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Abstract. This note collects the formal proof sketches that I have done.

1 Algebra: Irrationality of
√

2

1.1 Source

G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers. 4th
edition, Clarendon Press, Oxford, 1960. Pages 39–40.

1.2 Informal Proof

Theorem 43 (Pythagoras’ theorem).
√

2 is irrational.

The traditional proof ascribed to Pythagoras runs as follows. If
√

2 is rational,
then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a, b) = 1. Hence a2 is even, and therefore a is
even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is also even, contrary to the
hypothesis that (a, b) = 1.

1.3 Formal Proof Sketch: Informal Layout

theorem Th43: sqrt 2 is irrational :: Pythagoras’ theorem

proof assume sqrt 2 is rational; consider a, b such that

4 3 1: aˆ2 = 2 ∗ bˆ2

and a, b are relative prime; aˆ2 is even; a is even; consider c such that a = 2 ∗ c;
4 ∗ cˆ2 = 2 ∗ bˆ2; 2 ∗ cˆ2 = bˆ2; b is even; thus contradiction; end;

1.4 Formal Proof Sketch: Formal Layout

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

consider a,b such that

4_3_1: a^2 = 2*b^2 and

*4a,b are_relative_prime;
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*4a^2 is even;

*4a is even;

*4consider c such that a = 2*c;

*44*c^2 = 2*b^2;

*42*c^2 = b^2;

*4b is even;

*1thus contradiction;

end;

1.5 Formal Proof

theorem Th43: sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider a,b such that

A1: b <> 0 and

A2: sqrt 2 = a/b and

A3: a,b are_relative_prime by Def1;

A4: b^2 <> 0 by A1,SQUARE_1:73;

2 = (a/b)^2 by A2,SQUARE_1:def 4

.= a^2/b^2 by SQUARE_1:69;

then

4_3_1: a^2 = 2*b^2 by A4,REAL_1:43;

a^2 is even by 4_3_1,ABIAN:def 1;

then

A5: a is even by PYTHTRIP:2;

then consider c such that

A6: a = 2*c by ABIAN:def 1;

A7: 4*c^2 = (2*2)*c^2

.= 2^2*c^2 by SQUARE_1:def 3

.= 2*b^2 by A6,4_3_1,SQUARE_1:68;

2*(2*c^2) = (2*2)*c^2 by AXIOMS:16

.= 2*b^2 by A7;

then 2*c^2 = b^2 by REAL_1:9;

then b^2 is even by ABIAN:def 1;

then b is even by PYTHTRIP:2;

then 2 divides a & 2 divides b by A5,Def2;

then

A8: 2 divides a gcd b by INT_2:33;

a gcd b = 1 by A3,INT_2:def 4;

hence contradiction by A8,INT_2:17;

end;

1.6 Mizar Version

6.1.11 – 3.33.722
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2 Algebra: Infinity of Primes

2.1 Source

The slides of a talk by Herman Geuvers, Formalizing an intuitionistic proof of
the Fundamental Theorem of Algebra.

2.2 Informal Proof

Theorem There are infinitely many primes:
for every number n there exists a prime p > n

Proof [after Euclid]
Given n. Consider k = n! + 1, where n! = 1 · 2 · 3 · . . . · n.
Let p be a prime that divides k.
For this number p we have p > n: otherwise p ≤ n;
but then p divides n!,
so p cannot divide k = n! + 1,
contradicting the choice of p. QED

2.3 Formal Proof Sketch: Informal Layout

theorem {n : n is prime} is infinite proof
for n ex p st p is prime & p > n

proof :: [after Euclid]
let n; set k = n! + 1;
consider p such that p is prime & p divides k;
take p; thus p is prime; thus p > n proof assume p <= n;
p divides n!;
not p divides n! + 1;
thus contradiction; end; end; thus thesis; end;

2.4 Formal Proof Sketch: Formal Layout

theorem {n: n is prime} is infinite

proof

for n ex p st p is prime & p > n

proof

let n;

set k = n! + 1;

*4consider p such that p is prime & p divides k;

take p;

*4thus p is prime;

thus p > n

proof

assume p <= n;
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*4p divides n!;

*4not p divides n! + 1;

*1thus contradiction;

end;

end;

*4thus thesis;

end;

2.5 Formal Proof

theorem {p: p is prime} is infinite

proof

A1: for n ex p st p is prime & p > n

proof

let n;

set k = n! + 1;

n! > 0 by NEWTON:23;

then n! >= 0 + 1 by NAT_1:38;

then k >= 1 + 1 by REAL_1:55;

then consider p such that

A2: p is prime & p divides k by INT_2:48;

take p;

thus p is prime by A2;

assume

A3: p <= n;

p <> 0 by A2,INT_2:def 5;

then

A4: p divides n! by A3,NAT_LAT:16;

p > 1 by A2,INT_2:def 5;

then not p divides 1 by NAT_1:54;

hence contradiction by A2,A4,NAT_1:57;

end;

thus thesis from Unbounded(A1);

end;

2.6 Mizar Version

6.1.11 – 3.33.722

3 Algebra: Image of Left Unit Element

3.1 Source

Rob Nederpelt, Weak Type Theory: A formal language for mathematics. Com-
puter Science Report 02-05, Eindhoven University of Technology, Department of
Math. and Comp. Sc., May 2002. Page 42.



Ten Formal Proof Sketches 5

3.2 Informal Proof

Theorem. Let G be a set with a binary operation · and left unit element e. Let
H be a set with binary operation ∗ and assume that φ is a homomorphism of G
onto H. Then H has a left unit element as well.

Proof. Take e′ = φ(e). Let h ∈ H. There is g ∈ G such that φ(g) = h. Then

e′ ∗ h = φ(e) ∗ φ(g) = φ(e · g) = φ(g) = h,

hence e′ is left unit element of H. �

3.3 Formal Proof Sketch: Informal Layout

let G,H be non empty HGrStr; let e be Element of G such that e is left unit of
G; let phi be map of G,H such that phi is homomorphism G,H and phi is onto;
thus ex e′ being Element of H st e′ is left unit of H

proof take e′ = phi .e; now let h be Element of H; consider g being Element of
G such that phi .g = h; thus

e′ ∗ h = phi .e ∗ phi .g .= phi .(e ∗ g) .= phi .g .= h;

end; hence e′ is left unit of H; end;

3.4 Formal Proof Sketch: Formal Layout

let G,H be non empty HGrStr;

let e be Element of G such that e is_left_unit_of G;

let phi be map of G,H such that

phi is_homomorphism G,H and phi is onto;

thus ex e’ being Element of H st e’ is_left_unit_of H

proof

take e’ = phi.e;

now

let h be Element of H;

*4consider g being Element of G such that phi.g = h;

*4 *4 *4 *4thus e’ * h = phi.e * phi.g .= phi.(e * g) .= phi.g .= h;

end;

*4hence e’ is_left_unit_of H;

end;

3.5 Formal Proof

let G,H be non empty HGrStr;

let e be Element of G such that

H1: e is_left_unit_of G;

let phi be map of G,H such that

H2: phi is_homomorphism G,H and
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H3: phi is onto;

thus ex e’ being Element of H st e’ is_left_unit_of H

proof

take e’ = phi.e;

now

let h be Element of H;

consider g being Element of G such that

A1: phi.g = h by H3,Th1;

thus e’ * h = phi.(e * g) by A1,H2,Def2

.= h by A1,H1,Def1;

end;

hence e’ is_left_unit_of H by Def1;

end;

3.6 Mizar Version

6.1.11 – 3.33.722

4 Algebra: Lagrange’s Theorem

4.1 Source

B.L. van der Waerden, Algebra. 5th edition, Springer-Verlag, Berlin, 1966. Page
26.

4.2 Informal Proof

Zwei Nebenklassen ag, bg können sehr wohl gleich sein, ohne daß a = b ist.
Immer dann nämlich, wenn a−1b in g liegt, gilt

bg = aa−1bg = a(a−1bg) = ag.

Zwei verschiedene Nebenklassen haben kein Element gemeinsam. Denn wenn
die Nebenklassen ag und bg ein Element gemein haben, etwa

ag1 = bg2,

so folgt
g1g
−1
2 = a−1b.

so daß a−1b in g liegt; nach dem Vorigen sind also ag und bg identisch.
Jedes Element a gehört einer Nebenklasse an, nämlich der Nebenklasse ag.

Diese enthält ja sicher das Element ae = a. Nach dem eben Bewiesenen gehört
das Element a auch nur einer Nebenklasse an. Wir können demnach jedes Ele-
ment a als Repräsentanten der a enthaltenden Nebenklass ag ansehen.

Nach dem vorhergehenden bilden die Nebenklassen eine Klasseneinteilung
der Gruppe G. Jedes Element gehört einer und nur einer Klasse an.
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Je zwei Nebenklassen sind gleichmächtig. Denn durch ag→ bg ist eine einein-
deutige Abbildung von ag auf bg definiert.

Die Nebenklassen sind, mit Ausnahme von g selbst, keine Gruppen; denn
eine Gruppe müßte das Einselelement enthalten.

Die Anzahl der verschiedenen Nebenklassen einer Untergruppe g in G heißt
der Index von g in G. Der Index kann endlich oder unendlich sein.

Ist N die als (endlich angenommene) Ordnung von G, n die von g, j der
Index, so gilt die Relation

(2) N = jn;

denn G ist ja in j Klassen eingeteilt, deren jede n Elemente enthält.
Man kann für endliche Gruppen aus (2) den Index j berechnen:

j =
N

n

Folge. Die Ordnung einer Untergruppe einer endlichen Gruppe ist ein Teiler
der Ordnung der Gesamtgruppe.

4.3 Formal Proof Sketch: Informal Layout

now let a,b; assume aˆ−1 ∗ b in G; thus

b ∗G = a ∗ aˆ−1 ∗ b ∗G. = a ∗ (aˆ−1 ∗ b ∗G). = a ∗G; end;

for a, b st a ∗G <> b ∗G holds (a ∗G) /\ (b ∗G) = {}
proof let a,b; now assume (a ∗G) /\ (b ∗G) <> {}; consider g1, g2 such that

a ∗ g1 = b ∗ g2;

g1 ∗ g2ˆ−1 = aˆ−1 ∗ b;

aˆ−1 ∗ b in G; thus a ∗G = b ∗G; end; thus thesis; end;
for a holds a in a ∗G proof let a; a ∗ e(G) = a; thus thesis; end;
{a ∗G : a in H} is a˙partition of H;
for a, b holds card(a∗G) = card(b∗G) proof let a, b; consider f being Function

of a ∗ G, b ∗ G such that for g holds f.(a ∗ g) = b ∗ g; f is bijective; thus thesis;
end;

set ’Index’ = card{a ∗G : a in H};
now let N such that N = card H; let n such that n = card G; let j such that

j = ’Index’; thus

’2’: N = j ∗ n; end;

thus card G divides card H;
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4.4 Formal Proof Sketch: Formal Layout

now

let a,b;

assume a^-1*b in G;

*4 *4 *4thus b*G = a*a^-1*b*G .= a*(a^-1*b*G) .= a*G;

end;

for a,b st a*G <> b*G holds (a*G) /\ (b*G) = {}

proof

let a,b;

now

assume (a*G) /\ (b*G) <> {};

*4consider g1,g2 such that a*g1 = b*g2;

*4g1*g2^-1 = a^-1*b;

*4a^-1*b in G;

*4thus a*G = b*G;

end;

*4thus thesis;

end;

for a holds a in a*G

proof

let a;

*4a*e(G) = a;

*4thus thesis;

end;

*4{a*G : a in H} is a_partition of H;

for a,b holds card(a*G) = card(b*G)

proof

let a,b;

consider f being Function of a*G,b*G such that

*4for g holds f.(a*g) = b*g;

*4f is bijective;

*4thus thesis;

end;

set ’Index’ = card {a*G : a in H};

now

let N such that N = card H;

let n such that n = card G;

let j such that j = ’Index’;

thus

*4’2’: N = j*n;

end;

*4thus card G divides card H;

4.5 Formal Proof

A1: now

let a,b;

assume

A2: a^-1*b in G;
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thus b*G = e(H)*b*G by GROUP_1:def 5

.= a*a^-1*b*G by GROUP_1:def 6

.= a*(a^-1*b)*G by GROUP_1:def 4

.= a*(a^-1*b*G) by GROUP_2:127

.= a*(carr G) by A2,GROUP_2:136

.= a*G by GROUP_2:def 13;

end;

A3: for a,b st a*G <> b*G holds (a*G) /\ (b*G) = {}

proof

let a,b;

now

assume (a*G) /\ (b*G) <> {};

then consider x such that

A4: x in (a*G) /\ (b*G) by XBOOLE_0:7;

A5: x in a*G & x in b*G by A4,XBOOLE_0:def 4;

consider g1 such that

A6: x = a*g1 by A5,Th5;

consider g2 such that

A7: x = b*g2 by A5,Th5;

set g1G = g1;

set g2G = g2;

reconsider g1 as Element of H by GROUP_2:51;

reconsider g2 as Element of H by GROUP_2:51;

A8: a*g1 = a*g1G by Th2

.= b*g2 by A6,A7,Th2;

g1G*g2G^-1 = g1*g2G^-1 by Th3

.= g1*g2^-1 by Th2,GROUP_2:57

.= e(H)*g1*g2^-1 by GROUP_1:def 5

.= a^-1*a*g1*g2^-1 by GROUP_1:def 6

.= a^-1*(a*g1)*g2^-1 by GROUP_1:def 4

.= a^-1*(b*g2*g2^-1) by A8,GROUP_1:def 4

.= a^-1*(b*(g2*g2^-1)) by GROUP_1:def 4

.= a^-1*(b*e(H)) by GROUP_1:def 6

.= a^-1*b by GROUP_1:def 5;

then a^-1*b in G by STRUCT_0:def 5;

hence a*G = b*G by A1;

end;

hence thesis;

end;

A9: for a holds a in a*G

proof

let a;

a*e(G) = a*e(H) by Th2,GROUP_2:53

.= a by GROUP_1:def 5;

hence thesis;

end;

set X = {a*G : a in H};

X c= bool the carrier of H

proof

let A;
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assume A in X;

then consider a such that

A10: A = a*G & a in H;

thus A in bool the carrier of H by A10,ZFMISC_1:def 1;

end;

then reconsider X as Subset-Family of H;

A11: X is a_partition of the carrier of H

proof

thus union X = the carrier of H

proof

thus union X c= the carrier of H;

let x;

assume

A12: x in the carrier of H;

then reconsider a = x as Element of H;

x in H by A12,STRUCT_0:def 5;

then a in a*G & a*G in X by A9;

hence x in union X by TARSKI:def 4;

end;

let A be Subset of the carrier of H;

assume A in X;

then consider a such that

A13: A = a*G & a in H;

thus A <> {} by A13;

let B be Subset of the carrier of H;

assume B in X;

then consider b such that

A14: B = b*G & b in H;

assume A <> B;

then A /\ B = {} by A3,A13,A14;

hence A misses B by XBOOLE_0:def 7;

end;

then reconsider X as a_partition of H;

{a*G : a in H} is a_partition of H by A11;

A15: for a,b holds card(a*G) = card(b*G)

proof

let a,b;

defpred P[Element of a*G,Element of b*G] means

for g st $1 = a*g holds $2 = b*g;

A16: now

let x be Element of a*G;

consider g such that

A17: x = a*g by Th5;

reconsider y = b*g as Element of b*G;

take y;

thus P[x,y] by A17,Th4;

end;

consider f being Function of a*G,b*G such that

A18: for x being Element of a*G holds P[x,f.x qua Element of b*G]

from FUNCT_2:sch 3(A16);
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for g holds f.(a*g) = b*g by A18;

f is bijective

proof

hereby

let x,x’ be Element of a*G;

consider g such that

A19: x = a*g by Th5;

consider g’ such that

A20: x’ = a*g’ by Th5;

A21: f.x = b*g & f.x’ = b*g’ by A19,A20,A18;

assume f.x = f.x’;

hence x = x’ by A19,A20,A21,Th4;

end;

let y be Element of b*G;

consider g such that

A22: y = b*g by Th5;

take a*g;

thus thesis by A18,A22;

end;

hence thesis by EUCLID_7:3;

end;

set ’Index’ = card {a*G : a in H};

’Index’ = card X;

then reconsider ’Index’ as natural number;

now

let N such that

A23: N = card H;

let n such that

A24: n = card G;

let j such that

A25: j = ’Index’;

A26: card H = card the carrier of H by STRUCT_0:def 17;

now

let A;

assume A in X;

then consider a such that

A27: A = a*G & a in H;

e(H)*G = carr(G) by GROUP_2:132

.= the carrier of G by GROUP_2:def 9;

then card(e(H)*G) = card G by STRUCT_0:def 17;

hence card A = n by A15,A24,A27;

end;

hence N = j*n by A23,A25,A26,Th1;

end;

then card H = ’Index’*card G;

hence card G divides card H by INT_1:def 9;

4.6 Mizar Version

7.11.01 – 4.117.1046
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5 Analysis: successor has no fixed point

5.1 Source

Fairouz Kamareddine, Manuel Maarek and J.B. Wells, MathLang: experience-
driven development of a new mathematical language, draft. Page 11.

Quoted from: Edmund Landau, Foundations of Analysis. Translated by F.
Steinhardt, Chelsea, 1951.

5.2 Informal Proof

Theorem 2
x′ 6= x

Proof Let M be the set of all x for which this holds true.

I) By Axiom 1 and Axiom 3,
1′ 6= 1;

therefore 1 belongs to M.

II) If x belongs to M, then
x′ 6= x,

and hence by Theorem 1,
(x′)′ 6= x′,

so that x′ belongs to M.

By Axiom 5, M therefore contains all the natural numbers, i.e. we have for each
x that

x′ 6= x.

5.3 Formal Proof Sketch: Informal Layout

Theorem 2:
x ′ <> x

proof set M = {y : y ′ <> y};
I: now

1 ′ <> 1

by Axiom 1, Axiom 3; hence 1 in M; end;

II: now let x; assume x in M; then

x ′ <> x;

then
(x ′)′ <> x ′

by Theorem 1; hence x ′ in M; end;

for x holds x in M by Axiom 5; hence

x ′ <> x; end;
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5.4 Formal Proof Sketch: Formal Layout

Theorem_2: x ’ <> x

proof

set M = {y : y ’ <> y};

I: now

1 ’ <> 1 by Axiom_1, Axiom_3;

*4hence 1 in M;

end;

II: now let x;

assume x in M;

*4then x ’ <> x;

then (x ’)’ <> x ’ by Theorem_1;

hence x ’ in M;

end;

*4for x holds x in M by Axiom_5;

*4hence x ’ <> x;

end;

5.5 Formal Proof

Theorem_2: x ’ <> x

proof

set M = {y : y ’ <> y};

I: now

1 ’ <> 1 by Axiom_3;

hence 1 in M by Axiom_1;

end;

now let x;

assume x in M;

then ex y st x = y & y ’ <> y;

then (x ’)’ <> x ’ by Axiom_4;

hence x ’ in M;

end;

then x in M by I,Axiom_5;

then ex y st x = y & y ’ <> y;

hence x ’ <> x;

end;

5.6 Mizar Version

6.4.01 – 3.60.795

6 Analysis: successor has no fixed point

6.1 Source

A message Formal verification on the FOM mailing list by Lasse Rempe-Gillen
〈L.Rempe@liverpool.ac.uk〉, dated 21 October 2014 and with Message-ID
〈675123965B518F43B235C5FCB5D565DCBF14577E@CHEXMBX1.livad.liv.ac.uk〉.
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6.2 Informal Proof

Let f be a real-valued function on the real line, such that f(x) > x for all x. Let
x0 be a real number, and define the sequence (xn) recursively by xn+1 := f(xn).
Then xn diverges to infinity.

A standard proof might go along the following steps: 1) By assumption, the
sequence is strictly increasing; 2) hence the sequence either diverges to infinity
or has a finite limit; 3) by continuity, any finite limit would have to be a fixed
point of f , hence the latter cannot occur.

6.3 Formal Proof Sketch: Informal Layout

now let f be continuous Function of REAL,REAL; assume for x holds f.(x) > x;
let x0 be Element of REAL; set x = recursively iterate(f ,x0); x.(n+1) = f.(x.n);
thus x is divergent to+infty

proof x is increasing; x is divergent to+infty or x is convergent; x is convergent
implies f.(limx) = limx; x is not convergent; thus thesis; end; end;

6.4 Formal Proof Sketch: Formal Layout

now

let f be continuous Function of REAL,REAL;

assume for x holds f.(x) > x;

let x0 be Element of REAL;

set x = recursively_iterate(f,x0);

*4x.(n + 1) = f.(x.n);

thus x is divergent_to+infty

proof

*4x is increasing;

*4x is divergent_to+infty or x is convergent;

*4x is convergent implies f.(lim x) = lim x;

*4x is not convergent;

*4thus thesis;

end;

end;

6.5 Formal Proof

now

let f be continuous Function of REAL,REAL;

assume

A1: for x holds f.(x) > x;

let x0 be Element of REAL;

set x = recursively_iterate(f,x0);

A2: x.(n + 1) = f.(x.n) by Def1;

thus x is divergent_to+infty

proof
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now let n;

x.(n + 1) = f.(x.n) by A2;

hence x.(n + 1) > x.n by A1;

end;

then

A3: x is increasing by SEQM_3:def 6;

then x is bounded_above implies x is convergent;

then

A4: x is divergent_to+infty or x is convergent by A3,LIMFUNC1:31;

x is convergent implies f.(lim x) = lim x

proof

assume

A5: x is convergent;

A6: dom f = REAL by PARTFUN1:def 2;

A7: rng x c= dom f by A6,RELAT_1:def 19;

A8: now let n;

reconsider m = n as Element of NAT by ORDINAL1:def 12;

x.(m + 1) = f.(x.m) by A2

.= (f /* x).m by A7,FUNCT_2:108;

hence x.(n + 1) = (f /* x).n;

end;

f is_continuous_in lim x by A6,XREAL_0:def 1,FCONT_1:def 2;

hence f.(lim x) = lim (f /* x) by A5,A7,FCONT_1:def 1

.= lim (x ^\ 1) by A8,NAT_1:def 3

.= lim x by A5,SEQ_4:22;

end;

then x is not convergent by A1;

hence thesis by A4;

end;

end;

6.6 Mizar Version

8.1.02 – 5.22.1191

7 Linear Algebra: Linear Independence

7.1 Source

Jean Gallier, Basics of Algebra and Analysis For Computer Science. Published
at <http://www.cis.upenn.edu/~jean/gbook.html>, University of Pennsyl-
vania, 2001. Page 16.

7.2 Informal Proof

Lemma 2.1. Given a linearly independent family (ui)i∈I of elements of a vector
space E, if v ∈ E is not a linear combination of (ui)i∈I , then the family (ui)i∈I∪k
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(v) obtained by adding v to the family (ui)i∈I is linearly independent (where
k 6∈ I).

Proof. Assume that µv +
∑

i∈I λiui = 0, for any family (λi)i∈I of scalars in
K. If µ 6= 0, then µ has an inverse (because K is a field), and thus we have
v = −

∑
i∈I(µ−1λi)ui, showing that v is a linear combination of (ui)i∈I and

contradicting the hypothesis. Thus, µ = 0. But then, we have
∑

i∈I λiui = 0,
and since the family (ui)i∈I is linearly independent, we have λi = 0 for all i ∈ I.
�

7.3 Formal Proof Sketch: Informal Layout

theorem Lem21: u is linearly-independent & not v in Lin(u) implies u \/ {v}
is linearly-independent

proof assume u is linearly-independent & not v in Lin(u); assume u \/ {v} is
linearly-dependent; consider m being Element of K, l being Linear Combination
of u such that m∗v+Sum(l) = 0.E; now assume m <> 0.K; v = −m”∗Sum(l);
v in Lin(u); thus contradiction; end; m = 0.K; Sum(l) = 0.E; Carrier(l) = {};
thus contradiction; end;

7.4 Formal Proof Sketch: Formal Layout

theorem Lem21:

u is linearly-independent & not v in Lin(u) implies

u \/ {v} is linearly-independent

proof

assume u is linearly-independent & not v in Lin(u);

assume u \/ {v} is linearly-dependent;

consider m being Element of K,

l being Linear_Combination of u such that

*4m*v + Sum(l) = 0.E;

now

assume m <> 0.K;

*4v = -m"*Sum(l);

*4v in Lin(u);

*1thus contradiction;

end;

*4m = 0.K;

*4Sum(l) = 0.E;

*4Carrier(l) = {};

*1thus contradiction;

end;

7.5 Formal Proof

theorem Lem21:

u is linearly-independent & not v in Lin(u) implies
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u \/ {v} is linearly-independent

proof

assume

A1: u is linearly-independent & not v in Lin(u);

given l’ being Linear_Combination of u \/ {v} such that

A2: Sum(l’) = 0.E & Carrier(l’) <> {};

consider m’ being Linear_Combination of {v},

l being Linear_Combination of u such that

A3: l’ = m’ + l by Th2;

set m = m’.v;

A4: m*v + Sum(l) = Sum(m’) + Sum(l) by VECTSP_6:43

.= 0.E by A2,A3,VECTSP_6:77;

A5: now

assume

A6: m <> 0.K;

m*v = -Sum(l) by A4,RLVECT_1:def 10;

then v = m"*(-Sum(l)) by A6,VECTSP_1:67

.= -m"*Sum(l) by VECTSP_1:69;

then

A7: v = (-m")*Sum(l) by VECTSP_1:68;

Sum(l) in Lin(u) by VECTSP_7:12;

hence contradiction by A1,A7,VECTSP_4:29;

end;

Sum(l) = 0.E + Sum(l) by VECTSP_1:7

.= 0.E by A4,A5,VECTSP_1:59;

then

A8: Carrier(l) = {} by A1,VECTSP_7:def 1;

now

let x be set;

A9: Carrier(m’) c= {v} by VECTSP_6:def 7;

not v in Carrier(m’) by A5,VECTSP_6:20;

hence not x in Carrier(m’) by A9,TARSKI:def 1;

end;

then Carrier(m’) = {} by BOOLE:def 1;

then Carrier(l) \/ Carrier(m’) = {} by A8;

then Carrier(l’) c= {} by A3,VECTSP_6:51;

hence contradiction by A2,BOOLE:30;

end;

7.6 Mizar Version

6.1.11 – 3.33.722

8 Mathematical Logic: Newman’s Lemma

8.1 Source

Henk Barendregt, The Lambda Calculus: Its Syntax and Semantics. North Hol-
land, 1984. Page 58.
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8.2 Informal Proof

3.1.25. Proposition. For notions of reduction one has

SN ∧WCR⇒ CR

Proof. By SN each term R-reduces to an R-nf. It suffices to show that this R-nf
is unique. Call M ambiguous if M R-reduces to two distinct R-nf’s. For such M
one has M →R M ′ with M ′ ambiguous (use WCR, see figure 3.3). Hence by SN
ambiguous terms do not exist.

M

||
��

M

��
M ′

����

$$ $$ }}}}

�� ��

or M ′

����

���� {{{{ ## ##
M1 M3 M2 M1 M2

fig. 3.3.

8.3 Formal Proof Sketch: Informal Layout

theorem 3 1 25:

R is SN & R is WCR implies R is CR

proof assume that R is SN and R is WCR; for M ex M1 st M reduces to M1;
(for M,M1,M2 st M reduces to M1 & M reduces to M2 holds M1 = M2) implies
R is CR; defpred ambiguous[Term of R] means ex M1,M2 st $1 reduces to M1

& $1 reduces to M2 & M1 <> M2; now now let M such that ambiguous[M ];
thus ex M ′ st M ---> M ′ & ambiguous[M ′]

proof consider M1,M2 such that M -->> M1 & M -->> M2 & M1 <>
M2; per cases; suppose not ex M ′ st M ---> M ′ & M ′ -->> M1 &
M ′ -->> M2; consider M ′ such that M ---> M ′ & M ′ -->> M1; consider
M ′′ such that M ---> M ′′ & M ′′ -->> M2; consider M ′′′ such that
M ′ -->> M ′′′ & M ′′ -->> M ′′′; consider M3 such that M ′′′ -->> M3;
take M ′; thus thesis; suppose ex M ′ st M ---> M ′ & M ′ -->> M1 &
M ′ -->> M2; consider M ′ such that M ---> M ′ & M ′ -->> M1 &
M ′ -->> M2; take M ′; thus thesis; end;

end; thus not ex M st ambiguous[M ]; end; thus thesis; end;



Ten Formal Proof Sketches 19

8.4 Formal Proof Sketch: Formal Layout

theorem 3_1_25:

R is SN & R is WCR implies R is CR

proof

assume that R is SN and R is WCR;

*4for M ex M1 st M reduces_to M1;

(for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1 = M2)

*4implies R is CR;

defpred ambiguous[Term of R] means

ex M1,M2 st $1 reduces_to M1 & $1 reduces_to M2 & M1 <> M2;

now

now

let M such that ambiguous[M];

thus ex M’ st M ---> M’ & ambiguous[M’]

proof :: begin fig 3.3

*4consider M1,M2 such that M -->> M1 & M -->> M2 & M1 <> M2;

per cases;

suppose not ex M’ st M ---> M’ & M’ -->> M1 & M’ -->> M2;

*4consider M’ such that M ---> M’ & M’ -->> M1;

*4consider M’’ such that M ---> M’’ & M’’ -->> M2;

*4consider M’’’ such that M’ -->> M’’’ & M’’ -->> M’’’;

*4consider M3 such that M’’’ -->> M3;

take M’;

*4,4thus thesis;

suppose ex M’ st M ---> M’ & M’ -->> M1 & M’ -->> M2;

*4consider M’ such that M ---> M’ & M’ -->> M1 & M’ -->> M2;

take M’;

*4,4thus thesis;

end; :: end fig 3.3

end;

*4thus not ex M st ambiguous[M];

end;

*4thus thesis;

end;

8.5 Formal Proof

theorem 3_1_25:

R is SN & R is WCR implies R is CR

proof

assume that

A1: R is SN and

A2: R is WCR;

A3: R is WN by A1,Th9;

then for M ex M1 st M reduces_to M1 by Def10;

A4: (for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1 = M2)

implies R is CR

proof

assume
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A5: for M,M1,M2 st M reduces_to M1 & M reduces_to M2 holds M1 = M2;

let M,M’,M’’;

assume

A6: M -->> M’ & M -->> M’’;

consider M1 such that

A7: M’ -->> M1 by A3,Def10;

consider M2 such that

A8: M’’ -->> M2 by A3,Def10;

M -->> M1 & M -->> M2 by A6,A7,A8,Th6;

then M’ -->> M1 & M’’ -->> M1 by A5,A7,A8;

hence thesis;

end;

defpred ambiguous[Term of R] means

ex M1,M2 st $1 reduces_to M1 & $1 reduces_to M2 & M1 <> M2;

A9: now

A10: now

let M such that

A11: ambiguous[M];

thus ex M’ st M ---> M’ & ambiguous[M’]

proof :: begin fig 3.3

consider M1,M2 such that

A12: M -->> M1 & M -->> M2 & M1 <> M2 by A11;

per cases;

suppose

A13: not ex M’ st M ---> M’ & M’ -->> M1 & M’ -->> M2;

M1 is_nf & M2 is_nf by Def9;

then

A14: M <> M1 & M <> M2 by A12,Th8;

then consider M’ such that

A15: M ---> M’ & M’ -->> M1 by A12,Th7;

consider M’’ such that

A16: M ---> M’’ & M’’ -->> M2 by A12,A14,Th7;

consider M’’’ such that

A17: M’ -->> M’’’ & M’’ -->> M’’’ by A2,A15,A16,Def11;

consider M3 such that

A18: M’’’ -->> M3 by A3,Def10;

take M’;

M’ -->> M3 & M’’ -->> M3 by A17,A18,Th6;

then M’ -->> M1 & M’ -->> M3 & M1 <> M3 by A13,A15,A16;

hence thesis by A15;

suppose ex M’ st M ---> M’ & M’ -->> M1 & M’ -->> M2;

then consider M’ such that

A19: M ---> M’ & M’ -->> M1 & M’ -->> M2;

take M’;

thus thesis by A12,A19;

end; :: end fig 3.3

end;

thus not ex M st ambiguous[M] from SN_induction1(A1,A10);

end;

thus thesis by A4,A9;
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end;

8.6 Mizar Version

6.1.11 – 3.33.722

9 Mathematical Logic: Diaconescu’s Theorem

9.1 Source

Michael Beeson, Foundations of Constructive Mathematics. Springer-Verlag,
1985.

9.2 Informal Proof

1.1 Theorem (Diaconescu [1975]). The axiom of choice implies the law of
excluded middle, using separation and extensionality.

Proof. Let a formula φ be given; we shall derive φ ∨ ¬φ. Let A = {n ∈
N : n = 0 ∨ (n = 1 & φ)}. Let B = {n ∈ N : n = 1 ∨ (n = 0 & φ)}.
Then ∀x ∈ {A,B} ∃ y ∈ N (y ∈ x). Suppose f is a choice function, so that
f(A) ∈ A and f(B) ∈ B. We have f(A) = f(B) ∨ f(A) 6= f(B), since the
values are integers. If f(A) = f(B) then φ, so φ ∨ ¬φ. If f(A) 6= f(B), then
¬φ can be derived: suppose φ. Then A = B by extensionality, so f(A) = f(B),
contradiction. Hence in either case φ ∨ ¬φ. �

9.3 Formal Proof Sketch: Informal Layout

scheme Diaconescu {phi []} : axiom of choice implies phi [] or not phi []

proof assume axiom of choice; set A = {n : n = 0 or (n = 1 & phi [])}; set
B = {n : n = 1 or (n = 0 & phi [])}; for x st x in {A,B} holds ex y st y in x;
consider f being choice function such that f is extensional; f.A in A & f.B in B;
f.A = f.B or f.A <> f.B by excluded middle on integers; per cases; suppose
f.A = f.B; phi []; thus phi [] or not phi []; end; suppose f.A <> f.B; not phi []
proof assume phi []; A = B by extensionality; f.A = f.B; thus contradiction;
end; thus phi [] or not phi []; end; end;

9.4 Formal Proof Sketch: Formal Layout

scheme Diaconescu :: 1975

{ phi[] } : axiom_of_choice implies phi[] or not phi[]

proof

assume axiom_of_choice;

set A = {n : n = 0 or (n = 1 & phi[])};

set B = {n : n = 1 or (n = 0 & phi[])};

*4for x st x in {A,B} holds ex y st y in x;
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consider f being choice_function such that

*4f is extensional;

*4,4f.A in A & f.B in B;

f.A = f.B or f.A <> f.B by excluded_middle_on_integers;

per cases;

suppose f.A = f.B;

*4phi[];

thus phi[] or not phi[];

end;

suppose f.A <> f.B;

not phi[]

proof

assume phi[];

*4A = B by extensionality;

*4f.A = f.B;

*1thus contradiction;

end;

thus phi[] or not phi[];

end;

end;

9.5 Formal Proof

scheme Diaconescu {phi[] }:

axiom_of_choice implies phi[] or not phi[]

proof

assume

A1: axiom_of_choice;

set A = {n : n = 0 or (n = 1 & phi[])};

set B = {n : n = 1 or (n = 0 & phi[])};

deffunc F(Nat) = $1;

defpred P[Nat] means $1 = 0 or ($1 = 1 & phi[]);

{F(n) : P[n]} is Subset of NAT from COMPLSP1:sch 1;

then reconsider A as Subset of NAT;

defpred Q[Nat] means $1 = 1 or ($1 = 0 & phi[]);

{F(n) : Q[n]} is Subset of NAT from COMPLSP1:sch 1;

then reconsider B as Subset of NAT;

A2: for x st x in {A,B} holds ex y st y in x

proof

let x;

assume x in {A,B};

then

A3: x = A or x = B by TARSKI:def 2;

per cases by A3;

suppose

A4: x = A;

take 0;

thus thesis by A4;

end;

suppose
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A5: x = B;

take 1;

thus thesis by A5;

end;

end;

consider f being choice_function such that

A6: f is extensional by A1,Def3;

A in {A,B} & B in {A,B} by TARSKI:def 2;

then (ex y st y in A) & (ex y st y in B) by A2;

then

A7: f.A in A & f.B in B by Def1;

A8: f.A = f.B or f.A <> f.B by excluded_middle_on_integers;

per cases by A8;

suppose

A9: f.A = f.B;

set n = f.A;

A10: n in A & n in B by A7,A9;

then

A11: ex n’ st n = n’ & (n’ = 0 or (n’ = 1 & phi[]));

phi[]

proof

per cases by A11;

suppose

A12: n = 0;

ex n’ st n = n’ & (n’ = 1 or (n’ = 0 & phi[])) by A10;

hence thesis by A12;

end;

suppose n = 1 & phi[];

hence thesis;

end;

end;

hence phi[] or not phi[];

end;

suppose

A13: f.A <> f.B;

not phi[]

proof

assume

A14: phi[];

now

let y;

hereby

assume y in A;

then ex n st y = n & (n = 0 or (n = 1 & phi[]));

then y = 0 or (y = 1 & phi[]);

then y = 1 or (y = 0 & phi[]) by A14;

hence y in B;

end;

hereby

assume y in B;
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then ex n st y = n & (n = 1 or (n = 0 & phi[]));

then y = 1 or (y = 0 & phi[]);

then y = 0 or (y = 1 & phi[]) by A14;

hence y in A;

end;

end;

then A = B by extensionality;

then f.A = f.B by A6,Def2;

hence contradiction by A13;

end;

hence phi[] or not phi[];

end;

end;

9.6 Mizar Version

7.0.04 – 4.04.834

10 Topology: Open Intervals are Connected

10.1 Source

Paul Cairns and Jeremy Gow, Elements of Euclidean and Metric Topology, online
undergraduate course notes from the IMP project. Project web site at <http:

//www.uclic.ucl.ac.uk/imp/>, course notes at <http://www.uclic.ucl.ac.
uk/topology/> and the frame of this specific proof at <http://www.uclic.

ucl.ac.uk/topology/ConnectedInterval.html>.

10.2 Informal Proof

Theorem

Open intervals are connected

given: a, b ∈ R
then: The open interval (a, b) is connected

Proof

sketch:

The proof proceeds by contradiction. Suppose that (a, b) were not connected.
Then there would be a pair of non-empty disjoint proper open subsets, U , V
say, of (a, b) whose union would be (a, b). This implies a “gap” so we use the
completeness of the real line to show that there can’t be a gap. To do this, find
a supremum of some interval which must be contained in U . Note that there is
a small open ball about the supremum wich because U and V are open must
be contained wholly within one or other of them. However, in both cases, this
leads to a contradiction: if the ball is in U then the ball contains points in U
exceeding the supremum; if the ball is in V then there are points in the ball also
in U by definition of the supremum.
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10.3 Formal Proof Sketch: Informal Layout

theorem

(.a, b.) is connected

proof

assume (.a, b.) is not connected; consider U, V being non empty open Subset of
real, u, v such that U /\ V = {} & U \/ V = (.a, b.) & u in U & v in V &
u < v; reconsider X =

{
x : (.u, x.) c= U

}
as Subset of real; set s = supX;

per cases; suppose s in U ; consider e such that e > 0 & Ball(s, e) c= U ; ex x st
x in Ball(s, e) & x > s; thus contradiction; suppose s in V ; consider e such that
e > 0 & Ball(s, e) c= V ; ex x st x in Ball(s, e) & x in U ; thus contradiction;

end;

10.4 Formal Proof Sketch: Formal Layout

theorem (.a,b.) is connected

proof

assume (.a,b.) is not connected;

consider U,V being non empty open Subset of REAL, u,v such that

*4U /\ V = {} & U \/ V = (.a,b.) & u in U & v in V & u < v;

*4reconsider X = { x : (.u,x.) c= U } as Subset of REAL;

set s = sup X;

*4per cases;

suppose s in U;

*4consider e such that e > 0 & Ball(s,e) c= U;

*4ex x st x in Ball(s,e) & x > s;

*1thus contradiction;

suppose s in V;

*4consider e such that e > 0 & Ball(s,e) c= V;

*4ex x st x in Ball(s,e) & x in U;

*1thus contradiction;

end;

10.5 Formal Proof

theorem (.a,b.) is connected

proof

assume (.a,b.) is not connected;

then consider U,V being non empty open Subset of REAL such that

A1: U /\ V = {} & U \/ V = (.a,b.) by Def8;

consider u such that

A2: u in U by Def1;

consider v such that

A3: v in V by Def1;

ex U,V being non empty open Subset of REAL, u,v st

U /\ V = {} & U \/ V = (.a,b.) & u in U & v in V & u < v

proof
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per cases by AXIOMS:21;

suppose

A4: u < v;

take U,V,u,v;

thus thesis by A1,A2,A3,A4;

suppose

A5: u > v;

take V,U,v,u;

thus thesis by A1,A2,A3,A5;

suppose u = v;

hence thesis by A1,A2,A3,XBOOLE_0:def 3;

end;

then consider U,V being non empty open Subset of REAL, u,v such that

A6: U /\ V = {} & U \/ V = (.a,b.) & u in U & v in V & u < v;

{ x : (.u,x.) c= U } c= REAL from Fr_Set0;

then reconsider X = { x : (.u,x.) c= U } as Subset of REAL;

(.u,u.) = {} by RCOMP_1:12;

then (.u,u.) c= U by XBOOLE_1:2;

then

A7: u in X;

A8: for x st x in X holds x <= v

proof

let x;

assume

A9: x in X & v < x;

A10: v in (.u,x.) by A6,A9,JORDAN6:45;

ex x’ st x = x’ & (.u,x’.) c= U by A9;

hence thesis by A6,A10,XBOOLE_0:def 3;

end;

for x being real number st x in X holds x <= v by A8;

then reconsider X as non empty bounded_above Subset of REAL

by A7,SEQ_4:def 1;

set s = sup X;

U c= (.a,b.) & V c= (.a,b.) by A6,XBOOLE_1:7;

then a < u & u <= s & s <= v & v < b

by A6,A7,A8,JORDAN6:45,SEQ_4:def 4,PSCOMP_1:10;

then a < s & s < b by AXIOMS:22;

then

A11: s in (.a,b.) by JORDAN6:45;

per cases by A6,A11,XBOOLE_0:def 2;

suppose s in U;

then consider e such that

A12: e > 0 & Ball(s,e) c= U by Def7;

ex x st x in Ball(s,e) & x > s

proof

take x = s + e/2;

thus x in Ball(s,e) by A12,Th2;

e/2 > 0 by A12,SEQ_2:3;

hence thesis by REAL_1:69;

end;
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then consider x such that

A13: x in Ball(s,e) & x > s;

(.u,x.) c= U

proof

let y be set;

assume

A14: y in (.u,x.);

then reconsider y as Real;

A15: u < y & y < x by A14,JORDAN6:45;

per cases;

suppose y < s;

then consider y’ such that

A16: y’ in X & y < y’ & y’ <= s by Def9;

y in (.u,y’.) & ex y’’ st y’ = y’’ & (.u,y’’.) c= U

by A15,A16,JORDAN6:45;

hence thesis;

suppose y >= s;

then s in Ball(s,e) & x in Ball(s,e) & s <= y & y <= x

by A12,A13,A14,Th1,JORDAN6:45;

then y in Ball(s,e) by Th4;

hence thesis by A12;

end;

then x in X;

hence contradiction by A13,SEQ_4:def 4;

suppose s in V;

then consider e such that

A17: e > 0 & Ball(s,e) c= V by Def7;

ex x st x in Ball(s,e) & x in U

proof

per cases;

suppose

A18: u < s - e/2;

take x = s - e/2;

thus x in Ball(s,e) by A17,Th3;

e/2 > 0 by A17,SEQ_2:3;

then x < s by REAL_2:174;

then consider x’ such that

A19: x’ in X & x < x’ & x’ <= s by Def9;

x in (.u,x’.) & ex x’’ st x’ = x’’ & (.u,x’’.) c= U

by A18,A19,JORDAN6:45;

hence thesis;

suppose

A20: s - e/2 <= u;

take u;

s - e/2 in Ball(s,e) & s in Ball(s,e) & s - e/2 <= u & u <= s

by A7,A17,A20,Th1,Th3,SEQ_4:def 4;

hence thesis by A6,Th4;

end;

hence contradiction by A6,A17,XBOOLE_0:def 3;

end;
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10.6 Mizar Version

6.3.02 – 3.44.763

11 Missing Subjects

– Calculus
– Combinatorics
– Complex Variables
– Differential Equations
– Geometry
– Integration
– Probability Theory


