```

theorem Lem21:
u is linearly-independent \& not v in Lin(u) implies
u \/ {v} is linearly-independent
proof
assume u is linearly-independent \& not v in Lin(u);
assume u \/ {v} is linearly-dependent;
consider m being Element of K,
l being Linear_Combination of u such that
m*v + Sum(l) = 0.E;
now
assume m <> 0.K;
v = -m"*Sum(l);
v in Lin(u);*4
thus contradiction; *1
end;
m = 0.K;
*4
Sum(I) = O.E; *4
Carrier(1) = {}; *4*
thus contradiction;
*1
end;

```

\subsection*{7.5 Formal Proof}
theorem Lem21:
u is linearly-independent \& not v in Lin( \(u\) ) implies
```

 u \/ {v} is linearly-independent
 proof
assume
A1: u is linearly-independent \& not v in Lin(u);
given l' being Linear_Combination of u \/ {v} such that
A2: Sum(l') = 0.E \& Carrier(l') <> {};
consider m' being Linear_Combination of {v},
l being Linear_Combination of }u\mathrm{ such that
A3: l' = m' + l by Th2;
set m = m'.v;
A4: m*v + Sum(1) = Sum(m') + Sum(1) by VECTSP_6:43
= 㨁E by A2,A3,VECTSP_6:77;
A5: now
assume
A6: m <> 0.K;
m*v = -Sum(1) by A4,RLVECT_1:def 10;
then v = m"*(-Sum(1)) by A6,VECTSP_1:67
.= -m"*Sum(1) by VECTSP_1:69;
then
A7: v = (-m")*Sum(1) by VECTSP_1:68;
Sum(l) in Lin(u) by VECTSP_7:12;
hence contradiction by A1,A7,VECTSP_4:29;
end;
Sum(1) = 0.E + Sum(1) by VECTSP_1:7
.= 0.E by A4,A5,VECTSP_1:59;
then
A8: Carrier(1) = {} by A1,VECTSP_7:def 1;
now
let x be set;
A9: Carrier(m') c= {v} by VECTSP_6:def 7;
not v in Carrier(m') by A5,VECTSP_6:20;
hence not x in Carrier(m') by A9,TARSKI:def 1;
end;
then Carrier(m') = {} by BOOLE:def 1;
then Carrier(l) \/ Carrier(m') = {} by A8;
then Carrier(l') c= {} by A3,VECTSP_6:51;
hence contradiction by A2,BOOLE:30;
end;

```

\subsection*{7.6 Mizar Version}
6.1.11-3.33.722

\section*{8 Mathematical Logic: Newman's Lemma}

\subsection*{8.1 Source}

Henk Barendregt, The Lambda Calculus: Its Syntax and Semantics. North Holland, 1984. Page 58.

\subsection*{8.2 Informal Proof}
3.1.25. Proposition. For notions of reduction one has
\[
\mathrm{SN} \wedge \mathrm{WCR} \Rightarrow \mathrm{CR}
\]

Proof. By SN each term \(R\)-reduces to an \(R\)-nf. It suffices to show that this \(R\)-nf is unique. Call \(M\) ambiguous if \(M R\)-reduces to two distinct \(R\)-nf's. For such \(M\) one has \(M \rightarrow_{R} M^{\prime}\) with \(M^{\prime}\) ambiguous (use WCR, see figure 3.3). Hence by SN ambiguous terms do not exist.


FIG. 3.3.

\subsection*{8.3 Formal Proof Sketch: Informal Layout}

THEOREM 3_1_25:

\section*{\(R\) is \(\mathrm{SN} \& R\) is WCR implies \(R\) is CR}

Proof assume that \(R\) is SN and \(R\) is WCR; for \(M\) ex \(M_{1}\) st \(M\) reduces_to \(M_{1}\); (for \(M, M_{1}, M_{2}\) st \(M\) reduces_to \(M_{1} \& M\) reduces_to \(M_{2}\) holds \(M_{1}=M_{2}\) ) implies \(R\) is CR; defpred ambiguous[Term of \(R\) ] means ex \(M_{1}, M_{2}\) st \(\$ 1\) reduces_to \(M_{1}\) \& \(\$ 1\) reduces_to \(M_{2} \& M_{1}<>M_{2}\); now now let \(M\) such that ambiguous \([M]\); thus ex \(M^{\prime}\) st \(M-->M^{\prime} \&\) ambiguous \(\left[M^{\prime}\right]\)

PROOF consider \(M_{1}, M_{2}\) such that \(M-\gg M_{1} \& M--\gg M_{2} \& M_{1}<>\) \(M_{2}\); per cases; suppose not ex \(M^{\prime}\) st \(M-->M^{\prime} \& M^{\prime}--\gg M_{1} \&\) \(M^{\prime}--\gg M_{2}\); consider \(M^{\prime}\) such that \(M\)---> \(M^{\prime} \& M^{\prime}--\gg M_{1}\); consider \(M^{\prime \prime}\) such that \(M-->M^{\prime \prime} \& M^{\prime \prime}--\gg M_{2}\); consider \(M^{\prime \prime \prime}\) such that \(M^{\prime}--\gg M^{\prime \prime \prime} \& M^{\prime \prime}--\gg M^{\prime \prime \prime} ;\) consider \(M_{3}\) such that \(M^{\prime \prime \prime}--\gg M_{3}\); take \(M^{\prime}\); thus thesis; suppose ex \(M^{\prime}\) st \(M-->M^{\prime} \& M^{\prime}--\gg M_{1} \&\) \(M^{\prime}--\gg M_{2}\); consider \(M^{\prime}\) such that \(M-->M^{\prime} \& M^{\prime}--\gg M_{1} \&\) \(M^{\prime}\)-->> \(M_{2}\); take \(M^{\prime}\); thus thesis; EnD;

End; thus not ex \(M\) st ambiguous[ \(M\) ]; END; thus thesis; END;

\subsection*{8.4 Formal Proof Sketch: Formal Layout}
```

theorem 3_1_25:
R is SN \& R is WCR implies R is CR
proof
assume that R is SN and R is WCR;
for M ex M1 st M reduces_to M1;
(for M,M1,M2 st M reduces_to M1 \& M reduces_to M2 holds M1 = M2)
implies R is CR;
defpred ambiguous[Term of R] means
ex M1,M2 st \$1 reduces_to M1 \& \$1 reduces_to M2 \& M1 <> M2;
now
now
let M such that ambiguous [M];
thus ex M' st M ---> M' \& ambiguous[M']
proof :: begin fig 3.3
consider M1,M2 such that M -->> M1 \& M -->> M2 \& M1 <> M2;
per cases;
suppose not ex M' st M ---> M' \& M' -->> M1 \& M' -->> M2;
consider M' such that M ---> M' \& M' -->> M1;
consider M'' such that M ---> M'' \& M', -->> M2; *4
consider M'', such that M' -->> M'', \& M'' -->> M'''; *4
consider M3 such that M'', -->> M3; *4
take M';
thus thesis;
*4,4
suppose ex M' st M ---> M' \& M' -->> M1 \& M' -->> M2;
consider M' such that M ---> M' \& M' -->> M1 \& M' -->> M2;
*4
take M';
thus thesis;
*4,4
end; :: end figg 3.3
end;
thus not ex M st ambiguous [M]; *4
end;
thus thesis;
*4
end;

```

\subsection*{8.5 Formal Proof}
```

theorem 3_1_25:
R is SN \& R is WCR implies R is CR
proof
assume that
A1: R is SN and
A2: R is WCR;
A3: R is WN by A1,Th9;
then for M ex M1 st M reduces_to M1 by Def10;
A4: (for M,M1,M2 st M reduces_to M1 \& M reduces_to M2 holds M1 = M2)
implies R is CR
proof
assume

```
```

A5: for M,M1,M2 st M reduces_to M1 \& M reduces_to M2 holds M1 = M2;
let M,M',M'';
assume
A6: M -->> M' \& M -->> M'';
consider M1 such that
A7: M' -->> M1 by A3,Def10;
consider M2 such that
A8: M', -->> M2 by A3,Def10;
M -->> M1 \& M -->> M2 by A6,A7,A8,Th6;
then M' -->> M1 \& M'' -->> M1 by A5,A7,A8;
hence thesis;
end;
defpred ambiguous[Term of R] means
ex M1,M2 st \$1 reduces_to M1 \& \$1 reduces_to M2 \& M1 <> M2;
A9: now
A10: now
let M such that
A11: ambiguous [M];
thus ex M' st M ---> M' \& ambiguous[M']
proof :: begin fig 3.3
consider M1,M2 such that
A12: M -->> M1 \& M -->> M2 \& M1 <> M2 by A11;
per cases;
suppose
A13: not ex M' st M ---> M' \& M' -->> M1 \& M' -->> M2;
M1 is_nf \& M2 is_nf by Def9;
then
A14: M <> M1 \& M <> M2 by A12,Th8;
then consider M' such that
A15: M ---> M' \& M' -->> M1 by A12,Th7;
consider M'' such that
A16: M ---> M'' \& M'' -->> M2 by A12,A14,Th7;
consider M''' such that
A17: M' -->> M''' \& M'' -->> M''' by A2,A15,A16,Def11;
consider M3 such that
A18: M'', -->> M3 by A3,Def10;
take M';
M' -->> M3 \& M'' -->> M3 by A17,A18,Th6;
then M' -->> M1 \& M' -->> M3 \& M1 <> M3 by A13,A15,A16;
hence thesis by A15;
suppose ex M' st M ---> M' \& M' -->> M1 \& M' -->> M2;
then consider M' such that
A19: M ---> M' \& M' -->> M1 \& M' -->> M2;
take M';
thus thesis by A12,A19;
end; :: end fig 3.3
end;
thus not ex M st ambiguous[M] from SN_induction1(A1,A10);
end;
thus thesis by A4,A9;

```

\subsection*{8.6 Mizar Version}
6.1.11-3.33.722

\section*{9 Mathematical Logic: Diaconescu's Theorem}

\subsection*{9.1 Source}

Michael Beeson, Foundations of Constructive Mathematics. Springer-Verlag, 1985.

\subsection*{9.2 Informal Proof}
1.1 Theorem (Diaconescu [1975]). The axiom of choice implies the law of excluded middle, using separation and extensionality.

Proof. Let a formula \(\phi\) be given; we shall derive \(\phi \vee \neg \phi\). Let \(A=\{n \in\) \(\mathbf{N}: n=0 \vee(n=1 \& \phi)\}\). Let \(B=\{n \in \mathbf{N}: n=1 \vee(n=0 \& \phi)\}\). Then \(\forall x \in\{A, B\} \exists y \in \mathbf{N}(y \in x)\). Suppose \(f\) is a choice function, so that \(f(A) \in A\) and \(f(B) \in B\). We have \(f(A)=f(B) \vee f(A) \neq f(B)\), since the values are integers. If \(f(A)=f(B)\) then \(\phi\), so \(\phi \vee \neg \phi\). If \(f(A) \neq f(B)\), then \(\neg \phi\) can be derived: suppose \(\phi\). Then \(A=B\) by extensionality, so \(f(A)=f(B)\), contradiction. Hence in either case \(\phi \vee \neg \phi\).

\subsection*{9.3 Formal Proof Sketch: Informal Layout}
scheme Diaconescu \(\{\) phi []\} : axiom_of_choice implies phi [] or not phi []
proof assume axiom_of_choice; set \(A=\{n: n=0\) or \((n=1 \& p h i[])\}\); set \(B=\{n: n=1\) or \((n=0 \& p h i[])\}\); for \(x\) st \(x\) in \(\{A, B\}\) holds ex \(y\) st \(y\) in \(x\); consider \(f\) being choice_function such that \(f\) is extensional; \(f . A\) in \(A \& f . B\) in \(B\); \(f . A=f . B\) or \(f . A<>f . B\) by excluded_middle_on_integers; per cases; suppose \(f . A=f . B\); phi [] ; thus phi[] or not phi[]; end; suppose \(f . A<>f . B\); not phi[] proof assume phi []\(; A=B\) by extensionality; \(f . A=f . B\); thus contradiction; end; thus phi[] or not phi[]; end;
end;

\subsection*{9.4 Formal Proof Sketch: Formal Layout}
```

scheme Diaconescu :: 1975
{ phi[] } : axiom_of_choice implies phi[] or not phi[]
proof
assume axiom_of_choice;
set }A={n:n=0 or (n = 1 \& phi[])}
set B = {n : n = 1 or (n = 0 \& phi[])};
for x st x in {A,B} holds ex y st y in x;

```
```

 consider f being choice_function such that
 f is extensional; *4
 f.A in A \& f.B in B;
*4,4
f.A = f.B or f.A <> f.B by excluded_middle_on_integers;
per cases;
suppose f.A = f.B;
phi[];
*4
thus phi[] or not phi[];
end;
suppose f.A <> f.B;
not phi[]
proof
assume phi[];
A = B by extensionality; *4
f.A = f.B;
*4
thus contradiction;
*1
end;
thus phi[] or not phi[];
end;
end;

```

\subsection*{9.5 Formal Proof}
```

scheme Diaconescu {phi[] }:
axiom_of_choice implies phi[] or not phi[]
proof
assume
A1: axiom_of_choice;
set A = {n : n = 0 or (n = 1 \& phi[])};
set }B={n : n = 1 or (n = 0 \& phi[])}
deffunc F(Nat) = \$1;
defpred P[Nat] means \$1 = 0 or (\$1 = 1 \& phi[]);
{F(n) : P[n]} is Subset of NAT from COMPLSP1:sch 1;
then reconsider A as Subset of NAT;
defpred Q[Nat] means \$1 = 1 or (\$1 = 0 \& phi[]);
{F(n) : Q[n]} is Subset of NAT from COMPLSP1:sch 1;
then reconsider B as Subset of NAT;
A2: for x st x in {A,B} holds ex y st y in x
proof
let x;
assume x in {A,B};
then
A3: x = A or x = B by TARSKI:def 2;
per cases by A3;
suppose
A4: x = A;
take 0;
thus thesis by A4;
end;
suppose

```
```

A5: x = B;
take 1;
thus thesis by A5;
end;
end;
consider f being choice_function such that
A6: f is extensional by A1,Def3;
A in {A,B} \& B in {A,B} by TARSKI:def 2;
then (ex y st y in A) \& (ex y st y in B) by A2;
then
A7: f.A in A \& f.B in B by Def1;
A8: f.A = f.B or f.A <> f.B by excluded_middle_on_integers;
per cases by A8;
suppose
A9: f.A = f.B;
set n = f.A;
A10: n in A \& n in B by A7,A9;
then
A11: ex n' st n = n' \& (n' = 0 or (n' = 1 \& phi[]));
phi[]
proof
per cases by A11;
suppose
A12: n = 0;
ex n' st n = n' \& (n' = 1 or (n' = 0 \& phi[])) by A10;
hence thesis by A12;
end;
suppose n = 1 \& phi[];
hence thesis;
end;
end;
hence phi[] or not phi[];
end;
suppose
A13: f.A <> f.B;
not phi[]
proof
assume
A14: phi[];
now
let y;
hereby
assume y in A;
then ex n st y = n \& (n = 0 or (}\textrm{n}=1\mathrm{ \& \& phi[]));
then y = 0 or (y = 1 \& phi[]);
then y = 1 or (y = 0 \& phi[]) by A14;
hence y in B;
end;
hereby
assume y in B;

```
```

 then ex n st y = n & (n = 1 or (}\textrm{n}=0\mathrm{ & phi[]));
 then y = 1 or (y = 0 & phi[]);
 then y = 0 or (y = 1 & phi[]) by A14;
 hence y in A;
 end;
 end;
 then A = B by extensionality;
 then f.A = f.B by A6,Def2;
 hence contradiction by A13;
 end;
 hence phi[] or not phi[];
 end;
end;

```

\subsection*{9.6 Mizar Version}
7.0.04-4.04.834

\section*{10 Topology: Open Intervals are Connected}

\subsection*{10.1 Source}

Paul Cairns and Jeremy Gow, Elements of Euclidean and Metric Topology, online undergraduate course notes from the IMP project. Project web site at <http: //www.uclic.ucl.ac.uk/imp/>, course notes at <http://www.uclic.ucl.ac. uk/topology/> and the frame of this specific proof at <http://www.uclic. ucl.ac.uk/topology/ConnectedInterval.html>.

\subsection*{10.2 Informal Proof}

\section*{Theorem}

Open intervals are connected
GIVEN: \(a, b \in \mathcal{R}\)
THEN: The open interval \((a, b)\) is connected

\section*{Proof}

SKETCH:
The proof proceeds by contradiction. Suppose that \((a, b)\) were not connected. Then there would be a pair of non-empty disjoint proper open subsets, \(U, V\) say, of \((a, b)\) whose union would be \((a, b)\). This implies a "gap" so we use the completeness of the real line to show that there can't be a gap. To do this, find a supremum of some interval which must be contained in \(U\). Note that there is a small open ball about the supremum wich because \(U\) and \(V\) are open must be contained wholly within one or other of them. However, in both cases, this leads to a contradiction: if the ball is in \(U\) then the ball contains points in \(U\) exceeding the supremum; if the ball is in \(V\) then there are points in the ball also in \(U\) by definition of the supremum.

\subsection*{10.3 Formal Proof Sketch: Informal Layout}

\section*{theorem}
(.a,b.) is connected

\section*{proof}
assume (.a,b.) is not connected; consider \(U, V\) being non empty open Subset of REAL, \(u, v\) such that \(U \wedge V=\{ \} \& U \backslash V=(. a, b) \&\).\(u in U \& v\) in \(V \&\) \(u<v\); reconsider \(X=\{x:(. u, x) \mathrm{c}=U\).\(\} as Subset of REAL; set s=\sup X\); per cases; suppose \(s\) in \(U\); consider \(e\) such that \(e>0 \& \operatorname{Ball}(s, e) \mathrm{c}=U\); ex \(x\) st \(x\) in \(\operatorname{Ball}(s, e) \& x>s\); thus contradiction; suppose \(s\) in \(V\); consider \(e\) such that \(e>0 \& \operatorname{Ball}(s, e) \mathrm{c}=V\); ex \(x\) st \(x\) in \(\operatorname{Ball}(s, e) \& x\) in \(U\); thus contradiction;
END;

\subsection*{10.4 Formal Proof Sketch: Formal Layout}
```

theorem (.a,b.) is connected
proof
assume (.a,b.) is not connected;
consider U,V being non empty open Subset of REAL, u,v such that
U \ V = {} \& U \/ V = (.a,b.) \& u in U \& v in V \& u < v; *4
reconsider X = { x : (.u,x.) c= U } as Subset of REAL; *4
set s = sup X;
per cases;
suppose s in U;
consider e such that e > 0 \& Ball(s,e) c= U; *4
ex x st x in Ball(s,e) \& x > s; *4
thus contradiction; *1
suppose s in V;
consider e such that e > 0 \& Ball(s,e) c= V; *4
ex x st x in Ball(s,e) \& x in U; *4
thus contradiction; *1
end;

```

\subsection*{10.5 Formal Proof}
```

theorem (.a,b.) is connected
proof
assume (.a,b.) is not connected;
then consider U,V being non empty open Subset of REAL such that
A1: U /\ V = {} \& U \/ V = (.a,b.) by Def8;
consider u such that
A2: u in U by Def1;
consider v such that
A3: v in V by Def1;
ex U,V being non empty open Subset of REAL, u,v st
U \ V = {} \& U \/ V = (.a,b.) \& u in U \& v in V \& u < v
proof

```
per cases by AXIOMS:21;
suppose
A4: \(u<v\);
take \(\mathrm{U}, \mathrm{V}, \mathrm{u}, \mathrm{v}\);
thus thesis by A1, A2, A3, A4;
suppose
A5: u > v;
take V,U,v,u;
thus thesis by A1, A2, A3, A5;
suppose \(u=v\);
hence thesis by A1, A2, A3, XBOOLE_0: def 3;
end;
then consider \(U, V\) being non empty open Subset of REAL, \(u, v\) such that
A6: \(U / \backslash V=\{ \} \& U \backslash / V=(. a, b) \&\).\(u in U \& v\) in \(V \& u<v ;\)
\{ \(\mathrm{x}:(. \mathrm{u}, \mathrm{x}) \mathrm{c}=\mathrm{U}.\} \mathrm{c}=\) REAL from Fr_Set0;
then reconsider \(X=\{x:(. u, x) c=U\).\(\} as Subset of REAL;\)
(.u,u.) = \{\} by RCOMP_1:12;
then (.u,u.) c= U by XBOOLE_1:2;
then
A7: \(u\) in \(X\);
A8: for x st x in X holds \(\mathrm{x}<=\mathrm{v}\)
proof
let x ;
assume
A9: \(x\) in \(X \& v<x\);
A10: v in (.u,x.) by A6,A9, JORDAN6:45;
ex \(x\) ' st \(x=x\) \& (. \(u, x^{\prime}\).) \(c=U\) by A9;
hence thesis by A6,A10, XBOOLE_0:def 3;
end;
for x being real number st x in X holds \(\mathrm{x}<=\mathrm{v}\) by A8;
then reconsider \(X\) as non empty bounded_above Subset of REAL by A7,SEQ_4: def 1;
set \(s=\sup X\);
\(\mathrm{U} \mathrm{c}=(. \mathrm{a}, \mathrm{b}) \& \mathrm{~V} \mathrm{c}=.(. \mathrm{a}, \mathrm{b}\).\() by A6,XBOOLE_1:7;\)
then \(\mathrm{a}<\mathrm{u} \& \mathrm{u}<=\mathrm{s} \& \mathrm{~s}<=\mathrm{v}\) \& \(\mathrm{v}<\mathrm{b}\)
by A6, A7, A8, JORDAN6:45, SEQ_4: def 4, PSCOMP_1:10;
then \(\mathrm{a}<\mathrm{s} \& \mathrm{~s}<\mathrm{b}\) by AXIOMS:22;
then
A11: s in (.a,b.) by JORDAN6:45;
per cases by A6,A11,XBOOLE_O: def 2;
suppose \(s\) in \(U\);
then consider e such that
A12: e > 0 \& Ball ( \(\mathrm{s}, \mathrm{e}\) ) c= U by Def7;
ex \(x\) st \(x\) in \(\operatorname{Ball}(s, e) \& x>s\)
proof
take \(\mathrm{x}=\mathrm{s}+\mathrm{e} / 2\);
thus x in Ball(s,e) by A12,Th2;
e/2 > 0 by A12,SEQ_2:3;
hence thesis by REAL_1:69;
end;
```

 then consider x such that
 A13: x in Ball(s,e) \& x > s;
(.u,x.) c= U
proof
let y be set;
assume
A14: y in (.u,x.);
then reconsider y as Real;
A15: u < y \& y < x by A14,JORDAN6:45;
per cases;
suppose y < s;
then consider y' such that
A16: y' in X \& y < y' \& y' <= s by Def9;
y in (.u,y'.) \& ex y'' st y' = y'' \& (.u,y''.) c= U
by A15,A16,JORDAN6:45;
hence thesis;
suppose y >= s;
then s in Ball(s,e) \& x in Ball(s,e) \& s <= y \& y <= x
by A12,A13,A14,Th1,JORDAN6:45;
then y in Ball(s,e) by Th4;
hence thesis by A12;
end;
then x in X;
hence contradiction by A13,SEQ_4:def 4;
suppose s in V;
then consider e such that
A17: e > 0 \& Ball(s,e) c= V by Def7;
ex x st x in Ball(s,e) \& x in U
proof
per cases;
suppose
A18: u < s - e/2;
take x = s - e/2;
thus x in Ball(s,e) by A17,Th3;
e/2 > 0 by A17,SEQ_2:3;
then x < s by REAL_2:174;
then consider x' such that
A19: x' in X \& x < x' \& x' <= s by Def9;
x in (.u,x'.) \& ex x', st x' = x'' \& (.u,x''.) c= U
by A18,A19,JORDAN6:45;
hence thesis;
suppose
A2O: s - e/2 <= u;
take u;
s - e/2 in Ball(s,e) \& s in Ball(s,e) \& s - e/2 <= u \& u <= s
by A7,A17,A20,Th1,Th3,SEQ_4:def 4;
hence thesis by A6,Th4;
end;
hence contradiction by A6,A17,XBOOLE_0:def 3;
end;

```

\subsection*{10.6 Mizar Version}
6.3.02-3.44.763

\section*{11 Missing Subjects}
- Calculus
- Combinatorics
- Complex Variables
- Differential Equations
- Geometry
- Integration
- Probability Theory```

