three wishes

Freek Wiedijk
Radboud University Nijmegen

future of ITP workshop
University of Cambridge
2009 08 24, 09:30
why wish?

why ITP?

• for mathematics
 – correctness
 – explicitness
 – mathematical objects in the physical world

• for programming
 – correctness \(\approx\) no bugs
 – carefree programming
 – the pleasure of crafting a fully correct program
wishes for mathematics

almost-wish: ITP I can sell to the mathematicians

- strong and user programmable automation (HOL)
- integrated declarative proofs and tactic scripts (Isabelle)
- full classical ZFC style set theory (Mizar)
- partiality taken seriously (PVS)
- dependent and empty types (Coq)
- small kernel implementing small foundations (Metamath)
- mathematical and programming language identical (ACL2)
almost-wish: DNA for formal math

- type theoretical lambda terms
- traces of HOL derivations
- LF
- de Bruijn’s $\Delta \Lambda$, aka $\Lambda \Delta$, aka AUT-SL

$$\mathcal{T} ::= \ast \mid x \mid (\lambda x : \mathcal{T}. \mathcal{T}) \mid (\mathcal{T} \mathcal{T})$$

identification of λ and Π, no definitions or let-bindings
unlabeled graphs with four kinds of nodes and two kinds of edges

- weaker version of $\Delta \Lambda$
 - no convertibility check
 - no difference between definitional equality and ‘book equality’
almost-wish: categories in ZFC style set theory

problem:
‘the category of groups’ is not a set

how to talk about ‘large categories’ in ZFC style set theory?

(‘universes’ are not a nice solution)
almost-wish: ‘very large scale formalization’ project

• all of undergraduate mathematics
 will take about 140 man · years

or:

• classification of finite simple groups

or:

• Fermat
almost-wish: formal library infrastructure

- made by a whole community, but not well integrated
 - Coq’s contribs
 - Isabelle’s AFP
 - Mizar’s MML

- beautifully integrated, but made by an isolated genius
 - John Harrison’s HOL Light library
 - Georges Gonthier’s Ssreflect library

Nijmegen’s MathWiki project just started
1 postdoc + 1 PhD student

‘Wikipedia for math’ + formalizations + ‘Proof General on the Web’
Coq + Isabelle + …
genie, my first wish: better automation

progress in proof assistant technology:

- automation of formalized primary school math = ‘arithmetic’
- automation of formalized high school math = ‘calculus’
- automation of formalized university math

\[
\text{HIGH_SCHOOL_STUDENT_TAC}
\]

‘computer algebra under hypotheses’

\[x \neq 0 \land |\ln |x|| > 2 \land \int_0^{|x|} t \, dt \leq 1 \Rightarrow -\frac{1}{e^2} < x < \frac{1}{e^2}\]

should run in less than a second
should run without any arguments
wishes for programming

almost-wish: self-verified ITP

• Coq in Coq
 Bruno Barras
 not about the code of the actual system

• HOL in HOL
 John Harrison
 about the code of the actual system, but currently
 – code has been a bit simplified (no definitions/polymorphism)
 – no formal relation between OCaml code and its HOL rendering
 – no proofs about parsing/printing (Randy’s complaint)
genie, my second wish: system for proving ML correct

miniML++

features beyond Coq:

- exceptions
- state
 (just global ref variables is enough)
- non-terminating functions
 (my computer has a ^C !)
- input/output
 other OS related functions
almost-wish: nice system for proving C correct

philosophical question: what should I imagine ‘correctness’ of

• \LaTeX

• Mozilla
to mean?

from the quotes file:

V7 /bin/mail source: 554 lines.

a program and a specification are the same kind of thing?
so what does it mean to prove a specification correct?
genie, my third wish! system for proving strict conformance

strictly conforming =
program runs the same on all machines =
no undefined behavior, no unspecified behavior

- no dereferenced NULL pointers
- no dereferenced dangling pointers
- no array accesses outside the bounds
- no meaningless casts
- no integer overflow
- no dependence on evaluation order
 \[i = i++; \]
- etcetera

proving correctness without specification
why wish?

needed?

- first wish (automated high school mathematics)
 computer algebra under hypotheses

- second wish (ML verification)
 Hoare logic for higher order programs in the presence of side effects

- third wish (C strict conformance)
 Hoare logic for proving strict conformance