Ten Formal Proof Sketches

Freek Wiedijk

Radboud University Nijmegen

Abstract. This note collects the formal proof sketches that I have done.

1 Algebra: Irrationality of /2

1.1 Source

G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers. 4th
edition, Clarendon Press, Oxford, 1960. Pages 39—40.

1.2 Informal Proof

THEOREM 43 (PYTHAGORAS’ THEOREM). v/2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows. If v/2 is rational,
then the equation

a® = 2b* (4.3.1)
is soluble in integers a, b with (a,b) = 1. Hence a? is even, and therefore a is
even. If a = 2¢, then 4¢? = 2b2, 2¢? = b2, and b is also even, contrary to the
hypothesis that (a,b) = 1.

1.3 Formal Proof Sketch: Informal Layout

THEOREM Th43: sqrt 2 is irrational :: PYTHAGORAS’ THEOREM

PROOF assume sqrt 2 is rational; consider a, b such that
4.31: a’2=2%b"2

and a, b are_relative_prime; a2 is even; a is even; consider ¢ such that a = 2 x ¢;
4%¢c"2=2%b"2; 2xc"2=10"2; b is even; thus contradiction; END;

1.4 Formal Proof Sketch: Formal Layout

theorem Th43: sqrt 2 is irrational
proof
assume sqrt 2 is rational;
consider a,b such that
4_3_1: a”2 = 2xb"2 and
a,b are_relative_prime; *4
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a2 is even;

a is even;

consider ¢ such that a = 2x%c;
4xc”2 = 2xb"2;

2%xc"2 = b"2;

b is even;

thus contradiction;

end;

1.5 Formal Proof

theorem Th43: sqrt 2 is irrational
proof

assume sqrt 2 is rational;

then consider a,b such that

Al: b <> 0 and

A2: sqrt 2 = a/b and

A3: a,b are_relative_prime by Defl;
A4: b2 <> 0 by A1,SQUARE_1:73;

2 = (a/b)”"2 by A2,SQUARE_1:def 4
a"2/b"2 by SQUARE_1:69;

then
4 3 _1: a”2 = 2xb"2 by A4,REAL_1:43;
a"2 is even by 4_3_1,ABIAN:def 1;
then
A5: a is even by PYTHTRIP:2;

then consider c such that
A6: a = 2%c by ABIAN:def 1;
A7: 4xc”2 = (2%2)*c"2
272%c”2 by SQUARE_1:def 3

.= 2xb"2 by A6,4_3_1,SQUARE_1:68;
2% (2%c”2) = (2%2)*c”2 by AXIOMS:16
.= 2xb"2 by A7;
then 2%c”2 = b”2 by REAL_1:9;
then b"2 is even by ABIAN:def 1;
then b is even by PYTHTRIP:2;

then 2 divides a & 2 divides b by A5,Def2;

then
A8: 2 divides a gcd b by INT_2:33;
a gcd b = 1 by A3,INT_2:def 4;

hence contradiction by A8,INT_2:17;

end;

1.6 Mizar Version

6.1.11 — 3.33.722

*4
*4
*4
*4
*4
*4
*1
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2 Algebra: Infinity of Primes

2.1 Source

The slides of a talk by Herman Geuvers, Formalizing an intuitionistic proof of
the Fundamental Theorem of Algebra.

2.2 Informal Proof

THEOREM There are infinitely many primes:
for every number n there exists a prime p > n

PROOF [after Euclid]

Given n. Consider k =n!+1, wheren!=1-2-3-...-n.
Let p be a prime that divides k.

For this number p we have p > n: otherwise p < n;

but then p divides n!,

so p cannot divide k =n!+1,

contradicting the choice of p. QED

2.3 Formal Proof Sketch: Informal Layout

THEOREM {n : n is prime} is infinite PROOF
for n ex p st p is prime & p > n

PROOF :: [after Euclid]

let n; set k =nl+1;

consider p such that p is prime & p divides k;

take p; thus p is prime; thus p > n PROOF assume p <= n;
p divides n!;

not p divides n! + 1;

thus contradiction; END; END; thus thesis; END;

2.4 Formal Proof Sketch: Formal Layout

theorem {n: n is prime} is infinite
proof
for n ex p st p is prime & p > n
proof
let n;
set k = n! + 1;
consider p such that p is prime & p divides k; *4
take p;
thus p is prime; *4
thus p > n
proof
assume p <= n;
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p divides n!;
not p divides n! + 1;
thus contradiction;
end;

end;

thus thesis;

end;

2.5 Formal Proof

theorem {p: p is prime} is infinite
proof

Al: for n ex p st p is prime & p > n
proof

let n;

set k = n! + 1;
n! > 0 by NEWTON:23;
then n! >= 0 + 1 by NAT_1:38;
then k >= 1 + 1 by REAL_1:55;
then consider p such that
A2: p is prime & p divides k by INT_2:48;
take p;
thus p is prime by A2;
assume
A3: p <= n;
p <> 0 by A2,INT_2:def 5;
then
A4: p divides n! by A3,NAT_LAT:16;
p > 1 by A2,INT_2:def 5;
then not p divides 1 by NAT_1:54;
hence contradiction by A2,A4,NAT_1:57;
end;
thus thesis from Unbounded(A1);
end;

2.6 Mizar Version

6.1.11 — 3.33.722

3 Algebra: Image of Left Unit Element

3.1 Source

Rob Nederpelt, Weak Type Theory: A formal language for mathematics. Com-
puter Science Report 02-05, Eindhoven University of Technology, Department of
Math. and Comp. Sc., May 2002. Page 42.

*4
*4
*1

*4
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3.2 Informal Proof

THEOREM. Let G be a set with a binary operation - and left unit element e. Let
H be a set with binary operation % and assume that ¢ is a homomorphism of G
onto H. Then H has a left unit element as well.

PrROOF. Take e/ = ¢(e). Let h € H. There is g € G such that ¢(g) = h. Then

e xh=¢(e) = d(g) = ¢(e- g) = d(g) = h,

hence €’ is left unit element of H. O

3.3 Formal Proof Sketch: Informal Layout

let G, H be non empty HGrStr; let e be Element of GG such that e is_left_unit_of
G; let phi be map of G, H such that phi is_homomorphism G, H and phi is onto;
thus ex €’ being Element of H st ¢’ is_left_unit_of H

PROOF take ¢ = phi.e; now let h be Element of H; consider g being Element of
G such that phi.g = h; thus

e’ x h = phi.e x phi.g .= phi.(e x g) .= phi.g .= h;

end; hence ¢’ is_left_unit_of H; END;

3.4 Formal Proof Sketch: Formal Layout

let G,H be non empty HGrStr;
let e be Element of G such that e is_left_unit_of G;
let phi be map of G,H such that
phi is_homomorphism G,H and phi is onto;
thus ex e’ being Element of H st e’ is_left_unit_of H
proof
take e’ = phi.e;
now
let h be Element of H;
consider g being Element of G such that phi.g = h; *4
thus e’ * h = phi.e * phi.g .= phi.(e * g) .= phi.g .= h; x4 x4 *4 x4
end;
hence e’ is_left_unit_of H; *4
end;

3.5 Formal Proof

let G,H be non empty HGrStr;

let e be Element of G such that
H1l: e is_left_unit_of G;

let phi be map of G,H such that
H2: phi is_homomorphism G,H and
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H3: phi is onto;
thus ex e’ being Element of H st e’ is_left_unit_of H
proof
take e’ = phi.e;
now
let h be Element of H;
consider g being Element of G such that
Al: phi.g = h by H3,Thil;
thus e’ * h = phi.(e * g) by Al1,H2,Def2
.= h by A1,H1,Defl;
end;
hence e’ is_left _unit_of H by Defl;
end;

3.6 Mizar Version

6.1.11 — 3.33.722

4 Algebra: Lagrange’s Theorem

4.1 Source

B.L. van der Waerden, Algebra. 5th edition, Springer-Verlag, Berlin, 1966. Page
26.

4.2 Informal Proof

Zwei Nebenklassen ag, bg konnen sehr wohl gleich sein, ohne dafl a = b ist.
Immer dann némlich, wenn a~'b in g liegt, gilt

bg = aa”'bg = a(a”'bg) = ag.

Zwei verschiedene Nebenklassen haben kein Element gemeinsam. Denn wenn
die Nebenklassen ag und bg ein Element gemein haben, etwa

agr = bgo,

so folgt
gng_I =a 'b.

so daB8 a='b in g liegt; nach dem Vorigen sind also ag und bg identisch.

Jedes Element a gehort einer Nebenklasse an, namlich der Nebenklasse ag.
Diese enthélt ja sicher das Element ae = a. Nach dem eben Bewiesenen gehort
das Element a auch nur einer Nebenklasse an. Wir konnen demnach jedes Ele-
ment a als Reprdsentanten der a enthaltenden Nebenklass ag ansehen.

Nach dem vorhergehenden bilden die Nebenklassen eine Klasseneinteilung
der Gruppe &. Jedes Element gehort einer und nur einer Klasse an.
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Je zwei Nebenklassen sind gleichméchtig. Denn durch ag — bg ist eine einein-
deutige Abbildung von ag auf bg definiert.

Die Nebenklassen sind, mit Ausnahme von g selbst, keine Gruppen; denn
eine Gruppe miifite das Einselelement enthalten.

Die Anzahl der verschiedenen Nebenklassen einer Untergruppe g in & heifit
der Index von g in &. Der Index kann endlich oder unendlich sein.

Ist N die als (endlich angenommene) Ordnung von &, n die von g, j der
Index, so gilt die Relation

(2) N = jn;

denn & ist ja in 5 Klassen eingeteilt, deren jede n Elemente enthalt.
Man kann fiir endliche Gruppen aus (2) den Index j berechnen:

. N
j==
n

Folge. Die Ordnung einer Untergruppe einer endlichen Gruppe ist ein Teiler
der Ordnung der Gesamtgruppe.

4.3 Formal Proof Sketch: Informal Layout
now let a,b; assume a”~! % b in G; thus
bxG=axa"1xbxG. =ax(a" " txbxQ). =axG; end;

for a,bst ax G <>b*xG holds (a*xG) /\ (bxG) ={}
proof let a,b; now assume (a * G) /\ (b* G) <> {}; consider g1, g2 such that

a* gy = bx* go;

gL xg t=a""txb;

a""'%bin G; thus a * G = b G; end; thus thesis; end;

for a holds a in a * G proof let a; a * e(G) = a; thus thesis; end;

{a* G :ain H} is a'partition of H;

for a, b holds card(axG) = card(bx @) proof let a, b; consider f being Function
of a x G,bx* G such that for g holds f.(a * g) = bx g; f is bijective; thus thesis;
end;

set 'Index’ = card{a * G : a in H};

now let NV such that NV = card H; let n such that n = card G} let j such that
j = Index’; thus
2% N =jxmn; end;

K

thus card G divides card H;
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4.4 Formal Proof Sketch: Formal Layout

now
let a,b;
assume a"-1%b in G;
thus b*G = a*a”-1*%b*G .= ax(a"-1xbxG) .= ax*G; *4 %4 x4
end;
for a,b st a*G <> bxG holds (a*G) /\ (bxG) = {}
proof
let a,b;
now
assume (a*G) /\ (b*G) <> {I};
consider gl,g2 such that a*gl = b*g2; *4
gl*g2™-1 = a”-1xb; *4
a"-1%b in G; *4
thus a*G = bx*G; *4
end;
thus thesis; *4
end;
for a holds a in a*G
proof
let a;
axe(G) = a; *4
thus thesis; *4
end;
{a*G : a in H} is a_partition of H; x4
for a,b holds card(a*G) = card(b*G)
proof
let a,b;
consider f being Function of a*G,b*G such that
for g holds f.(axg) = bxg; *4
f is bijective; *4
thus thesis; *4
end;
set ’Index’ = card {a*G : a in H};
now
let N such that N
let n such that n
let j such that j
thus
’2?: N = j*n; *4
end;
thus card G divides card H; *4

card H;
card G;
’Index’;

4.5 Formal Proof

Al: now

let a,b;
assume
A2: a”-1%b in G;
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thus b*G = e(H)*b*G by GROUP_1:def 5
.= a*a”-1%b*G by GROUP_1:def 6
.= ax(a”-1x*b)*G by GROUP_1l:def 4
.= a*x(a”-1*b*G) by GROUP_2:127
.= ax(carr G) by A2,GROUP_2:136
.= a*G by GROUP_2:def 13;
A3: for a,b st a*G <> b*G holds (a*G) /\ (b*G) = {}
proof

let a,b;
now
assume (a*xG) /\ (b*xG) <> {};
then consider x such that
A4: x in (axG) /\ (b*G) by XBOOLE_0:7;
A5: x in a*G & x in b*G by A4,XBOOLE_O:def 4;
consider gl such that
A6: x = a*xgl by A5,Thb;
consider g2 such that
A7: x = b*g2 by A5,Thb;
set glG = gl;
set g2G = g2;
reconsider gl as Element of H by GROUP_2:51;
reconsider g2 as Element of H by GROUP_2:51;
A8: ax*gl = a*glG by Th2
.= b*xg2 by A6,A7,Th2;
glG*g2G~-1 = glxg2G™-1 by Th3
.= gl*g2°-1 by Th2,GROUP_2:57
e(H)*gl*g2~-1 by GROUP_1:def 5
a”-1xaxgl*g2~-1 by GROUP_1:def 6
a~-1*(a*gl)*g2~-1 by GROUP_1:def 4
a”-1x(b*g2xg2~-1) by A8,GROUP_1:def 4
a”-1x(bx(g2*g2~"-1)) by GROUP_1:def 4
a"-1*x(b*e(H)) by GROUP_1:def 6
.= a"-1xb by GROUP_1:def 5;
then a”-1%b in G by STRUCT_O:def 5;
hence a*G = b*G by Al;
end;
hence thesis;
end;
A9: for a holds a in axG
proof
let a;
axe(G) = axe(H) by Th2,GROUP_2:53
.= a by GROUP_1:def 5;
hence thesis;
end;
set X = {a*xG : a in H};
X c= bool the carrier of H
proof
let A;
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assume A in X;
then consider a such that
A10: A = a*G & a in H;
thus A in bool the carrier of H by A10,ZFMISC_1:def 1;
end;
then reconsider X as Subset-Family of H;
A11: X is a_partition of the carrier of H
proof
thus union X = the carrier of H
proof
thus union X c= the carrier of H;
let x;
assume
A12: x in the carrier of H;
then reconsider a = x as Element of H;
x in H by A12,STRUCT_O:def 5;
then a in a*G & a*G in X by A9;
hence x in union X by TARSKI:def 4;
end;
let A be Subset of the carrier of H;
assume A in X;
then consider a such that
A13: A = a*G & a in H;
thus A <> {} by A13;
let B be Subset of the carrier of H;
assume B in X;
then consider b such that
A14: B = b*G & b in H;
assume A <> B;
then A /\ B = {} by A3,A13,A14;
hence A misses B by XBOOLE_O:def 7;
end;
then reconsider X as a_partition of H;
{a*G : a in H} is a partition of H by All;
A15: for a,b holds card(a*G) = card(b*G)
proof

let a,b;

defpred P[Element of a*G,Element of b*G] means
for g st $1 = a*g holds $2 = bxg;
A16: now
let x be Element of axG;
consider g such that
A17: x = a*g by Thb5;
reconsider y = b*g as Element of b*G;
take y;
thus P[x,y] by A17,Thé4;
end;
consider f being Function of a*G,b*G such that
A18: for x being Element of a*G holds P[x,f.x qua Element of b*G]
from FUNCT_2:sch 3(A16);
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for g holds f.(a*g) = b*g by A18;
f is bijective
proof
hereby
let x,x’ be Element of axG;
consider g such that
A19: x = axg by Thb;
consider g’ such that
A20: x’ = a*g’ by Thb;
A21: f.x = bxg & f.x’ = b*xg’ by A19,A20,A18;
assume f.x = f.x’;
hence x = x’ by A19,A20,A21,Th4;
end;
let y be Element of b*G;
consider g such that
A22: y = b*g by Th5;
take axg;
thus thesis by A18,A22;
end;
hence thesis by EUCLID_7:3;
end;
set ’Index’ = card {a*G : a in H};
’Index’ = card X;
then reconsider ’Index’ as natural number;
now
let N such that
A23: N = card H;
let n such that
A24: n = card G;
let j such that
A25: j = ’TIndex’;
A26: card H = card the carrier of H by STRUCT_O:def 17;
now
let A;
assume A in X;
then consider a such that
A27: A = a*G & a in H;
e(H)*G = carr(G) by GROUP_2:132
.= the carrier of G by GROUP_2:def 9;
then card(e(H)*G) = card G by STRUCT_O:def 17;
hence card A = n by A15,A24,A27;
end;

hence N = j*n by A23,A25,A26,Thl;

end;

then card H = ’Index’*card G;

hence card G divides card H by INT_1:def 9;

4.6 Mizar Version

7.11.01 — 4.117.1046

11
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5 Analysis: successor has no fixed point

5.1 Source

Fairouz Kamareddine, Manuel Maarek and J.B. Wells, MathLang: experience-
driven development of a new mathematical language, draft. Page 11.

Quoted from: Edmund Landau, Foundations of Analysis. Translated by F.
Steinhardt, Chelsea, 1951.

5.2 Informal Proof
Theorem 2
' #x
Proof Let 2t be the set of all x for which this holds true.
I) By Axiom 1 and Axiom 3,

1 # 1
therefore 1 belongs to 9.
II) If = belongs to M, then
o' # =,
and hence by Theorem 1,
@y # 1,

so that 2’ belongs to 9.

By Axiom 5, 9t therefore contains all the natural numbers, i.e. we have for each
x that

' # x.
5.3 Formal Proof Sketch: Informal Layout
Theorem _2:

' <>ux
proof set M={y:y’' <>y};

I: now
17<>1

by Axiom_1, Axiom_3; hence 1 in 91; end;
II: now let x; assume x in 91; then
x' <>
then
(') <>z’
by Theorem_1; hence x ' in 9; end;
for z holds x in 9t by Axiom_5; hence

x| <> end;
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5.4 Formal Proof Sketch: Formal Layout

Theorem_2: x ’> <> x
proof
set M=d{y : vy’ <>y}
I: now
1’ <> 1 by Axiom_1, Axiom_3;
hence 1 in M;
end;
II: now let x;
assume x in M;
then x ’ <> x;
then (x ’)’ <> x ’ by Theorem_1;
hence x ’ in M;
end;
for x holds x in M by Axiom_5;
hence x ’ <> x;
end;

5.5 Formal Proof

Theorem_2: x ’ <> x
proof
set M =4y : v’ <> vy};
I: now
1’ <> 1 by Axiom_3;
hence 1 in M by Axiom_1;

end;
now let x;

assume x in M;
then ex ystx=y &y’ <>y;
then (x ’)’ <> x ’ by Axiom_4;

hence x ’ in M;
end;

then x in M by I,Axiom_5;
thenex yst x =y &y’ <>y
hence x ’ <> x;

end;

5.6 Mizar Version

6.4.01 — 3.60.795

6 Analysis: successor has no fixed point

6.1 Source

A message Formal verification on the FOM mailing list by Lasse Rempe-Gillen
(L.Rempe@liverpool.ac.uk), dated 21 October 2014 and with Message-ID

13

*4

*4

*4
*4

(675123965B518F43B235C5FCB5D565DCBF 1457 7EQCHEXMBX 1 . 1ivad. 1iv.ac. uk).
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6.2 Informal Proof

Let f be a real-valued function on the real line, such that f(x) > x for all x. Let
xo be a real number, and define the sequence () recursively by x,y1 := f(x,).
Then x,, diverges to infinity.

A standard proof might go along the following steps: 1) By assumption, the
sequence is strictly increasing; 2) hence the sequence either diverges to infinity
or has a finite limit; 3) by continuity, any finite limit would have to be a fixed
point of f, hence the latter cannot occur.

6.3 Formal Proof Sketch: Informal Layout

now let f be continuous Function of REAL,REAL; assume for x holds f.(x) > x;
let xo be Element of REAL; set x = recursively_iterate(f,z0); T (n41) = f.(T.0);
thus x is divergent_to+infty

proof z is increasing; x is divergent_to+infty or z is convergent; x is convergent
implies f.(limz) = lim z; x is not convergent; thus thesis; end; end;

6.4 Formal Proof Sketch: Formal Layout

now
let f be continuous Function of REAL,REAL;
assume for x holds f.(x) > x;
let x0 be Element of REAL;
set x = recursively_iterate(f,x0);
x.(n + 1) = f.(x.n);
thus x is divergent_to+infty
proof
X is increasing;
x is divergent_to+infty or x is convergent;
x is convergent implies f.(lim x) = lim x;
X is not convergent;
thus thesis;
end;
end;

6.5 Formal Proof

now
let f be continuous Function of REAL,REAL;
assume

Al: for x holds f.(x) > x;
let x0 be Element of REAL;
set x = recursively_iterate(f,x0);

A2: x.(n + 1) = f.(x.n) by Defl;
thus x is divergent_to+infty
proof

*4

*4
*4
*4
*4
*4
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now let n;
x.(n + 1) = £.(x.n) by A2;
hence x.(n + 1) > x.n by Al;
end;
then
A3: x is increasing by SEQM_3:def 6;
then x is bounded_above implies x is convergent;
then
A4 x is divergent_to+infty or x is convergent by A3,LIMFUNC1:31;
X is convergent implies f.(lim x) = lim x
proof
assume
A5: X is convergent;
A6: dom f = REAL by PARTFUN1:def 2;
AT: rng x ¢= dom f by A6,RELAT_1:def 19;
A8: now let n;
reconsider m = n as Element of NAT by ORDINAL1:def 12;
x.(m + 1) = f.(x.m) by A2
.= (f /* x).m by A7,FUNCT_2:108;
hence x.(n + 1) = (f /* x).n;
end;
f is_continuous_in lim x by A6,XREAL_O:def 1,FCONT_1:def 2;
hence f.(lim x) = lim (f /* x) by A5,A7,FCONT_1:def 1
.= lim (x "\ 1) by A8,NAT_1l:def 3
lim x by A5,SEQ_4:22;

end;
then x is not convergent by Al;
hence thesis by A4;
end;
end;

6.6 Mizar Version

8.1.02 - 5.22.1191

7 Linear Algebra: Linear Independence

7.1 Source

Jean Gallier, Basics of Algebra and Analysis For Computer Science. Published
at <http://www.cis.upenn.edu/~jean/gbook.html>, University of Pennsyl-
vania, 2001. Page 16.

7.2 Informal Proof

Lemma 2.1. Given a linearly independent family (u;);cr of elements of a vector
space E, if v € E is not a linear combination of (u;);cr, then the family (u;);crUk
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(v) obtained by adding v to the family (u;);er is linearly independent (where
kel).

Proof. Assume that pv 4+ Y, ; Aju; = 0, for any family (A;)ies of scalars in
K. If u # 0, then u has an inverse (because K is a field), and thus we have
v = _Ziel(:u_l)‘i)ui’ showing that v is a linear combination of (u;);c; and
contradicting the hypothesis. Thus, 4 = 0. But then, we have ), _; \ju; = 0,
and since the family (u;);es is linearly independent, we have A; = 0 for all ¢ € I.
O

7.3 Formal Proof Sketch: Informal Layout

theorem Lem21: u is linearly-independent & not v in Lin(u) implies u\/ {v}
1s linearly-independent

proof assume w is linearly-independent & not v in Lin(u); assume u \/ {v} is
linearly-dependent; consider m being Element of K, [ being Linear_Combination
of w such that m*v+ Sum(l) = 0.EF; now assume m <> 0.K; v = —m” *Sum(l);
v in Lin(u); thus contradiction; end; m = 0.K; Sum(l) = 0.E; Carrier(l) = {};
thus contradiction; end;

7.4 Formal Proof Sketch: Formal Layout

theorem Lem21:
u is linearly-independent & not v in Lin(u) implies
u \/ {v} is linearly-independent
proof
assume u is linearly-independent & not v in Lin(u);
assume u \/ {v} is linearly-dependent;
consider m being Element of K,
1 being Linear_Combination of u such that
m*v + Sum(l) = 0.E;
now
assume m <> 0.K;
v = -m"*Sum(1);
v in Lin(u);

thus contradiction;
end;

m = 0.K;

Sum(1l) = 0.E;

Carrier(l) = {};
thus contradiction;
end;

7.5 Formal Proof

theorem Lem21:
u is linearly-independent & not v in Lin(u) implies

*4

*4
*4
*1

*4
*4
*4
*1
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u \/ {v} is linearly-independent
proof
assume
Al: u is linearly-independent & not v in Lin(u);
given 1’ being Linear_Combination of u \/ {v} such that
A2: Sum(1’) = 0.E & Carrier(1’) <> {};
consider m’ being Linear_Combination of {v},
1l being Linear_Combination of u such that
A3: 1’ =m’ + 1 by Th2;
setm =m’.v;
Ad: m¥v + Sum(1) = Sum(m’) + Sum(l) by VECTSP_6:43
.= 0.E by A2,A3,VECTSP_6:77;
A5: now
assume
A6: m <> 0.K;
m*v = -Sum(1l) by A4,RLVECT_1:def 10;
then v = m"*(-Sum(1)) by A6,VECTSP_1:67
.= -m"*Sum (1) by VECTSP_1:69;
then
A7: v = (-m")*Sum(1) by VECTSP_1:68;
Sum(1l) in Lin(u) by VECTSP_7:12;
hence contradiction by A1,A7,VECTSP_4:29;
end;
Sum(l) = 0.E + Sum(1l) by VECTSP_1:7
.= 0.E by A4,A5,VECTSP_1:59;
then
A8: Carrier(l) = {} by A1,VECTSP_7:def 1;
now
let x be set;
A9: Carrier(m’) c= {v} by VECTSP_6:def 7;
not v in Carrier(m’) by A5,VECTSP_6:20;
hence not x in Carrier(m’) by A9,TARSKI:def 1;
end;
then Carrier(m’) = {} by BOOLE:def 1;
then Carrier(l) \/ Carrier(m’) = {} by A8;
then Carrier(1l’) c= {} by A3,VECTSP_6:51;
hence contradiction by A2,BOOLE:30;
end;

7.6 Mizar Version

6.1.11 — 3.33.722

8 Mathematical Logic: Newman’s Lemma

8.1 Source

Henk Barendregt, The Lambda Calculus: Its Syntax and Semantics. North Hol-
land, 1984. Page 58.
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8.2 Informal Proof

3.1.25. PROPOSITION. For notions of reduction one has
SN AWCR = CR

PROOF. By SN each term R-reduces to an R-nf. It suffices to show that this R-nf
is unique. Call M ambiguous if M R-reduces to two distinct R-nf’s. For such M
one has M —r M’ with M’ ambiguous (use WCR, see figure 3.3). Hence by SN
ambiguous terms do not exist.

M M

\

T /

N
M/ \]g/ \% . A .

FIG. 3.3.

8.3 Formal Proof Sketch: Informal Layout

THEOREM 3_1_25:
R is SN & R is WCR implies R is CR

PROOF assume that R is SN and R is WCR; for M ex My st M reduces_to Mji;
(for M, My, M5 st M reduces_to My & M reduces_to M, holds My = Ms) implies
R is CR; defpred ambiguous|[Term of R] means ex My, My st $1 reduces_to M;
& $1 reduces_to My & M; <> Ms; now now let M such that ambiguous|[M];
thus ex M’ st M ---> M’ & ambiguous[M’]

PROOF consider My, My such that M -->> My & M -->> My & My <>
My; per cases; suppose not ex M’ st M > M' & M' ->> M; &
M’ -->> Ms; consider M’ such that M ---> M’ & M’ -->> M;; consider
M" such that M -—-> M" & M" -->> Ms; consider M'"" such that
M —>> M" & M" —->> M"’; consider M3 such that M —->> Ms;
take M'; thus thesis; suppose ex M’ st M -——-> M' & M' ->> M; &
M’ —->> My; consider M’ such that M --> M’ & M' ->> M; &
M' —->> M,; take M’; thus thesis; END;

END; thus not ex M st ambiguous[M]; END; thus thesis; END;
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8.4 Formal Proof Sketch: Formal Layout

theorem 3_1_25:
R is SN & R is WCR implies R is CR

proof
assume that R is SN and R is WCR;
for M ex M1 st M reduces_to Mi; *4
(for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1 = M2)
implies R is CR; *4

defpred ambiguous[Term of R] means

ex M1,M2 st $1 reduces_to M1 & $1 reduces_to M2 & M1 <> M2;
now

now

let M such that ambiguous[M];

thus ex M’ st M ---> M’ & ambiguous[M’]

proof :: begin fig 3.3

consider M1,M2 such that M -->> M1 & M -->> M2 & M1 <> M2; *4
per cases;
suppose not ex M’ st M -—-> M’ & M’ -->> M1 & M’ -->> M2;
consider M’ such that M ---> M’ & M’ -->> Mi; *4
consider M’’ such that M ---> M’’ & M’’ -->> M2; *4
consider M’’’ such that M’ -->> M’’’ & M’’ -->> M’’7; *4
consider M3 such that M’’’ -->> M3; *4
take M’;
thus thesis; *4 4
suppose ex M’ st M ——-> M’ & M’ -->> M1 & M’ -->> M2;
consider M’ such that M ---> M’ & M’ -->> M1 & M’ -->> M2; *4
take M’;
thus thesis; *4 .4
end; :: end fig 3.3
end;
thus not ex M st ambiguous([M]; *4
end;
thus thesis; *4

end;

8.5 Formal Proof

theorem 3_1_25:
R is SN & R is WCR implies R is CR
proof
assume that
Al: R is SN and
A2: R is WCR;
A3: R is WN by A1,Th9;
then for M ex M1 st M reduces_to M1 by Defl0;
Ad4: (for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1 = M2)
implies R is CR
proof
assume
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A5: for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1
let M,M’ ,M’’;
assume
A6: M —-->> M’ & M -->> M’’;
consider M1 such that
A7: M’ -->> M1 by A3,Defl0;
consider M2 such that
A8: M’’ -->> M2 by A3,Defl0;
M -->> M1l & M -->> M2 by A6,A7,A8,Th6;
then M’ -->> M1 & M’’ -->> M1 by A5,A7,A8;
hence thesis;
end;
defpred ambiguous[Term of R] means
ex M1,M2 st $1 reduces_to M1 & $1 reduces_to M2 & M1 <> M2;

A9: now
A10: now
let M such that
A11: ambiguous[M];
thus ex M’ st M -——> M’ & ambiguous[M’]
proof :: begin fig 3.3
consider M1,M2 such that
A12: M --=>> M1 & M -->> M2 & M1 <> M2 by All;

per cases;

suppose
A13: not ex M’ st M -—-> M’ & M’ -->> M1 & M’ -->> M2;

M1 is_nf & M2 is_nf by Def9;
then
A14: M <> M1 & M <> M2 by A12,Th8;
then consider M’ such that
A15: M ---> M’ & M’ -->> M1 by A12,Th7;
consider M’’ such that
A16: M ---> M’’ & M’’ -->> M2 by A12,A14,Th7;
consider M’’’ such that
A7: M -->> M’ & M’’ -->> M’’’ by A2,A15,A16,Defll;
consider M3 such that
A18: M’’’ -->> M3 by A3,Defl0;
take M’;
M’ -=>> M3 & M’’ -->> M3 by A17,A18,Th6;
then M’ -->> M1 & M’ -->> M3 & M1 <> M3 by A13,A15,A16;
hence thesis by A15;
suppose ex M’ st M ---> M’ & M’ -=->> M1 & M’ -->> M2;
then consider M’ such that
A19: M --—=> M’ & M’ -->> M1 & M’ -->> M2;

take M’;
thus thesis by A12,A19;
end; :: end fig 3.3
end;
thus not ex M st ambiguous[M] from SN_inductioni(A1,A10);
end;

thus thesis by A4,A9;

M2;
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end;

8.6 Mizar Version

6.1.11 — 3.33.722

9 Mathematical Logic: Diaconescu’s Theorem

9.1 Source

Michael Beeson, Foundations of Constructive Mathematics. Springer-Verlag,
1985.

9.2 Informal Proof

1.1 Theorem (Diaconescu [1975]). The aziom of choice implies the law of
excluded middle, using separation and extensionality.

Proof. Let a formula ¢ be given; we shall derive ¢ V —¢. Let A = {n €
N:n=0vn=1& ¢} Let B={neN:n=1vn =0 & ¢)}.
Then V2 € {A,B}3y € N(y € x). Suppose f is a choice function, so that
f(A) € A and f(B) € B. We have f(A) = f(B)V f(A) # f(B), since the
values are integers. If f(A) = f(B) then ¢, so ¢ V —¢. If f(A) # f(B), then
—¢ can be derived: suppose ¢. Then A = B by extensionality, so f(A) = f(B),
contradiction. Hence in either case ¢ V —¢. (|

9.3 Formal Proof Sketch: Informal Layout

scheme Diaconescu {phi[]} : aziom_of-choice implies phi[] or not phi|]

proof assume axiom_of_choice; set A = {n :n =0or (n =1 & phi[])}; set
B={n:n=1or (n=0& phi]])}; for x st x in {A, B} holds ex y st y in z;
consider f being choice_function such that f is extensional; f.A in A & f.B in B;
fA= f.Bor f.A <> f.B by excluded_middle_on_integers; per cases; suppose
f-A = f.B; phi[]; thus phi[] or not phi[]; end; suppose f.A <> f.B; not phi]
proof assume phi[]; A = B by extensionality; f.A = f.B; thus contradiction;
end; thus phi[] or not phil]; end; end;

9.4 Formal Proof Sketch: Formal Layout

scheme Diaconescu :: 1975
{ phi[] } : axiom_of_choice implies phi[] or not phil]
proof

assume axiom_of_choice;
set A={n :n=0o0r (n=1%&phill)};
set B={n :n=10or (n=02%& phill)};

for x st x in {A,B} holds ex y st y in x; x4
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consider f being choice_function such that
f is extensional;
f.A in A & £.B in B;
f.A =f.Bor £.A <> £.B by excluded_middle_on_integers;
per cases;
suppose f.A = f£.B;
phill;
thus phi[] or not phil];
end;
suppose f.A <> f.B;
not phil[]
proof
assume phil];
A = B by extensionality;

f.A = £.B;
thus contradiction;
end;
thus phi[] or not phil[l;
end;
end;

9.5 Formal Proof

scheme Diaconescu {phi[] }:
axiom_of_choice implies phi[] or not phil[]
proof
assume
Al: axiom_of_choice;
set A={n : n=0or (n=1& phil[l)};
set B={n : n 1 or (n =0 & phi[])};
deffunc F(Nat) $1;
defpred P[Nat] means $1 = 0 or ($1 = 1 & phi[l);
{F(n) : P[n]} is Subset of NAT from COMPLSP1l:sch 1;
then reconsider A as Subset of NAT;
defpred Q[Nat] means $1 = 1 or ($1 = 0 & phi[l);
{F(n) : Q[n]} is Subset of NAT from COMPLSP1l:sch 1;
then reconsider B as Subset of NAT;
A2: for x st x in {A,B} holds ex y st y in x
proof
let x;
assume x in {A,B};
then
A3: x = A or x = B by TARSKI:def 2;
per cases by A3;
suppose
Ad: x = A;
take 0O;
thus thesis by A4;
end;
suppose

*4
4,4

*4

*4

*4
*1
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A5: x = B;
take 1;
thus thesis by A5;
end;
end;
consider f being choice_function such that
A6: f is extensional by Al,Def3;
A in {A,B} & B in {A,B} by TARSKI:def 2;
then (ex y st y in A) & (ex y st y in B) by A2;
then
A7: £.A in A & £.B in B by Defl;
A8: f.A = £.B or f.A <> f.B by excluded_middle_on_integers;
per cases by A8;
suppose
A9: £.A = £.B;
set n = f.A;
A10: n in A & n in B by A7,A9;
then
A1l: exn’ stn=n" & (n” =0or (n =1 & phi[l));
phi[]
proof
per cases by Al1l;

suppose
A12: n = 0;
exn’ stn=mn’& (n” =1or (0 =0 & phi[])) by A10;
hence thesis by A12;
end;
suppose n = 1 & phi[];
hence thesis;
end;
end;
hence phi[] or not phil[l;
end;
suppose
A13: £.A <> £.B;
not phi[]
proof
assume
A14: phi[];
now
let y;
hereby
assume y in A;
then ex nst y=n & (n=0or (n=12%& phill));
then y = 0 or (y = 1 & phi[l);
then y = 1 or (y = 0 & phi[]) by Al4;
hence y in B;
end;
hereby
assume y in B;

23
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& (n=1or (n=02%& phill));
0 & phill);
1 & phi[l) by A14;

then ex n st y =
then y = 1 or (y
then y = 0 or (y
hence y in A;
end;
end;
then A = B by extensionality;
then f.A = £.B by A6,Def2;
hence contradiction by A13;
end;
hence phi[] or not phil[l;
end;
end;

B

9.6 Mizar Version

7.0.04 — 4.04.834

10 Topology: Open Intervals are Connected

10.1 Source

Paul Cairns and Jeremy Gow, Elements of Fuclidean and Metric Topology, online
undergraduate course notes from the IMP project. Project web site at <http:
//www.uclic.ucl.ac.uk/imp/>, course notes at <http://www.uclic.ucl.ac.
uk/topology/> and the frame of this specific proof at <http://www.uclic.
ucl.ac.uk/topology/ConnectedInterval.html>.

10.2 Informal Proof
Theorem
Open intervals are connected

GIVEN: a,be R
THEN: The open interval (a,b) is connected

Proof
SKETCH:

The proof proceeds by contradiction. Suppose that (a,b) were not connected.
Then there would be a pair of non-empty disjoint proper open subsets, U, V
say, of (a,b) whose union would be (a,b). This implies a “gap” so we use the
completeness of the real line to show that there can’t be a gap. To do this, find
a supremum of some interval which must be contained in U. Note that there is
a small open ball about the supremum wich because U and V' are open must
be contained wholly within one or other of them. However, in both cases, this
leads to a contradiction: if the ball is in U then the ball contains points in U
exceeding the supremum; if the ball is in V' then there are points in the ball also
in U by definition of the supremum.
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10.3 Formal Proof Sketch: Informal Layout

theorem
(.a,b.) is connected
proof

assume (.a,b.) is not connected; consider U,V being non empty open Subset of
REAL, u,v such that UNV = {} & UV V = (.a,b.) & uin U & vin V &
u < v; reconsider X = {x s () = U} as Subset of REAL; set s = sup X;
per cases; suppose s in U; consider e such that e > 0 & Ball(s,e) c= U; ex x st
x in Ball(s, e) & x > s; thus contradiction; suppose s in V; consider e such that
e > 0& Ball(s,e) c=V; ex x st x in Ball(s, ) & x in U; thus contradiction;

END;

)

10.4 Formal Proof Sketch: Formal Layout

theorem (.a,b.) is connected
proof
assume (.a,b.) is not connected;
consider U,V being non empty open Subset of REAL, u,v such that
U/NV={r&U\N/V=1C(C.a,b.) &uin U & v inV & u < v;
reconsider X = { x : (.u,x.) c= U } as Subset of REAL;
set s = sup X;
per cases;
suppose s in U;
consider e such that e > 0 & Ball(s,e) c= U;
ex X st x in Ball(s,e) & x > s;
thus contradiction;
suppose s in V;
consider e such that e > 0 & Ball(s,e) c= V;
ex X st x in Ball(s,e) & x in U;
thus contradiction;
end;

10.5 Formal Proof

theorem (.a,b.) is connected
proof
assume (.a,b.) is not connected;
then consider U,V being non empty open Subset of REAL such that
Al: U/NV=A{r&U\/ V= (.a,b.) by Def8;
consider u such that
A2: u in U by Defl;
consider v such that
A3: v in V by Defl;
ex U,V being non empty open Subset of REAL, u,v st
UANAV={Y&U\NV=C(Cab)&uinU&vinV&u<yv
proof

*4
*4

*4

*4
*4
*1

*4
*4
*1
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per cases by AXIOMS:21;
suppose
Ad: u < v;
take U,V,u,v;
thus thesis by A1,A2,A3,A4;
suppose
A5: u > vy
take V,U,v,u;
thus thesis by A1,A2,A3,A5;
suppose u = V;
hence thesis by A1,A2,A3,XBOOLE_O:def 3;
end;
then consider U,V being non empty open Subset of REAL, u,v such that
A6: U/\NV={r&U\N/V="C(a,b.) $uinU&v inV & u < v;
{x: (.u,x.) ¢c= U } c= REAL from Fr_SetO;
then reconsider X = { x : (.u,x.) c= U } as Subset of REAL;
(.u,u.) = {} by RCOMP_1:12;
then (.u,u.) c= U by XBOOLE_1:2;
then
A7: u in X;
A8: for x st x in X holds x <= v
proof
let x;
assume
A9: x in X & v < x;
A10: v in (.u,x.) by A6,A9,JORDAN6:45;
ex x’ st x = x> & (.u,x’.) c= U by A9;
hence thesis by A6,A10,XBOOLE_O:def 3;
end;
for x being real number st x in X holds x <= v by AS8;
then reconsider X as non empty bounded_above Subset of REAL
by A7,SEQ_4:def 1;
set s = sup X;
Uc= (.a,b.) &V c= (.a,b.) by A6,XBOOLE_1:7;
then a<u&u<=s&s<=v&v<pb
by A6,A7,A8,JORDAN6:45,SEQ_4:def 4,PSCOMP_1:10;
then a < s & s < b by AXIOMS:22;
then
A11: s in (.a,b.) by JORDAN6:45;
per cases by A6,A11,XBOOLE_O:def 2;
suppose s in U;
then consider e such that
A12: e > 0 & Ball(s,e) c= U by Def7;
ex X st x in Ball(s,e) & x > s
proof
take x = s + e/2;
thus x in Ball(s,e) by A12,Th2;
e/2 > 0 by A12,SEQ_2:3;
hence thesis by REAL_1:69;
end;
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then consider x such that
A13: x in Ball(s,e) & x > s;

(u,x.) c=T
proof
let y be set;
assume

A14: y in (.u,x.);
then reconsider y as Real;
A15: u < y & y < x by A14,JORDANG6:45;
per cases;
suppose y < s;
then consider y’ such that
A16: y> in X & y <y’ & y’ <= s by Def9;
y in Cu,y’.) &exy’’ st y’ =y’ & (.u,y’’.) c= U
by A15,A16,J0RDAN6:45;
hence thesis;
suppose y >= s;
then s in Ball(s,e) & x in Ball(s,e) & s <=y & y <= x
by A12,A13,A14,Th1,JORDANG:45;
then y in Ball(s,e) by Th4;
hence thesis by A12;
end;
then x in X;
hence contradiction by A13,SEQ_4:def 4;
suppose s in V;
then consider e such that
A17: e > 0 & Ball(s,e) c= V by Def7;
ex X st x in Ball(s,e) & x in U
proof
per cases;
suppose
A18: u < s - e/2;
take x = s - e/2;
thus x in Ball(s,e) by A17,Th3;
e/2 > 0 by A17,SEQ_2:3;
then x < s by REAL_2:174;
then consider x’ such that
A19: x’ in X & x < x’ & x’ <= s by Def9;
x in (.u,x’.) & ex x’? st x> =x’? & (.u,x’’.) c=U
by A18,A19,J0RDAN6:45;
hence thesis;
suppose
A20: s - e/2 <= u;
take u;
s - e/2 in Ball(s,e) & s in Ball(s,e) & s - e/2 <= u & u <= s
by A7,A17,A20,Th1,Th3,SEQ_4:def 4;
hence thesis by A6,Th4;
end;
hence contradiction by A6,A17,XBOOLE_O:def 3;
end;

27
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10.6 Mizar Version

6.3.02 — 3.44.763

11 Missing Subjects

Calculus

— Combinatorics

— Complex Variables
Differential Equations
— Geometry

— Integration
Probability Theory



