
⇐←0→

verifying SHA using VST

Freek Wiedijk

last paper in the reading list of
Type Theory & Coq

2015–2016
Radboud University Nijmegen

June 16, 2016

⇐←1→

SHA and VST

I SHA =
Secure Hash Algorithm

I VST =
Verified Software Toolchain

⇐←2→

papers

papers by Andrew Appel:

I Verification of a Cryptographic Primitive: SHA-256
TOPLAS = ACM Transactions on Programming Languages
and Systems

April 2015

I Second Edition: Verification of a Cryptographic Primitive:
SHA-256
updated from VST 1.0 to VST 1.6

I Modular Verification for Computer Security
CSF 2016 = Computer Security Foundations Symposium

June 2016

⇐←2→

papers

papers by Andrew Appel:

I Verification of a Cryptographic Primitive: SHA-256
TOPLAS = ACM Transactions on Programming Languages
and Systems

April 2015

I Second Edition: Verification of a Cryptographic Primitive:
SHA-256
updated from VST 1.0 to VST 1.6

I Modular Verification for Computer Security
CSF 2016 = Computer Security Foundations Symposium

June 2016

⇐←3→

recap reading list

overview

I imp
I big-step operational semantics
I small-step operational semantics
I Hoare logic
I verification condition generator

I CompCert
I idem for C

I VST
I separation logic
I symbolic execution

⇐←4→

imp

syntax:

a ::= n | x | (a1 + a2) | (a1 − a2) | (a1 · a2)
b ::= a1 = a2 | a1 < a2 | > | ¬b | (b1 ∧ b2)
c ::= skip | x := a | (c1; c2) | if b then c1 else c2 fi | while b do c od

example:
(i := 1;
f := 1);
while i < n do

i := i + 1;
f := f · i

od

⇐←5→

big-step operational semantics

= natural semantics
Gilles Kahn

relation:
(c, s) ⇓ s′

some representative rules:

(a, s) ⇓ n
(x := a, s) ⇓ s[x 7→ n]

(c1, s) ⇓ s′ (c2, s′) ⇓ s′′

(c1; c2, s) ⇓ s′′

(b, s) ⇓ > (c, s) ⇓ s′ (while b do c od, s′) ⇓ s′′

(while b do c od, s) ⇓ s′′

(b, s) ⇓ ⊥
(while b do c od, s) ⇓ s

⇐←6→

small-step operational semantics

= structural operational semantics = SOS
Gordon Plotkin

relations:
(c, s)→ (c′, s′) (c, s)→∗ (c′, s′)

some representative rules:

(a, s)→ (a′, s)
(x := a, s)→ (x := a′, s)

(x := n, s)→ (skip, s[x 7→ n])

(c1, s)→ (c′1, s′)
(c1; c2, s)→ (c′1; c2, s′)

(skip; c2, s)→ (c2, s)

(while b do c od, s)→ (if b then c ; while b do c od else skip fi, s)

⇐←7→

Hoare logic

= axiomatic semantics
Tony Hoare

Hoare triple:
{P} c {Q}

some representative rules:

{Q[x := a]} x := a {Q}

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

{P ∧ b} c {P}
{P}while b do c od {P ∧ ¬b}

P ⇒ P ′ {P ′} c {Q′} Q′ ⇒ Q
{P} c {Q}

⇐←8→

verification conditions from weakest preconditions

predicate transformer semantics
Edsger Dijkstra

imp with annotations:

c ::= {P} | skip | x := a | (c1; c2) | if b then c1 else c2 fi |
while b do {P} c od

verification condition and weakest precondition:

vc({P} c {Q}) = (P ⇒ wp(c,Q))

some representative cases:

wp({P},Q) = P ∧Q
wp(x := a,Q) = Q[x := a]
wp(c1; c2,Q) = wp(c1,wp(c2,Q))

wp(while b do {P} c od,Q) = P ∧ (P ∧ b ⇒ wp(c,P)) ∧ (P ∧ ¬b ⇒ Q)

⇐←9→

CompCert

Xavier Leroy, INRIA, France

CompCert = idem for C

I C to Clight translator in OCaml
I optimizing Clight compiler as a Coq function
I Coq code extracted to OCaml

I operational semantics of Clight in Coq
I operational semantics of assembly in Coq
I compiler proved correct in Coq

⇐←10→

separation logic

Hoare logic for pointers in memory
John Reynolds and Peter O’Hearn

state = store× heap
store = ident→ Z
heap = Z⇀ Z

separation logic assertions:

emp
a1 7→ a2

P ∗Q

frame rule:
{P} c {Q}

{P ∗ R} c {Q ∗ R}

⇐←11→

VST

Andrew Appel, Princeton, US

VST

= Verified Software Toolchain

= CompCert +
I separation logic
I semantics for separate compilation
I symbolic execution

I Coq goal is a Hoare triple
I tactics execute statements

⇐←12→

SHA hashing

SSL, TSL and OpenSSL

OpenSSL
= open source implementation of SSL and TLS protocols

used by majority of the web servers

SSL = Secure Socket Layer
TLS = Transport Layer Security

secure communication on the internet

private connection: symmetric cryptography
identity checking: public-key cryptography
reliable connection

HTTPS = HTTP + TLS

⇐←13→

heartbleed

April 2014

fix is two lines in
ssl/d1_lib.c :

if (HEARTBEAT_SIZE_STD
(payload) > length)

return 0;
/* silently discard per

RFC 6520 sec. 4 */

⇐←13→

heartbleed

April 2014

fix is two lines in
ssl/d1_lib.c :

if (HEARTBEAT_SIZE_STD
(payload) > length)

return 0;
/* silently discard per

RFC 6520 sec. 4 */

⇐←14→

cryptographic hashing

cryptographic hash function:

h : {0, 1}∗ → {0, 1}256

four properties:
I h(x) can be computed quickly
I given h(x) finding a corresponding x is infeasible
I small change in x gives a large change in h(x)
I infeasible to find a collision: x1 and x2 with h(x1) = h(x2)

examples:

h("Lynx c.q. vos prikt bh: dag zwemjuf") =
17c2f3484ab21559fa8d7bf3da97e3443b48a3466f3b8fa8210dbcefe99807a1

h("Lynx c.q. vos prikt bh: dag zwemjuf!") =
3530df7cc04da1f245eb92e5780610c5e0aa066a94ba17a66e2e310a64f1bd4d

⇐←14→

cryptographic hashing

cryptographic hash function:

h : {0, 1}∗ → {0, 1}256

four properties:
I h(x) can be computed quickly
I given h(x) finding a corresponding x is infeasible
I small change in x gives a large change in h(x)
I infeasible to find a collision: x1 and x2 with h(x1) = h(x2)

examples:

h("Lynx c.q. vos prikt bh: dag zwemjuf") =
17c2f3484ab21559fa8d7bf3da97e3443b48a3466f3b8fa8210dbcefe99807a1

h("Lynx c.q. vos prikt bh: dag zwemjuf!") =
3530df7cc04da1f245eb92e5780610c5e0aa066a94ba17a66e2e310a64f1bd4d

⇐←15→

SHA-256 and HMAC

SHA = Secure Hash Algorithm

SHA-0: 1993, SHA-1: 1995, SHA-2: 2001, SHA-3: 2015

SHA-0: collision known
SHA-1: collision unknown, but within range of supercomputers
SHA-2 = FIPS PUB 180-2 standard of NIST =

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256

SHA-256: used by bitcoin

HMAC = Hash-based Message Authentication Code
I authenticity: message came from sender
I integrity: message has not been tampered with

⇐←15→

SHA-256 and HMAC

SHA = Secure Hash Algorithm

SHA-0: 1993, SHA-1: 1995, SHA-2: 2001, SHA-3: 2015

SHA-0: collision known
SHA-1: collision unknown, but within range of supercomputers
SHA-2 = FIPS PUB 180-2 standard of NIST =

SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256

SHA-256: used by bitcoin

HMAC = Hash-based Message Authentication Code
I authenticity: message came from sender
I integrity: message has not been tampered with

⇐←16→

VST example: verifying factorial

workflow

I fac.c
C program being verified

I fac
C function calculating factorial

I fac.v
Clight version as a generated Coq file

I verif_fac.v
Coq file with the verification

I FAC
Coq functional program for each function in fac.c

I fac_spec
specification relating each function in fac.c to its Coq version

I body_fac
verification of correctness of each function in fac.c

⇐←16→

VST example: verifying factorial

workflow

I fac.c
C program being verified

I fac
C function calculating factorial

I fac.v
Clight version as a generated Coq file

I verif_fac.v
Coq file with the verification

I FAC
Coq functional program for each function in fac.c

I fac_spec
specification relating each function in fac.c to its Coq version

I body_fac
verification of correctness of each function in fac.c

⇐←16→

VST example: verifying factorial

workflow

I fac.c
C program being verified

I fac
C function calculating factorial

I fac.v
Clight version as a generated Coq file

I verif_fac.v
Coq file with the verification

I FAC
Coq functional program for each function in fac.c

I fac_spec
specification relating each function in fac.c to its Coq version

I body_fac
verification of correctness of each function in fac.c

⇐←16→

VST example: verifying factorial

workflow

I fac.c
C program being verified

I fac
C function calculating factorial

I fac.v
Clight version as a generated Coq file

I verif_fac.v
Coq file with the verification

I FAC
Coq functional program for each function in fac.c

I fac_spec
specification relating each function in fac.c to its Coq version

I body_fac
verification of correctness of each function in fac.c

⇐←16→

VST example: verifying factorial

workflow

I fac.c
C program being verified

I fac
C function calculating factorial

I fac.v
Clight version as a generated Coq file

I verif_fac.v
Coq file with the verification

I FAC
Coq functional program for each function in fac.c

I fac_spec
specification relating each function in fac.c to its Coq version

I body_fac
verification of correctness of each function in fac.c

⇐←17→

fac.c

10 lines of C
calculates the factorial function

int
fac(int n)
{

int i, f;

f = i = 1;
while (i < n)

f *= ++i;
return f;

}

⇐←18→

fac.v

320 lines of Coq, generated from fac.c by CompCert’s clightgen

. . .
Definition _n : ident := 45%positive. . . .
Definition _fac : ident := 48%positive. . . .

Definition f_fac := {|
fn_return := tint;
fn_callconv := cc_default;
fn_params := ((_n, tint) :: nil);
fn_vars := nil;
fn_temps := ((_i, tint) :: (_f, tint) :: (51%positive, tint) ::

(50%positive, tint) :: nil);
fn_body := (Ssequence (Ssequence) . . .)

|}.
. . .
Definition prog : Clight.program := {|
prog_defs := (. . . :: (_fac, Gfun(Internal, f_fac)) :: nil);
. . .
|}.

⇐←19→

verif_fac.v

59 lines of Coq
checking time: 75 seconds

full code in these slides

starts with imports:

Require Import floyd.proofauto.
Require Import Coqlib.
Require Import Recdef.

⇐←19→

verif_fac.v

59 lines of Coq
checking time: 75 seconds

full code in these slides

starts with imports:

Require Import floyd.proofauto.
Require Import Coqlib.
Require Import Recdef.

⇐←20→

FAC

implementation of factorial in Coq using Function
(recursion on Acc well-foundedness predicate):

Function FAC (i : Z) {measure Z.to_nat i} : Z :=
if zle i 1 then 1 else FAC (i - 1) * i.

Proof. intros. apply Z2Nat.inj_lt; omega. Defined.

and a trivial lemma that we will need later
(functions defined with Function do not reduce well):

Lemma FAC_step (i : Z) :
i > 0 -> FAC (i + 1) = FAC i * (i + 1).

Proof.
intros. rewrite FAC_equation. destruct (zle (i + 1) 1).
omega. assert (i + 1 - 1 = i). omega. rewrite H0. auto.
Qed.

⇐←20→

FAC

implementation of factorial in Coq using Function
(recursion on Acc well-foundedness predicate):

Function FAC (i : Z) {measure Z.to_nat i} : Z :=
if zle i 1 then 1 else FAC (i - 1) * i.

Proof. intros. apply Z2Nat.inj_lt; omega. Defined.

and a trivial lemma that we will need later
(functions defined with Function do not reduce well):

Lemma FAC_step (i : Z) :
i > 0 -> FAC (i + 1) = FAC i * (i + 1).

Proof.
intros. rewrite FAC_equation. destruct (zle (i + 1) 1).
omega. assert (i + 1 - 1 = i). omega. rewrite H0. auto.
Qed.

⇐←20→

FAC

implementation of factorial in Coq using Function
(recursion on Acc well-foundedness predicate):

Function FAC (i : Z) {measure Z.to_nat i} : Z :=
if zle i 1 then 1 else FAC (i - 1) * i.

Proof. intros. apply Z2Nat.inj_lt; omega. Defined.

and a trivial lemma that we will need later
(functions defined with Function do not reduce well):

Lemma FAC_step (i : Z) :
i > 0 -> FAC (i + 1) = FAC i * (i + 1).

Proof.
intros. rewrite FAC_equation. destruct (zle (i + 1) 1).
omega. assert (i + 1 - 1 = i). omega. rewrite H0. auto.
Qed.

⇐←21→

fac_spec

importing definitions from the generated fac.v:

Require Import fac.fac.

and the specification of our function:

Definition fac_spec :=
DECLARE _fac

WITH n : Z
PRE [_n OF tint]

PROP (0 <= n <= Int.max_signed)
LOCAL (temp _n (Vint (Int.repr n)))
SEP ()

POST [tint]
PROP ()
LOCAL (temp ret_temp (Vint (Int.repr (FAC n))))
SEP ().

⇐←22→

PROP and LOCAL and SEP

assertions P consist of three parts:

I PROP
does not refer to store or heap

(!!b) s h := emp s h ∧ b

I LOCAL
refers only to store

(!b) s h := emp s h ∧ eval(b, s)

I SEP
refers to both store and heap

(b) s h

⇐←23→

temp and data_at

two basic assertions
I LOCAL assertion:

s(x) = n
temp x n

I SEP assertion:
a1 7→ a2

data_at π τ a2 a1

τ = C type
π = permission

⇐←24→

body_fac

‘boilerplate’ to define some variables related to prog:

Instance CompSpecs : compspecs. make_compspecs prog. Defined.
Definition Vprog : varspecs. mk_varspecs prog. Defined.
Definition Gprog := augment_funspecs prog [fac_spec].

correctness of the body of fac, using symbolic execution:

Lemma body_fac: semax_body Vprog Gprog f_fac fac_spec.
Proof.
start_function. forward. forward. forward.
forward_while (fac_inv n). Exists 1. entailer!. entailer!.

forward. forward. forward. Exists (i + 1). entailer!.
split. omega. rewrite FAC_step. auto. omega.

forward.
destruct H0. assert (i = n). omega. subst. entailer!.
destruct H0. subst. entailer!.
Qed.

⇐←24→

body_fac

‘boilerplate’ to define some variables related to prog:

Instance CompSpecs : compspecs. make_compspecs prog. Defined.
Definition Vprog : varspecs. mk_varspecs prog. Defined.
Definition Gprog := augment_funspecs prog [fac_spec].

correctness of the body of fac, using symbolic execution:

Lemma body_fac: semax_body Vprog Gprog f_fac fac_spec.
Proof.
start_function. forward. forward. forward.
forward_while (fac_inv n). Exists 1. entailer!. entailer!.

forward. forward. forward. Exists (i + 1). entailer!.
split. omega. rewrite FAC_step. auto. omega.

forward.
destruct H0. assert (i = n). omega. subst. entailer!.
destruct H0. subst. entailer!.
Qed.

⇐←25→

all_funcs_correct

more ‘boilerplate’:

Existing Instance NullExtension.Espec.

including the correctness of the program
(combining the correctness of all functions):

Lemma all_funcs_correct :
semax_func Vprog Gprog (prog_funct prog) Gprog.

Proof.
unfold Gprog, prog, prog_funct. semax_func_cons body_fac.
Qed.

⇐←26→

fac_inv

the loop invariant that we had skipped
(this finishes the code from verif_fac.v):

Definition fac_inv (n : Z) : environ -> mpred :=
EX i : Z,

PROP (1 <= i <= n \/ (n = 0 /\ i = 1))
LOCAL (temp _n (Vint (Int.repr n));

temp _i (Vint (Int.repr i));
temp _f (Vint (Int.repr (FAC i))))

SEP ().

⇐←27→

annotated program

{0 ≤ n ≤ 231 − 1}
i := 1;
f := 1;
while i < n do {(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i!}

i := i + 1;
f := f · i

od
{f = n!}

verification conditions:
0 ≤ n ≤ 231 − 1
⇒ (1 ≤ 1 ≤ n ∨ (n = 0 ∧ 1 = 1)) ∧ 1 = 1!
(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i! ∧ i < n
⇒ (1 ≤ i + 1 ≤ n ∨ (n = 0 ∧ i + 1 = 1)) ∧ f · (i + 1) = (i + 1)!
(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i! ∧ ¬(i < n)
⇒ f = n!

⇐←27→

annotated program

{0 ≤ n ≤ 231 − 1}
i := 1;
f := 1;
while i < n do {(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i!}

i := i + 1;
f := f · i

od
{f = n!}

verification conditions:
0 ≤ n ≤ 231 − 1
⇒ (1 ≤ 1 ≤ n ∨ (n = 0 ∧ 1 = 1)) ∧ 1 = 1!
(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i! ∧ i < n
⇒ (1 ≤ i + 1 ≤ n ∨ (n = 0 ∧ i + 1 = 1)) ∧ f · (i + 1) = (i + 1)!
(1 ≤ i ≤ n ∨ (n = 0 ∧ i = 1)) ∧ f = i! ∧ ¬(i < n)
⇒ f = n!

⇐←28→

DEMO

⇐←29→

verifying SHA-256

sha.c in VST

counterpart of OpenSSL crypto/sha/sha256.c
247 lines of code, 1 typedef, 1 const array, 6 functions

typedef struct SHA256state_st {. . . } SHA256_CTX;
static const unsigned int K256[64] = . . . ;

void sha256_block_data_order(SHA256_CTX *ctx, const void *in)
void SHA256_addlength(SHA256_CTX *c, size_t len)
void SHA256_Init(SHA256_CTX *c)
void SHA256_Update(SHA256_CTX *c, const void *data_, size_t len)
void SHA256_Final(unsigned char *md, SHA256_CTX *c)
void SHA256(const unsigned char *d, size_t n, unsigned char *md)

⇐←30→

fragment of sha256_block_data_order

after macro preprocessing:

. . .
for (i = 0; i < 16; i++) {

(l = (((unsigned long) (*((data)++))) << 24), l |=
(((unsigned long) (*((data)++))) << 16), l |=
(((unsigned long) (*((data)++))) << 8), l |=
(((unsigned long) (*((data)++)))), l);

X[i] = l;
Ki = K256[i];
T1 = l + h + (((((e)) << (26)) | ((((e)) & 0xffffffff) >> (32 - (26)))) ^

((((e)) << (21)) | ((((e)) & 0xffffffff) >> (32 - (21)))) ^
((((e)) << (7)) | ((((e)) & 0xffffffff) >> (32 - (7))))) +
(((e) & (f)) ^ ((~(e)) & (g))) + Ki;

T2 = (((((a)) << (30)) | ((((a)) & 0xffffffff) >> (32 - (30)))) ^
((((a)) << (19)) | ((((a)) & 0xffffffff) >> (32 - (19)))) ^
((((a)) << (10)) | ((((a)) & 0xffffffff) >> (32 - (10))))) +
(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)));

h = g; g = f; f = e; e = d + T1;
d = c; c = b; b = a; a = T1 + T2;
}

. . .

⇐←31→

an array on the stack

another fragment of sha256_block_data_order:

#define SHA_LONG unsigned int

void sha256_block_data_order (SHA256_CTX *ctx, const void *in)
{
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2,t;
SHA_LONG X[16],l,Ki;
int i;
const unsigned char *data=in;
. . .

some other frameworks cannot handle local array variables!

⇐←32→

fac versus sha

I counterpart of fac.c is sha.c
I counterpart of fac.v is sha.v
I counterparts of verif_fac.v:

I counterpart of FAC is the file SHA256.v with:
I SHA_256

I counterpart of fac_spec is the file spec_sha.v with:
I sha256_block_data_order_spec
I SHA256_addlength_spec
I SHA256_Init_spec
I SHA256_Update_spec
I SHA256_Final_spec
I SHA256_spec

I counterparts of body_fac are the files:
I verif_sha_bdo.v with body_sha256_block_data_order
I verif_addlength.v with body_SHA256_addlength
I verif_sha_init.v with body_SHA256_Init
I verif_sha_update.v with body_SHA256_Update
I verif_sha_final.v with body_SHA256_Final
I verif_SHA256.v with body_SHA256

I plus several other files with lots of lemmas

⇐←33→

two executable versions

Fibonacci function with naive recursion takes exponential time

I SHA256.v defines SHA256

naive implementation
exponential time

I functional_prog.v defines SHA256’

better implementation
reasonable time
about a million times slower than C implementation

I . . . and proves SHA256’ = SHA256

testing on examples: seem okay

⇐←33→

two executable versions

Fibonacci function with naive recursion takes exponential time

I SHA256.v defines SHA256

naive implementation
exponential time

I functional_prog.v defines SHA256’

better implementation
reasonable time
about a million times slower than C implementation

I . . . and proves SHA256’ = SHA256

testing on examples: seem okay

⇐←34→

sizes and times

lines seconds component
842 17 lemmas about the functional spec
756 27 lemmas about the API spec
1613 47 verification of sha256_block_data_order
251 61 verification of SHA256_addlength
34 102 verification of SHA256_Init

1745 658 verification of SHA256_Update
1276 781 verification of SHA256_Final
37 38 verification of SHA256

6555 2358 total

⇐←35→

trust

trusting the spec

why trust that the spec is correct?

I C program: sha.c

268 lines

I Coq specification: SHA256.v + spec_sha.v

154 + 210 = 364 lines

possible to prove crypto properties of the Coq definitions

⇐←35→

trust

trusting the spec

why trust that the spec is correct?

I C program: sha.c

268 lines

I Coq specification: SHA256.v + spec_sha.v

154 + 210 = 364 lines

possible to prove crypto properties of the Coq definitions

⇐←36→

is it really OpenSSL?

changes in the code:
I macros expanded to the SHA-256 case
I compiled to Clight in a specific way
I adapted: no side effects inside subexpressions
I adapted: no memory references inside subexpressions
I some additional return statements

current version of OpenSSL not close to this any more

⇐←37→

trusted computing base

VST framework
I CompCert semantics of C

‘is it really C?’
(not part of TCB when compiling using CompCert)

I CompCert semantics of assembly
I Calculus of Inductive Constructions
I source code of Coq kernel
I source code of OCaml compiler and runtime
I microprocessor

SHA correctness
I SHA specification
I C compiler

(not part of TCB when compiling using CompCert)
I assembler
I microprocessor

⇐←38→

axioms

Print Assumptions all_funcs_correct.

I Classical_Prop.classic :
forall P : Prop, P \/ ~ P

I prop_ext :
forall A B : Prop, (A <-> B) -> A = B

I functional_extensionality_dep :
forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g

I 26 axioms about real numbers
through CompCert (floating point) through Floc

I 19 axioms about semax
proved in veric/SeparationLogicSoundness.v
(‘I didn’t want to complicate things with a Functor application
somewhere’)

⇐←38→

axioms

Print Assumptions all_funcs_correct.

I Classical_Prop.classic :
forall P : Prop, P \/ ~ P

I prop_ext :
forall A B : Prop, (A <-> B) -> A = B

I functional_extensionality_dep :
forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g

I 26 axioms about real numbers
through CompCert (floating point) through Floc

I 19 axioms about semax
proved in veric/SeparationLogicSoundness.v
(‘I didn’t want to complicate things with a Functor application
somewhere’)

⇐←38→

axioms

Print Assumptions all_funcs_correct.

I Classical_Prop.classic :
forall P : Prop, P \/ ~ P

I prop_ext :
forall A B : Prop, (A <-> B) -> A = B

I functional_extensionality_dep :
forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g

I 26 axioms about real numbers
through CompCert (floating point) through Floc

I 19 axioms about semax
proved in veric/SeparationLogicSoundness.v
(‘I didn’t want to complicate things with a Functor application
somewhere’)

⇐←38→

axioms

Print Assumptions all_funcs_correct.

I Classical_Prop.classic :
forall P : Prop, P \/ ~ P

I prop_ext :
forall A B : Prop, (A <-> B) -> A = B

I functional_extensionality_dep :
forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g

I 26 axioms about real numbers
through CompCert (floating point) through Floc

I 19 axioms about semax
proved in veric/SeparationLogicSoundness.v
(‘I didn’t want to complicate things with a Functor application
somewhere’)

⇐←39→

17! = −288522240?

%

factest
17
-288522240
%

I overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

I overflow in CompCert: wraps mod 232

(in that case: the computer likes to wrap ,)
I but didn’t we prove that the program calculates n! ?

(where is the ‘modulo’ in the specification?)

s(x) = n
temp x (Vint (Int.repr n))

not: ‘the value of x is n’
but: ‘the value of x is the residue of n mod 232’

⇐←39→

17! = −288522240?

% factest

17
-288522240
%

I overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

I overflow in CompCert: wraps mod 232

(in that case: the computer likes to wrap ,)
I but didn’t we prove that the program calculates n! ?

(where is the ‘modulo’ in the specification?)

s(x) = n
temp x (Vint (Int.repr n))

not: ‘the value of x is n’
but: ‘the value of x is the residue of n mod 232’

⇐←39→

17! = −288522240?

% factest
17

-288522240
%

I overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

I overflow in CompCert: wraps mod 232

(in that case: the computer likes to wrap ,)
I but didn’t we prove that the program calculates n! ?

(where is the ‘modulo’ in the specification?)

s(x) = n
temp x (Vint (Int.repr n))

not: ‘the value of x is n’
but: ‘the value of x is the residue of n mod 232’

⇐←39→

17! = −288522240?

% factest
17
-288522240
%

I overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

I overflow in CompCert: wraps mod 232

(in that case: the computer likes to wrap ,)
I but didn’t we prove that the program calculates n! ?

(where is the ‘modulo’ in the specification?)

s(x) = n
temp x (Vint (Int.repr n))

not: ‘the value of x is n’
but: ‘the value of x is the residue of n mod 232’

⇐←39→

17! = −288522240?

% factest
17
-288522240
%

I overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

I overflow in CompCert: wraps mod 232

(in that case: the computer likes to wrap ,)
I but didn’t we prove that the program calculates n! ?

(where is the ‘modulo’ in the specification?)

s(x) = n
temp x (Vint (Int.repr n))

not: ‘the value of x is n’
but: ‘the value of x is the residue of n mod 232’

⇐←39→

17! = −288522240?

% factest
17
-288522240
%

I overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

I overflow in CompCert: wraps mod 232

(in that case: the computer likes to wrap ,)
I but didn’t we prove that the program calculates n! ?

(where is the ‘modulo’ in the specification?)

s(x) = n
temp x (Vint (Int.repr n))

not: ‘the value of x is n’
but: ‘the value of x is the residue of n mod 232’

⇐←39→

17! = −288522240?

% factest
17
-288522240
%

I overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

I overflow in CompCert: wraps mod 232

(in that case: the computer likes to wrap ,)
I but didn’t we prove that the program calculates n! ?

(where is the ‘modulo’ in the specification?)

s(x) = n
temp x (Vint (Int.repr n))

not: ‘the value of x is n’
but: ‘the value of x is the residue of n mod 232’

⇐←40→

related work

specification, implementation, foundational, automatic, general

I specification
is there a specification of the program’s function?
amenable to analysis in a proof assistant?

I implementation
is the proof about an efficient implementation?

I foundational
is there an end-to-end machine-checked proof from the
foundations of logic?

I automatic (VST: /)
check or synthesize the program without much interactive
human input or annotations?

I general
can the verifier handle all parts of the program?

⇐←41→

larger C verification projects

two recent large C verification projects
I seL4 in Isabelle

Gerwin Klein et al. 2009
NICTA, Australia

I CertiKOS in Coq
Liang Gu et al. 2011
Yale, US

but:
I no separation logic
I no function pointers/higher order specifications
I seL4 and CertKOS: newly written code
I no arrays on the stack

⇐←41→

larger C verification projects

two recent large C verification projects
I seL4 in Isabelle

Gerwin Klein et al. 2009
NICTA, Australia

I CertiKOS in Coq
Liang Gu et al. 2011
Yale, US

but:
I no separation logic
I no function pointers/higher order specifications
I seL4 and CertKOS: newly written code
I no arrays on the stack

⇐←42→

who has choices need not choose

different approaches to program verification:
I static analysis

I model checking

I interactive theorem provers
type theory!

⇐←43→

table of contents

contents

recap reading list

SHA hashing

VST example: verifying factorial

verifying SHA-256

trust

related work

table of contents

	verifying SHA using VST
	1. SHA and VST
	2. papers
	recap reading list
	3. overview
	4. imp
	5. big-step operational semantics
	6. small-step operational semantics
	7. Hoare logic
	8. verification conditions from weakest preconditions
	9. CompCert
	10. separation logic
	11. VST

	SHA hashing
	12. SSL, TSL and OpenSSL
	13. heartbleed
	14. cryptographic hashing
	15. SHA-256 and HMAC

	VST example: verifying factorial
	16. workflow
	17. fac.c
	18. fac.v
	19. verif_fac.v
	20. FAC
	21. fac_spec
	22. PROP and LOCAL and SEP
	23. temp and data_at
	24. body_fac
	25. all_funcs_correct
	26. fac_inv
	27. annotated program

	verifying SHA-256
	29. sha.c in VST
	30. fragment of sha256_block_data_order
	31. an array on the stack
	32. fac versus sha
	33. two executable versions
	34. sizes and times

	trust
	35. trusting the spec
	36. is it really OpenSSL?
	37. trusted computing base
	38. axioms
	39. 17! = -288522240?

	related work
	40. specification, implementation, foundational, automatic, general
	41. larger C verification projects
	42. who has choices need not choose

	table of contents
	43. contents

