verifying SHA using VST

Freek Wiedijk

last paper in the reading list of
Type Theory & Coq
2015-2016
Radboud University Nijmegen

June 16, 2016

SHA and VST

» SHA =
Secure Hash Algorithm

» VST =
Verified Software Toolchain

papers

papers by Andrew Appel:

» Verification of a Cryptographic Primitive: SHA-256
TOPLAS = ACM Transactions on Programming Languages
and Systems

April 2015
» Second Edition: Verification of a Cryptographic Primitive:

SHA-256
updated from VST 1.0 to VST 1.6

papers

papers by Andrew Appel:

» Verification of a Cryptographic Primitive: SHA-256
TOPLAS = ACM Transactions on Programming Languages
and Systems

April 2015
» Second Edition: Verification of a Cryptographic Primitive:

SHA-256
updated from VST 1.0 to VST 1.6

» Modular Verification for Computer Security
CSF 2016 = Computer Security Foundations Symposium

June 2016

recap reading list

overview

> imp
> big-step operational semantics
» small-step operational semantics
» Hoare logic
» verification condition generator
» CompCert

» idem for C

» VST

> separation logic
» symbolic execution

imp

syntax:

ax=nl|z]|(a+a2)]| (a1 —a2)| (a1 ag)
b:::a1:a2|a1<ag\T\—'b|(b1/\b2)
cu=skip |z :=a| (c1;c2) | if bthen ¢ else ¢ fi | while b do ¢ od

example:
(i:=1;
f=1)
while 7 < n do
=1+ 1;
fi=f-i

od

big-step operational semantics

= natural semantics

Gilles Kahn
relation:

(c,s) s
some representative rules:

(a,8) I n

(z:=a,s) | s[z+— n]

(c1,8) U8 (co,8) 8"
(c1;c2,8) 4 8"
(b,s) 4T (c,8) s (whilebdocod,s) | s”
(while b do ¢ od, s) |} s

(b,s) 4 L
(while bdo cod, s) | s

small-step operational semantics

= structural operational semantics = SOS
Gordon Plotkin

relations:
(c,s) = (c,) (c,s) =" (c,§)

some representative rules:

(z:=n,s) — (skip, s[z — n])

(0175) — (c£>5/)
(c15¢2,8) = (cf; 2, 8)

(Sklp’ C2, S) - (027 S)

(while b do ¢ od, s) — (if b then ¢; while b do ¢ od else skip fi, 5)

Hoare logic

= axiomatic semantics
Tony Hoare

Hoare triple:
{P}ci{Q}

some representative rules:

{Q[z :=a]}z:=a{Q}

{P}a{Q {Q}{R}

{P}ers 2 {R}

(P ABY c{P}
{P}while b do cod {P A b}
PP {P}e{@} @ =Q

{P}c{Q}

verification conditions from weakest preconditions

predicate transformer semantics
Edsger Dijkstra

imp with annotations:

= {P}|skip|z:=al(c1;c)|if bthen ¢ else s fi |
while b do { P} ¢ od

verification condition and weakest precondition:

ve({P}e{Q}) = (P = wp(c, Q)

some representative cases:

wp({P}, Q)
wp(z = a, Q) = Q[a]
wp(e1; T2, Q) = wp(e1, wp(Cs, Q))
wp(while bdo {P} ¢od, Q) =P A (PAb= wp(c,P)) AN(PA-b= Q)

CompCert

Xavier Leroy, INRIA, France

CompCert = idem for C

v

C to Clight translator in OCaml

v

optimizing Clight compiler as a Coq function

v

Coq code extracted to OCaml

v

operational semantics of Clight in Coq

v

operational semantics of assembly in Coq

v

compiler proved correct in Coq

separation logic

Hoare logic for pointers in memory
John Reynolds and Peter O'Hearn

state = store X heap
store = ident — Z
heap=7 —~7Z

separation logic assertions:

emp
ay — a
PxQ

frame rule:
{P}c{@}
{P«* R} c{Q=x R}

VST

Andrew Appel, Princeton, US
VST

= Verified Software Toolchain

= CompCert +
> separation logic
> semantics for separate compilation
» symbolic execution

» Coq goal is a Hoare triple
> tactics execute statements

SHA hashing

SSL, TSL and OpenSSL

OpenSSL
= open source implementation of SSL and TLS protocols

used by majority of the web servers

SSL = Secure Socket Layer
TLS = Transport Layer Security

secure communication on the internet

private connection: symmetric cryptography
identity checking: public-key cryptography
reliable connection

HTTPS = HTTP + TLS

heartbleed

SERVER, ARE. YOU STILL THERE?.
IFS0,REPLY "BIRD" (4 LETTERS).

April 2014

Hom...

er Meg wants these 500 letters: HAT.

heartbleed

SERVER, ARE YOU STLL THERE?
IF 50, REPLY “BIRD" (4 LETTERS). =L
cse 4 letters: BIRD.
2 f 0
o
.o
HMM.“
Y
[)
0
)
l °
SERVER, ARE YOU STLL THERE?
IFS0,REPLY (500 LETTERS).

April 2014

fix is two lines in
ssl/d1l_lib.c:

if (HEARTBEAT_SIZE_STD
(payload) > length)
return O;
/* silently discard per
RFC 6520 sec. 4 */

cryptographic hashing

cryptographic hash function:
h:{0,1}* — {0,1}%56

four properties:
> h(zx) can be computed quickly
» given h(z) finding a corresponding z is infeasible
» small change in z gives a large change in h(z)

» infeasible to find a collision: z; and 2z with h(x1) = h(zp)

cryptographic hashing

cryptographic hash function:
h:{0,1}* — {0,1}2°¢

four properties:

v

h(z) can be computed quickly
given h(z) finding a corresponding z is infeasible
small change in z gives a large change in h(z)

vV v v

infeasible to find a collision: z; and zp with h(z;) = h(x)

examples:
h("Lynx c.q. vos prikt bh: dag zwemjuf") =
17c2£3484ab21559fa8d7b£f3da97e3443b48a3466£3b8fa8210dbcefe99807al

h("Lynx c.q. vos prikt bh: dag zwemjuf!") =
3530df7cc04dalf245eb92e5780610c5e0aal66a94bal7a66e2e310a64f1bd4d

SHA-256 and HMAC

SHA = Secure Hash Algorithm
SHA-0: 1993, SHA-1: 1995, SHA-2: 2001, SHA-3: 2015

SHA-0: collision known
SHA-1: collision unknown, but within range of supercomputers

SHA-2 = FIPS PUB 180-2 standard of NIST =
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256

SHA-256: used by bitcoin

SHA-256 and HMAC

SHA = Secure Hash Algorithm
SHA-0: 1993, SHA-1: 1995, SHA-2: 2001, SHA-3: 2015

SHA-0: collision known
SHA-1: collision unknown, but within range of supercomputers

SHA-2 = FIPS PUB 180-2 standard of NIST =
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256

SHA-256: used by bitcoin

HMAC = Hash-based Message Authentication Code

> authenticity: message came from sender

> integrity: message has not been tampered with

VST example: verifying factorial

workflow

VST example: verifying factorial

workflow

» fac.c
C program being verified
» fac
C function calculating factorial

VST example: verifying factorial

workflow

» fac.c
C program being verified
» fac

C function calculating factorial

» fac.v
Clight version as a generated Coq file

VST example: verifying factorial

workflow

» fac.c
C program being verified
» fac
C function calculating factorial
» fac.v
Clight version as a generated Coq file

» verif_fac.v
Coq file with the verification

VST example: verifying factorial

workflow

» fac.c
C program being verified
» fac

C function calculating factorial

» fac.v
Clight version as a generated Coq file

» verif_fac.v
Coq file with the verification

> FAC
Coq functional program for each function in fac.c

» fac_spec
specification relating each function in fac.c to its Coq version

> body_fac
verification of correctness of each function in fac.c

fac.c

10 lines of C
calculates the factorial function

int
fac(int n)
{

int i, f;

f=1i-=1;

while (i < n)
f k= ++1i;

return f;

}

fac.v

320 lines of Coq, generated from fac.c by CompCert's clightgen

Definition _n : ident := 45%positive.

Definition _fac : ident := 48Jpositive.
Definition f_fac := {|
fn_return := tint;
fn_callconv := cc_default;
fn_params := ((_n, tint) :: nil);
fn_vars := nil;
fn_temps := ((_i, tint) :: (_f, tint) :: (51)positive, tint)
(50%positive, tint) :: nil);
fn_body := (Ssequence (Ssequence) ...)
[}.

Definition prog : Clight.program := {|
prog_defs := (... :: (_fac, Gfun(Internal, f_fac)) :: nil);

[}.

verif fac.v

59 lines of Coq
checking time: 75 seconds

verif fac.v

59 lines of Coq
checking time: 75 seconds

full code in these slides

starts with imports:

Require Import floyd.proofauto.
Require Import Coqlib.
Require Import Recdef.

FAC

implementation of factorial in Coq using Function
(recursion on Acc well-foundedness predicate):

Function FAC (i : Z) {measure Z.to_nat i} : Z :=
if zle i 1 then 1 else FAC (i - 1) * i.

FAC

implementation of factorial in Coq using Function
(recursion on Acc well-foundedness predicate):

Function FAC (i : Z) {measure Z.to_nat i} : Z :=
if zle i 1 then 1 else FAC (i - 1) * i.
Proof. intros. apply Z2Nat.inj_lt; omega. Defined.

FAC

implementation of factorial in Coq using Function
(recursion on Acc well-foundedness predicate):

Function FAC (i : Z) {measure Z.to_nat i} : Z :=
if zle i 1 then 1 else FAC (i - 1) * i.
Proof. intros. apply Z2Nat.inj_lt; omega. Defined.

and a trivial lemma that we will need later
(functions defined with Function do not reduce well):

Lemma FAC_step (i : Z)
i>0->FAC (i + 1) =FAC i * (i +1).

Proof.

intros. rewrite FAC_equation. destruct (zle (i + 1) 1).

omega. assert (i + 1 - 1 = i). omega. rewrite HO. auto.

Qed.

fac_spec

importing definitions from the generated fac.v:

Require Import fac.fac.

and the specification of our function:

Definition fac_spec :=
DECLARE _fac
WITHn : Z
PRE [_n OF tint]
PROP (0 <= n <= Int.max_signed)
LOCAL (temp _n (Vint (Int.repr n)))

SEP ()
POST [tint]
PROP ()

LOCAL (temp ret_temp (Vint (Int.repr (FAC n))))
SEP ().

PROP and LOCAL and SEP

assertions P consist of three parts:

» PROP
does not refer to store or heap

(o) sh:=empshAb

» LOCAL
refers only to store

(1b) sh :=emp sh Aeval(b, s)

» SEP
refers to both store and heap

(b)sh

temp and data_at

two basic assertions
» LOCAL assertion:

s(x)=n

temp zn

» SEP assertion:
al +—r a

data_at w7 as a1

7 = C type
T = permission

body_fac

‘boilerplate’ to define some variables related to prog:

Instance CompSpecs : compspecs. make_compspecs prog. Defined.
Definition Vprog : varspecs. mk_varspecs prog. Defined.
Definition Gprog := augment_funspecs prog [fac_spec].

body_fac

‘boilerplate’ to define some variables related to prog:

Instance CompSpecs : compspecs. make_compspecs prog. Defined.
Definition Vprog : varspecs. mk_varspecs prog. Defined.
Definition Gprog := augment_funspecs prog [fac_spec].

correctness of the body of fac, using symbolic execution:

Lemma body_fac: semax_body Vprog Gprog f_fac fac_spec.

Proof.

start_function. forward. forward. forward.

forward_while (fac_inv n). Exists 1. entailer!. entailer!.
forward. forward. forward. Exists (i + 1). entailer!.
split. omega. rewrite FAC_step. auto. omega.

forward.

destruct HO. assert (i = n). omega. subst. entailer!.

destruct HO. subst. entailer!.

Qed.

all funcs_correct

more ‘boilerplate’:

Existing Instance NullExtension.Espec.

including the correctness of the program
(combining the correctness of all functions):

Lemma all_funcs_correct
semax_func Vprog Gprog (prog_funct prog) Gprog.
Proof.
unfold Gprog, prog, prog_funct. semax_func_cons body_fac.
Qed.

fac_inv

the loop invariant that we had skipped
(this finishes the code from verif_fac.v):

Definition fac_inv (n : Z) : environ -> mpred :=
EXi: Z,
PROP (1 <=i<=n\/ (m=0/\1=1))
LOCAL (temp _n (Vint (Int.repr n));
temp _i (Vint (Int.repr i));
temp _f (Vint (Int.repr (FAC i))))
SEP O.

annotated program

{0<n<23 —1}

1:=1;

f=1

whilei<ndo{(1<i<nV(n=0Ai=1)Af=1i}
=1+ 1
f=rf1

od

{f=nl}

annotated program

{0<n<2 -1}

1:=1;

f=1

whilei<ndo{(1<i<nV(n=0Ai=1)Af=1l}
1:=14+1;

fe=F-i

od

{f =nl}

verification conditions:

0<n<23 -1
=(1<1<nVv(n=0A1=1)A1=1!

1<i<nVn=0Ai=1)Af=didANi<n

> (1<i+1<nV(n=0Ai+1=1))Af-(i+1)=

(1<i<nVn=0Ai=1)Af=dA=(i<n)
= f=nl!

(i +1)!

DEMO

verifying SHA-256

sha.c in VST

counterpart of OpenSSL crypto/sha/sha256.c
247 lines of code, 1 typedef, 1 const array, 6 functions

typedef struct SHA256state_st {...} SHA256_CTX;
static const unsigned int K256[64] = ...;

void
void
void
void
void
void

sha256_block_data_order (SHA256_CTX *ctx, const void *in)
SHA256_addlength (SHA256_CTX *c, size_t len)

SHA256_Init (SHA256_CTX *c)

SHA256_Update (SHA256_CTX *c, const void *data_, size_t len)
SHA256_Final (unsigned char *md, SHA256_CTX *c)

SHA256 (const unsigned char *d, size_t n, unsigned char *md)

fragment of sha256_block_data_order

after macro preprocessing:

for (i = 0; i < 16; i++) {

(1 = (((unsigned long) (x((data)++))) << 24), 1 |=
(((unsigned long) (*((data)++))) << 16), 1 |=
(((unsigned long) (*((data)++))) << 8), 1 |=
(((unsigned long) (*((data)++)))), 1);

X[il = 1;

Ki = K256[i];

Ti =1+ h + (((((e)) << (26)) | ((((e)) & Oxffffffff) >> (32 - (26)))) ~
((((e)) << (21)) | ((((e)) & Oxffffffff) >> (32 - (21)))) ~
((((e)) << (7)) | ((((e)) & Oxffffffff) >> (32 - (7))))) +
(((e) & (£)) = ((~(e)) & (g))) + Ki;

T2 = (((((@)) << (80)) | ((((a)) & Oxffffffff) >> (32 - (30)))) ~
((((@)) << (19)) | ((((a)) & Oxffffffff) >> (32 - (19)))) ~
((((a)) << (10)) | ((((a)) & Oxffffffff) >> (32 - (10))))) +
(((@) & (b)) ~ ((a) & (c)) ~ ((b) & (c)));

=g; g e; e d + T1;
c; C a; a T1 + T2;

f; £
b; b

T ap
o

an array on the stack

another fragment of sha256_block_data_order:

#define SHA_LONG unsigned int

void sha256_block_data_order (SHA256_CTX *ctx, const void *in)
{
unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2,t;
SHA_LONG X[16],1,Ki;
int i;
const unsigned char *data=in;

some other frameworks cannot handle local array variables!

fac versus sha

» counterpart of fac.c is sha.c
» counterpart of fac.v is sha.v
» counterparts of verif_fac.v:

» counterpart of FAC is the file SHA256.v with:

>

SHA_256

> counterpart of fac_spec is the file spec_sha.v with:

>
>
>
>
>

>

sha2b56_block_data_order_spec
SHA256_addlength_spec
SHA256_Init_spec
SHA256_Update_spec
SHA256_Final_spec
SHA256_spec

> counterparts of body_fac are the files:

>

vVvYyVvYYyy

verif_sha_bdo.v with body_sha256_block_data_order
verif_addlength.v with body_SHA256_addlength
verif_sha_init.v with body_SHA256_Init
verif_sha_update.v with body_SHA256_Update
verif_sha_final.v with body_SHA256_Final

verif_ SHA256.v with body_SHA256

> plus several other files with lots of lemmas

two executable versions

Fibonacci function with naive recursion takes exponential time

two executable versions

Fibonacci function with naive recursion takes exponential time

» SHA256.v defines SHA256

naive implementation
exponential time

» functional_prog.v defines SHA256

better implementation
reasonable time
about a million times slower than C implementation

> ... and proves SHA256° = SHA256

testing on examples: seem okay

sizes and times

lines seconds
842 17
756 27
1613 47
251 61

34 102
1745 658
1276 781

37 38
6555 2358

component

lemmas about the functional spec

lemmas about the API spec

verification of sha256_block_data_order
verification of SHA256_addlength
verification of SHA256_Init

verification of SHA256_Update

verification of SHA256_Final

verification of SHA256

total

trust

trusting the spec

why trust that the spec is correct?

» C program: sha.c
268 lines

» Coq specification: SHA256.v + spec_sha.v
154 + 210 = 364 lines

trust

trusting the spec

why trust that the spec is correct?

» C program: sha.c
268 lines

» Coq specification: SHA256.v + spec_sha.v
154 + 210 = 364 lines

possible to prove crypto properties of the Coq definitions

is it really OpenSSL?

changes in the code:

macros expanded to the SHA-256 case

compiled to Clight in a specific way

adapted: no side effects inside subexpressions
adapted: no memory references inside subexpressions

vV vVv.v. v Yy

some additional return statements

current version of OpenSSL not close to this any more

trusted computing base

VST framework

» CompCert semantics of C

'is it really C?’

(not part of TCB when compiling using CompCert)
CompCert semantics of assembly

Calculus of Inductive Constructions

source code of Coq kernel

source code of OCaml compiler and runtime

vV vy vy

microprocessor

SHA correctness
» SHA specification

» C compiler
(not part of TCB when compiling using CompCert)

»> assembler

> microprocessor

axioms

Print Assumptions all_funcs_correct.

axioms

Print Assumptions all_funcs_correct.

» Classical_Prop.classic
forall P : Prop, P \/ ~ P

> prop_ext
forall A B : Prop, (A <->B) -> A =B

» functional_extensionality_dep :
forall (A : Type) (B : A -> Type)
(f g : forall x : A, B x),
(forall x : A, fx=gx) >f =g

axioms

Print Assumptions all_funcs_correct.

» Classical_Prop.classic

forall P : Prop, P \/ ~ P
> prop_ext

forall A B : Prop, (A <->B) -> A =B
» functional_extensionality_dep :

forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),
(forall x : A, fx=gx) >f =g

» 26 axioms about real numbers
through CompCert (floating point) through Floc

axioms

Print Assumptions all_funcs_correct.

» Classical_Prop.classic

forall P : Prop, P \/ ~ P
> prop_ext

forall A B : Prop, (A <->B) -> A =B
» functional_extensionality_dep :

forall (A : Type) (B : A -> Type)

(f g : forall x : A, B x),
(forall x : A, fx=gx) >f =g

» 26 axioms about real numbers
through CompCert (floating point) through Floc

» 19 axioms about semax
proved in veric/SeparationLogicSoundness.v
('l didn’t want to complicate things with a Functor application
somewhere')

17! = —2885222407

%

17! = —2885222407

% factest

17! = —2885222407

% factest
17

17! = —2885222407

% factest
17
-288522240
%

17! = —2885222407

% factest
17
-288522240
A

» overflow in C11 standard: undefined behavior = crash

(computer can do whatever it likes)

» overflow in CompCert: wraps mod 232
(in that case: the computer likes to wrap ®)

» but didn’t we prove that the program calculates n!?
(where is the ‘modulo’ in the specification?)

17! = —2885222407

% factest
17
-288522240
A

» overflow in C11 standard: undefined behavior = crash

(computer can do whatever it likes)

» overflow in CompCert: wraps mod 232
(in that case: the computer likes to wrap ®)

» but didn’t we prove that the program calculates n!?
(where is the ‘modulo’ in the specification?)

s(z)=n
temp z (Vint (Int.repr n))

17! = —2885222407

% factest
17
-288522240
A

» overflow in C11 standard: undefined behavior = crash
(computer can do whatever it likes)

» overflow in CompCert: wraps mod 232
(in that case: the computer likes to wrap ®)

» but didn’t we prove that the program calculates n!?
(where is the ‘modulo’ in the specification?)

s(z)=n
temp z (Vint (Int.repr n))

not: ‘the value of z is n’
but: ‘the value of z is the residue of n mod 2%’

related work

specification, implementation, foundational, automatic, general

>

specification
is there a specification of the program’s function?
amenable to analysis in a proof assistant?

implementation
is the proof about an efficient implementation?

foundational
is there an end-to-end machine-checked proof from the
foundations of logic?

automatic (VST: ®)
check or synthesize the program without much interactive
human input or annotations?

general
can the verifier handle all parts of the program?

larger C verification projects

two recent large C verification projects
> selL4 in Isabelle

Gerwin Klein et al. 2009
NICTA, Australia

» CertiKOS in Coq
Liang Gu et al. 2011
Yale, US

larger C verification projects

two recent large C verification projects

» selL4 in Isabelle
Gerwin Klein et al. 2009
NICTA, Australia

» CertiKOS in Coq
Liang Gu et al. 2011
Yale, US

but:
no separation logic

no function pointers/higher order specifications
seL4 and CertKOS: newly written code

vV v v v

no arrays on the stack

who has choices need not choose

different approaches to program verification:

> static analysis
» model checking

» interactive theorem provers
type theory!

table of contents

contents

recap reading list

SHA hashing

VST example: verifying factorial
verifying SHA-256

trust

related work

table of contents

	verifying SHA using VST
	1. SHA and VST
	2. papers
	recap reading list
	3. overview
	4. imp
	5. big-step operational semantics
	6. small-step operational semantics
	7. Hoare logic
	8. verification conditions from weakest preconditions
	9. CompCert
	10. separation logic
	11. VST

	SHA hashing
	12. SSL, TSL and OpenSSL
	13. heartbleed
	14. cryptographic hashing
	15. SHA-256 and HMAC

	VST example: verifying factorial
	16. workflow
	17. fac.c
	18. fac.v
	19. verif_fac.v
	20. FAC
	21. fac_spec
	22. PROP and LOCAL and SEP
	23. temp and data_at
	24. body_fac
	25. all_funcs_correct
	26. fac_inv
	27. annotated program

	verifying SHA-256
	29. sha.c in VST
	30. fragment of sha256_block_data_order
	31. an array on the stack
	32. fac versus sha
	33. two executable versions
	34. sizes and times

	trust
	35. trusting the spec
	36. is it really OpenSSL?
	37. trusted computing base
	38. axioms
	39. 17! = -288522240?

	related work
	40. specification, implementation, foundational, automatic, general
	41. larger C verification projects
	42. who has choices need not choose

	table of contents
	43. contents

