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SHA and VST
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I VST =
Verified Software Toolchain
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recap reading list

overview

I imp
I big-step operational semantics
I small-step operational semantics
I Hoare logic
I verification condition generator

I CompCert
I idem for C

I VST
I separation logic
I symbolic execution
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imp

syntax:

a ::= n | x | (a1 + a2) | (a1 − a2) | (a1 · a2)
b ::= a1 = a2 | a1 < a2 | > | ¬b | (b1 ∧ b2)
c ::= skip | x := a | (c1; c2) | if b then c1 else c2 fi | while b do c od

example:
(i := 1;
f := 1);
while i < n do

i := i + 1;
f := f · i

od
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big-step operational semantics

= natural semantics
Gilles Kahn

relation:
(c, s) ⇓ s′

some representative rules:

(a, s) ⇓ n
(x := a, s) ⇓ s[x 7→ n]

(c1, s) ⇓ s′ (c2, s′) ⇓ s′′

(c1; c2, s) ⇓ s′′

(b, s) ⇓ > (c, s) ⇓ s′ (while b do c od, s′) ⇓ s′′

(while b do c od, s) ⇓ s′′

(b, s) ⇓ ⊥
(while b do c od, s) ⇓ s
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small-step operational semantics

= structural operational semantics = SOS
Gordon Plotkin

relations:
(c, s)→ (c′, s′) (c, s)→∗ (c′, s′)

some representative rules:

(a, s)→ (a′, s)
(x := a, s)→ (x := a′, s)

(x := n, s)→ (skip, s[x 7→ n])

(c1, s)→ (c′1, s′)
(c1; c2, s)→ (c′1; c2, s′)

(skip; c2, s)→ (c2, s)

(while b do c od, s)→ (if b then c ; while b do c od else skip fi, s)
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Hoare logic

= axiomatic semantics
Tony Hoare

Hoare triple:
{P} c {Q}

some representative rules:

{Q[x := a]} x := a {Q}

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

{P ∧ b} c {P}
{P}while b do c od {P ∧ ¬b}

P ⇒ P ′ {P ′} c {Q′} Q′ ⇒ Q
{P} c {Q}
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verification conditions from weakest preconditions

predicate transformer semantics
Edsger Dijkstra

imp with annotations:

c ::= {P} | skip | x := a | (c1; c2) | if b then c1 else c2 fi |
while b do {P} c od

verification condition and weakest precondition:

vc({P} c {Q}) = (P ⇒ wp(c,Q))

some representative cases:

wp({P},Q) = P ∧Q
wp(x := a,Q) = Q[x := a]
wp(c1; c2,Q) = wp(c1,wp(c2,Q))

wp(while b do {P} c od,Q) = P ∧ (P ∧ b ⇒ wp(c,P)) ∧ (P ∧ ¬b ⇒ Q)
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CompCert

Xavier Leroy, INRIA, France

CompCert = idem for C

I C to Clight translator in OCaml
I optimizing Clight compiler as a Coq function
I Coq code extracted to OCaml

I operational semantics of Clight in Coq
I operational semantics of assembly in Coq
I compiler proved correct in Coq
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separation logic

Hoare logic for pointers in memory
John Reynolds and Peter O’Hearn

state = store× heap
store = ident→ Z
heap = Z⇀ Z

separation logic assertions:

emp
a1 7→ a2

P ∗Q

frame rule:
{P} c {Q}

{P ∗ R} c {Q ∗ R}
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VST

Andrew Appel, Princeton, US

VST

= Verified Software Toolchain

= CompCert +
I separation logic
I semantics for separate compilation
I symbolic execution

I Coq goal is a Hoare triple
I tactics execute statements
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SHA hashing

SSL, TSL and OpenSSL

OpenSSL
= open source implementation of SSL and TLS protocols

used by majority of the web servers

SSL = Secure Socket Layer
TLS = Transport Layer Security

secure communication on the internet

private connection: symmetric cryptography
identity checking: public-key cryptography
reliable connection

HTTPS = HTTP + TLS
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heartbleed

April 2014

fix is two lines in
ssl/d1_lib.c :

if (HEARTBEAT_SIZE_STD
(payload) > length)

return 0;
/* silently discard per

RFC 6520 sec. 4 */
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cryptographic hashing

cryptographic hash function:

h : {0, 1}∗ → {0, 1}256

four properties:
I h(x) can be computed quickly
I given h(x) finding a corresponding x is infeasible
I small change in x gives a large change in h(x)
I infeasible to find a collision: x1 and x2 with h(x1) = h(x2)

examples:

h("Lynx c.q. vos prikt bh: dag zwemjuf") =
17c2f3484ab21559fa8d7bf3da97e3443b48a3466f3b8fa8210dbcefe99807a1

h("Lynx c.q. vos prikt bh: dag zwemjuf!") =
3530df7cc04da1f245eb92e5780610c5e0aa066a94ba17a66e2e310a64f1bd4d
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SHA-256 and HMAC

SHA = Secure Hash Algorithm

SHA-0: 1993, SHA-1: 1995, SHA-2: 2001, SHA-3: 2015

SHA-0: collision known
SHA-1: collision unknown, but within range of supercomputers
SHA-2 = FIPS PUB 180-2 standard of NIST =

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256

SHA-256: used by bitcoin

HMAC = Hash-based Message Authentication Code
I authenticity: message came from sender
I integrity: message has not been tampered with
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VST example: verifying factorial

workflow

I fac.c
C program being verified

I fac
C function calculating factorial

I fac.v
Clight version as a generated Coq file

I verif_fac.v
Coq file with the verification

I FAC
Coq functional program for each function in fac.c

I fac_spec
specification relating each function in fac.c to its Coq version

I body_fac
verification of correctness of each function in fac.c
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fac.c

10 lines of C
calculates the factorial function

int
fac(int n)
{

int i, f;

f = i = 1;
while (i < n)

f *= ++i;
return f;

}
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fac.v

320 lines of Coq, generated from fac.c by CompCert’s clightgen

. . .
Definition _n : ident := 45%positive. . . .
Definition _fac : ident := 48%positive. . . .

Definition f_fac := {|
fn_return := tint;
fn_callconv := cc_default;
fn_params := ((_n, tint) :: nil);
fn_vars := nil;
fn_temps := ((_i, tint) :: (_f, tint) :: (51%positive, tint) ::

(50%positive, tint) :: nil);
fn_body := (Ssequence (Ssequence . . . . . . ) . . . )

|}.
. . .
Definition prog : Clight.program := {|
prog_defs := (. . . :: (_fac, Gfun(Internal, f_fac)) :: nil);
. . .
|}.
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verif_fac.v

59 lines of Coq
checking time: 75 seconds

full code in these slides

starts with imports:

Require Import floyd.proofauto.
Require Import Coqlib.
Require Import Recdef.
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FAC

implementation of factorial in Coq using Function
(recursion on Acc well-foundedness predicate):

Function FAC (i : Z) {measure Z.to_nat i} : Z :=
if zle i 1 then 1 else FAC (i - 1) * i.

Proof. intros. apply Z2Nat.inj_lt; omega. Defined.

and a trivial lemma that we will need later
(functions defined with Function do not reduce well):

Lemma FAC_step (i : Z) :
i > 0 -> FAC (i + 1) = FAC i * (i + 1).

Proof.
intros. rewrite FAC_equation. destruct (zle (i + 1) 1).
omega. assert (i + 1 - 1 = i). omega. rewrite H0. auto.
Qed.
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fac_spec

importing definitions from the generated fac.v:

Require Import fac.fac.

and the specification of our function:

Definition fac_spec :=
DECLARE _fac

WITH n : Z
PRE [ _n OF tint ]

PROP (0 <= n <= Int.max_signed)
LOCAL (temp _n (Vint (Int.repr n)))
SEP ()

POST [ tint ]
PROP ()
LOCAL (temp ret_temp (Vint (Int.repr (FAC n))))
SEP ().
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PROP and LOCAL and SEP

assertions P consist of three parts:

I PROP
does not refer to store or heap

(!!b) s h := emp s h ∧ b

I LOCAL
refers only to store

(!b) s h := emp s h ∧ eval(b, s)

I SEP
refers to both store and heap

(b) s h
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temp and data_at

two basic assertions
I LOCAL assertion:

s(x) = n
temp x n

I SEP assertion:
a1 7→ a2

data_at π τ a2 a1

τ = C type
π = permission
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body_fac

‘boilerplate’ to define some variables related to prog:

Instance CompSpecs : compspecs. make_compspecs prog. Defined.
Definition Vprog : varspecs. mk_varspecs prog. Defined.
Definition Gprog := augment_funspecs prog [fac_spec].

correctness of the body of fac, using symbolic execution:

Lemma body_fac: semax_body Vprog Gprog f_fac fac_spec.
Proof.
start_function. forward. forward. forward.
forward_while (fac_inv n). Exists 1. entailer!. entailer!.

forward. forward. forward. Exists (i + 1). entailer!.
split. omega. rewrite FAC_step. auto. omega.

forward.
destruct H0. assert (i = n). omega. subst. entailer!.
destruct H0. subst. entailer!.
Qed.
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all_funcs_correct

more ‘boilerplate’:

Existing Instance NullExtension.Espec.

including the correctness of the program
(combining the correctness of all functions):

Lemma all_funcs_correct :
semax_func Vprog Gprog (prog_funct prog) Gprog.

Proof.
unfold Gprog, prog, prog_funct. semax_func_cons body_fac.
Qed.
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fac_inv

the loop invariant that we had skipped
(this finishes the code from verif_fac.v):

Definition fac_inv (n : Z) : environ -> mpred :=
EX i : Z,

PROP (1 <= i <= n \/ (n = 0 /\ i = 1))
LOCAL (temp _n (Vint (Int.repr n));

temp _i (Vint (Int.repr i));
temp _f (Vint (Int.repr (FAC i))))

SEP ().
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annotated program

{0 ≤ n ≤ 231 − 1}
i := 1;
f := 1;
while i < n do {(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i!}

i := i + 1;
f := f · i

od
{f = n!}

verification conditions:
0 ≤ n ≤ 231 − 1
⇒ (1 ≤ 1 ≤ n ∨ (n = 0 ∧ 1 = 1)) ∧ 1 = 1!
(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i! ∧ i < n
⇒ (1 ≤ i + 1 ≤ n ∨ (n = 0 ∧ i + 1 = 1)) ∧ f · (i + 1) = (i + 1)!
(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i! ∧ ¬(i < n)
⇒ f = n!
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DEMO
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verifying SHA-256

sha.c in VST

counterpart of OpenSSL crypto/sha/sha256.c
247 lines of code, 1 typedef, 1 const array, 6 functions

typedef struct SHA256state_st {. . . } SHA256_CTX;
static const unsigned int K256[64] = . . . ;

void sha256_block_data_order(SHA256_CTX *ctx, const void *in)
void SHA256_addlength(SHA256_CTX *c, size_t len)
void SHA256_Init(SHA256_CTX *c)
void SHA256_Update(SHA256_CTX *c, const void *data_, size_t len)
void SHA256_Final(unsigned char *md, SHA256_CTX *c)
void SHA256(const unsigned char *d, size_t n, unsigned char *md)
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fragment of sha256_block_data_order

after macro preprocessing:

. . .
for (i = 0; i < 16; i++) {

(l = (((unsigned long) (*((data)++))) << 24), l |=
(((unsigned long) (*((data)++))) << 16), l |=
(((unsigned long) (*((data)++))) << 8), l |=
(((unsigned long) (*((data)++)))), l);

X[i] = l;
Ki = K256[i];
T1 = l + h + (((((e)) << (26)) | ((((e)) & 0xffffffff) >> (32 - (26)))) ^

((((e)) << (21)) | ((((e)) & 0xffffffff) >> (32 - (21)))) ^
((((e)) << (7)) | ((((e)) & 0xffffffff) >> (32 - (7))))) +
(((e) & (f)) ^ ((~(e)) & (g))) + Ki;

T2 = (((((a)) << (30)) | ((((a)) & 0xffffffff) >> (32 - (30)))) ^
((((a)) << (19)) | ((((a)) & 0xffffffff) >> (32 - (19)))) ^
((((a)) << (10)) | ((((a)) & 0xffffffff) >> (32 - (10))))) +
(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)));

h = g; g = f; f = e; e = d + T1;
d = c; c = b; b = a; a = T1 + T2;
}

. . .
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an array on the stack

another fragment of sha256_block_data_order:

#define SHA_LONG unsigned int

void sha256_block_data_order (SHA256_CTX *ctx, const void *in)
{
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2,t;
SHA_LONG X[16],l,Ki;
int i;
const unsigned char *data=in;
. . .

some other frameworks cannot handle local array variables!
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fac versus sha

I counterpart of fac.c is sha.c
I counterpart of fac.v is sha.v
I counterparts of verif_fac.v:

I counterpart of FAC is the file SHA256.v with:
I SHA_256

I counterpart of fac_spec is the file spec_sha.v with:
I sha256_block_data_order_spec
I SHA256_addlength_spec
I SHA256_Init_spec
I SHA256_Update_spec
I SHA256_Final_spec
I SHA256_spec

I counterparts of body_fac are the files:
I verif_sha_bdo.v with body_sha256_block_data_order
I verif_addlength.v with body_SHA256_addlength
I verif_sha_init.v with body_SHA256_Init
I verif_sha_update.v with body_SHA256_Update
I verif_sha_final.v with body_SHA256_Final
I verif_SHA256.v with body_SHA256

I plus several other files with lots of lemmas
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two executable versions

Fibonacci function with naive recursion takes exponential time

I SHA256.v defines SHA256

naive implementation
exponential time

I functional_prog.v defines SHA256’

better implementation
reasonable time
about a million times slower than C implementation

I . . . and proves SHA256’ = SHA256

testing on examples: seem okay
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sizes and times

lines seconds component
842 17 lemmas about the functional spec
756 27 lemmas about the API spec
1613 47 verification of sha256_block_data_order
251 61 verification of SHA256_addlength
34 102 verification of SHA256_Init

1745 658 verification of SHA256_Update
1276 781 verification of SHA256_Final
37 38 verification of SHA256

6555 2358 total
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trust

trusting the spec

why trust that the spec is correct?

I C program: sha.c

268 lines

I Coq specification: SHA256.v + spec_sha.v

154 + 210 = 364 lines

possible to prove crypto properties of the Coq definitions
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is it really OpenSSL?

changes in the code:
I macros expanded to the SHA-256 case
I compiled to Clight in a specific way
I adapted: no side effects inside subexpressions
I adapted: no memory references inside subexpressions
I some additional return statements

current version of OpenSSL not close to this any more
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trusted computing base

VST framework
I CompCert semantics of C

‘is it really C?’
(not part of TCB when compiling using CompCert)

I CompCert semantics of assembly
I Calculus of Inductive Constructions
I source code of Coq kernel
I source code of OCaml compiler and runtime
I microprocessor

SHA correctness
I SHA specification
I C compiler

(not part of TCB when compiling using CompCert)
I assembler
I microprocessor
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axioms

Print Assumptions all_funcs_correct.

I Classical_Prop.classic :
forall P : Prop, P \/ ~ P

I prop_ext :
forall A B : Prop, (A <-> B) -> A = B

I functional_extensionality_dep :
forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g

I 26 axioms about real numbers
through CompCert (floating point) through Floc

I 19 axioms about semax
proved in veric/SeparationLogicSoundness.v
(‘I didn’t want to complicate things with a Functor application
somewhere’)
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I 19 axioms about semax
proved in veric/SeparationLogicSoundness.v
(‘I didn’t want to complicate things with a Functor application
somewhere’)
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17! = −288522240?

%

factest
17
-288522240
%

I overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

I overflow in CompCert: wraps mod 232

(in that case: the computer likes to wrap ,)
I but didn’t we prove that the program calculates n! ?

(where is the ‘modulo’ in the specification?)

s(x) = n
temp x (Vint (Int.repr n))

not: ‘the value of x is n’
but: ‘the value of x is the residue of n mod 232’
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related work

specification, implementation, foundational, automatic, general

I specification
is there a specification of the program’s function?
amenable to analysis in a proof assistant?

I implementation
is the proof about an efficient implementation?

I foundational
is there an end-to-end machine-checked proof from the
foundations of logic?

I automatic (VST: /)
check or synthesize the program without much interactive
human input or annotations?

I general
can the verifier handle all parts of the program?
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larger C verification projects

two recent large C verification projects
I seL4 in Isabelle

Gerwin Klein et al. 2009
NICTA, Australia

I CertiKOS in Coq
Liang Gu et al. 2011
Yale, US

but:
I no separation logic
I no function pointers/higher order specifications
I seL4 and CertKOS: newly written code
I no arrays on the stack
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who has choices need not choose

different approaches to program verification:
I static analysis

I model checking

I interactive theorem provers
type theory!
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