
Is ZF a hack?

Comparing the complexity of some
(formalist interpretations of)

foundational systems for mathematics

Freek Wiedijk

Department of Computer Science, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract. This paper presents Automath encodings (which also are
valid in LF/λP ) of various kinds of foundations of mathematics. Then
it compares these encodings according to their size, to find out which
foundation is the simplest.
The systems analyzed in this way are two kinds of set theory (ZFC and
NF), two systems based on Church’s higher order logic (Isabelle/Pure
and HOL), three kinds of type theory (the calculus of constructions,
Luo’s extended calculus of constructions, and Martin-Löf predicative
type theory) and one foundation based on category theory.
The conclusions of this paper are that the simplest system is type theory
(the calculus of constructions) but that type theories that know about
serious mathematics are not simple at all. Set theory is one of the simpler
systems too. Higher order logic is the simplest if one looks at the number
of concepts (twenty-five) needed to explain the system. On the other side
of the scale, category theory is relatively complex, as is Martin-Löf’s type
theory.

(This paper is on the web, with the full Automath sources of the contexts
described in it, at 〈http://www.cs.kun.nl/∼freek/zfc-etc/〉.)

1 Introduction

1.1 Problem

Some time ago Bob Solovay drew my attention to the writings on proof checking
by Raph Levien. In one of his postings on the forum called Advogato, Raph
had written that ‘ZF is a hack’.1 This statement was the reason for this paper.

1 Actually his statement was not that strong. He had written, in diary entry 〈http:
//www.advogato.org/person/raph/diary.html?start=265〉:

I was talking [. . .] with Bram, and he called ZF set theory a ‘hack.’ I more
or less agree, but playing with it in the context of Metamath has led me to
appreciate how powerful a hack it is. With a small number of relatively simple
axioms, it gets you a rich set of infinities, but avoids the particular ones that



2 Freek Wiedijk

Because I, too, do believe that ZF is a bit of a hack. The aim of this paper is to
give some quantitative information on ‘how much’ of a hack I consider ZF to be.

The whole point of Cantor’s set theory is (using type theoretic terminology)
that Set and Set→bool should be the same thing. And in ZF they are not. The
first are the sets and the second are the (possibly proper) classes. Of course every
set is a class, so the two kinds of objects are related, but the relation between
the two is not really simple. This distinction is the first reason we might want
to call ZF a ‘hack’.

In a presentation of ZF there are two levels that one has to introduce: first
there is the level of first order predicate logic and second there is the level of the
ZF axioms. On both levels one finds very similar concepts (for instance ∃ on the
logic level corresponds to

⋃
on the set theory level), and it seems strange that

these levels cannot be identified. This is different in the foundations of the HOL
theorem prover [5]. In that system, formulas in the logic are just functions that
map to the set bool. So this distinction between levels is not necessary in the
case of HOL, there the logical operations are just set theoretic functions like all
the others. This distinction is the second reason why we might want to call ZF
a ‘hack’.

The majority of the ZF axioms state that the set theoretic universe is closed
under certain operations. Once Henk Barendregt asked me whether I knew the
number of ZF axioms. When I admitted I did not know the exact number offhand,
he wrote the six ZF operations for me on a napkin (see Fig. 1; so the answer
to his question was ‘there are eight ZF axioms.’) He then struck out the F“x

replacement operation saying that ‘the F in this operation stands for Fränkel. If
you remove it from the list, you remove the F from ZF and you get Zermelo set
theory.’

Set properties 2 ext, found
Set existence 6 8

Set(∅)
Set({x, y})
Set(

⋃
x)

Set(F“x)
Set(Px)
Set(ω)

Fig. 1. Henk’s napkin

If one looks at ZF like this, it seems to be about ‘six concepts’. But of course
that presupposes that the whole machinery of first order predicate logic (which

bring the whole formal system crumbling down. You get integers, reals, tuples,
sequences (finite and infinite), transfinites, and functions from set to set. [. . .]



Is ZF a hack? 3

is needed to phrase the ZF axioms) is already ‘given’. The question that this
paper wants to answer is ‘how many concepts are needed to tell the whole story
of ZF, without sweeping anything under the rug?’ (and the answer turns out to
be thirty-one, as is shown in Section 3.1.)

1.2 Approach

ZF distinguishes between a logic level and a set level, while HOL does not.
Therefore, one would expect the HOL system to be the simpler of the two (of
course it is also less powerful mathematically.) To investigate this, I wrote an
Automath context both for ZFC and for HOL Light (of the HOL systems this
system has the cleanest ‘kernel’.) To my surprise, although the HOL context
turned out to have less ‘primitive notions’ than the ZFC context, it was bigger.
So ZF is not that much of a hack after all!

Then I wanted to know how these two contexts compare to type theory. I
did not expect to be able to represent the rules for the inductive types of Coq
in Automath (there does not even seem to be a publication in which they are
stated precisely.) Instead I wrote a context for the MLWext system, after a paper
by Peter Aczel [1]. This context turned out to be much bigger than both the
ZFC and the HOL context, in all respects.

Then I decided to extend my collection of Automath contexts to even more
foundational systems, to turn it into a ‘comparative review of foundations of
mathematics.’ The result is this paper.

To summarize the approach followed: for each foundations of mathematics I
constructed a context in a logical framework. This context was intentionally kept
as close as possible to some given presentation from the literature (in all cases
I used a presentation of the system ‘in a few pages’.) Then I computed some
statistics of these contexts to compare the ‘complexity’ of the different systems.

One might expect that there is a lot of variation possible in the encoding of
a foundational system as an Automath context. However, it was my experience
that it does not feel like one has that many choices if one follows a given presen-
tation. It feels like there is only one simple way to do it. So if it is claimed here
that a system ‘needs 25 primitive notions’, I would be surprised if a variation on
the encoding would differ more than only one or two from that.

For convenience I used Automath as a logical framework, but the contexts
also are valid in the logical framework LF/λP . It is well-known that Automath
can be used as a logical framework: N.G. de Bruijn called it the ‘Automath
restaurant’. He compares intuitionistic mathematics to kosher food: just like in
a non-kosher restaurant one might be able to order kosher food, one can ‘order’
constructive mathematics in Automath by working in an appropriate context.
This paper is like the menu of the Automath restaurant.

In the contexts from this paper we use higher order abstract syntax (HOAS).
This means that bindings in the object logic are encoded by bindings in the
framework. For this reason, we do not have to deal with variable names or de
Bruijn indices. More importantly it means that we never will have to model the
contexts of the object logic: the Automath contexts will take care of that for



4 Freek Wiedijk

us. This is the main respect in which the Automath rendering of our source
texts deviates from the originals. Often there is quite some talk in these texts
about contexts Γ , which is ignored completely in the Automath version. Another
deviation caused by our use of HOAS is that instantiation often does not need
a primitive notion, as the Automath binding will take care of that as well.

My personal philosophy of mathematics is that of ‘full-blooded’ Platonism (when
I do not think too hard about it), or that of fictionalism (when I do). Of course as
Mark Balaguer explains in [2] both are basically the same thing, and fictionalism
is just a fancy name for formalism.

Another aspect of my philosophy of mathematics: I do not like constructive
mathematics very much (apparently my taste runs towards Platonist fiction.)
According to Bas Spitters this is strange. He claims that a formalist should not
mind which formal system he is using. And in some sense he is right! When I look
at the contexts from this paper, the Platonist one of ZFC does not seem very
different to me, emotionally, from the constructivist one of MLWext. (Of course
some constructivists probably will think that encoding the rules of constructive
mathematics as a formalist system misses the point entirely in the first place.)

1.3 Related Work

Contexts for logical systems are the subject of the field of logical frameworks.
See [11] for an overview of this field. Popular systems for formalizing logics in a
logical framework are Twelf [12] and Isabelle [10].

1.4 Contribution

The contexts that we present here are nothing special, as far as modeling logics
in a logical framework go. The main differences with other work are:

– the use of the Automath system as the logical framework;
– the attempt to model the contexts as closely as possible to a given informal

presentation of the system;
– the comparison in a quantitative way, by collecting statistics about the con-

texts.

1.5 Outline

This paper is organized as follows. We start in the next section by presenting
a small Automath context – for first order predicate logic – in full detail. The
other contexts will not be given explicitly, but will just be summarized. For the
ZFC and HOL contexts there will be a full list of the primitive notions in the
context. For the other contexts there will be just a table of counts and a list of
Automath types.

The contexts are grouped according to paradigm. The set theory contexts are
in Section 3. The contexts based on higher order logic are in Section 4. The type
theory contexts are in Section 5. The category theory context is in Section 6.



Is ZF a hack? 5

2 FOL: first order predicate logic

Here is an Automath context for first order logic:

the types

* prop : TYPE := PRIM

* [a:prop] proof : TYPE := PRIM

* term : TYPE := PRIM

first order formulas

* false : prop := PRIM

a * [b:prop] imp : prop := PRIM

* [p:[z,term]prop] for : prop := PRIM

* [x:term][y:term] eq : prop := PRIM

a * not : prop := imp(a,false)

natural deduction

b * [_1:[_,proof(a)]proof(b)] imp_intro : proof(imp(a,b)) := PRIM

b * [_1:proof(imp(a,b))][_2:proof(a)] imp_elim : proof(b) := PRIM

p * [_1:[z,term]proof(<z>p)] for_intro : proof(for(p)) := PRIM

p * [_1:proof(for(p))][z:term] for_elim : proof(<z>p) := PRIM

a * [_1:proof(not(not(a)))] classical : proof(a) := PRIM

x * eq_intro : proof(eq(x,x)) := PRIM

y * [q:[z,term]prop][_1:proof(eq(x,y))][_2:proof(<x>q)]

eq_elim : proof(<y>q) := PRIM

(This context is part of the contexts for the foundations built on first order
predicate logic. It is the start of the ZFC and NF set theories in Section 3, and
– with minor modifications to get many-sorted logic – of McLarty’s axiomatic
treatment of category theory in Section 6.)

We will summarize Automath contexts like this one in two ways. First, we
will present the counts of the primitive notions (those are the Automath notions
of which the body of the definition is PRIM) in a table:

the types 3
first order formulas 4
natural deduction 7

total 14

Second, we will focus on the Automath TYPEs in the context (because they are
the most interesting part of it.) We will show them in the following style:



6 Freek Wiedijk

prop

[prop] proof

term

This means that prop is a type without any arguments (it represents the first
order formulas), that proof is a type that takes one argument of type prop

(it represents the provability of its argument: the type is inhabited if and only
if the formula is provable) and that term is also a type without arguments (it
represents the first order terms).

3 Set theories

3.1 ZFC: Zermelo-Fränkel set theory with the Axiom of Choice

The ZFC context is based on Henk’s napkin that was shown in Section 1.1. It
contains thirty-two primitive notions (thirty-one for ZF plus one for AC):

first order logic
1. propositions
2. proofs
3. sets
4. ⊥ false
5. → implication
6. ∀ universal quantifier
7. = equality
8. ∈ element predicate
9. →I implication introduction

10. →E implication elimination (modus ponens)
11. ∀I universal quantifier introduction
12. ∀E universal quantifier elimination
13. classical logic (excluded middle)
14. reflexitivity of =
15. substitution property of =
definition by cases
16. definition by cases
17. definition by cases axiom
set theory
18. ∅ empty set
19. {x, y} pair set
20.

⋃
x union

21. F“x replacement operation
22. Px power set
23. ω infinity



Is ZF a hack? 7

the axioms
24. extensionality
25. foundation
26. empty set axiom
27. pair set axiom
28. union axiom
29. replacement
30. power set axiom
31. axiom of infinity
choice
32. AC axiom of choice

So these are the concepts that one has to explain to introduce ZFC. One might
object to the duplicate appearance of the notions corresponding to Henk’s six
operations (items 18–23 and items 26–31). But I think it is fair to distinguish
between the empty set (labeled ‘∅’) and the empty set axiom (labeled ‘empty
set axiom’). It is analogous to distinguishing between the logical operations as
formula constructors, and their natural deduction rules as proof constructors.

The definition by cases construction is needed to be able to derive the com-
prehension axiom from the replacement axiom. One can shift things around a
bit, for instance one can have the comprehension axiom as primitive notion and
then derive the definition by cases from that, but that does not make much of a
difference in the complexity of the context. The solution that is presented here
seems reasonable to us.

To summarize this ZFC context we have the following counts:

first order logic 15
definition by cases 2
set theory 6
the axioms 8
choice 1

total 32

and the following types:

prop

[prop] proof

set

These types are items 1–3 from the list. Of course they are just the types for the
encoding of first order logic from the previous section. The reason that in the
previous section there were only 14 primitive notions for first order logic while
here there are 15, is that we here have the ∈ predicate as well.

3.2 NF: Quine’s set theory of New Foundations

The NF context is based on an e-mail explanation of that system by Randall
Holmes. It has the following counts:



8 Freek Wiedijk

first order logic 15
stratification levels 3
stratified formulas 14
new foundations 5

total 37

and the following types:

prop

[prop] proof

set

nat

prop’

[nat] set’

[prop][prop’] same_prop

[n:nat][set][set’(n)] same_set

[prop] axiom_scheme

The first three types are those of first order logic, like before. The type nat holds
the natural numbers, for the stratification levels. The types prop’ and set’ are
for the representation of stratified first order formulas. These stratified formulas
are just syntactic objects, there is no deduction system for them in the context.
An example of a constructor of prop’ is the stratified version of the universal
quantifier:

* [n:nat][p’:[z’,set’(n)]prop’] for’ : prop’ := PRIM

The types same_prop and same_set together represent the judgment that a
formula corresponds to some stratified counterpart. For instance the constructor
of same_prop for the universal quantifier is:

n * [p:[z,set]prop][p’:[z’,set’(n)]prop’]

[_1:[z,set][z’,set’(n)][_:same_set(n,z,z’)]same_prop(<z>p,<z’>p’)]

same_for : same_prop(for(p),for’(n,p’)) := PRIM

(Randall Holmes made the observation that one can avoid the same_set predi-
cate by having for each n a function from set to set’(n). Taking this alternative
approach would hardly change the complexity of the context.)

Finally the axiom_scheme type represents the judgment that a formula is an
instance of the NF comprehension axiom. This is needed because the same_prop
judgment only works for closed formulas. But to get the full power of the system,
NF comprehension also needs to be there for formulas that have free variables. So
the axiom_scheme judgment is used to put sufficiently many universal quantifiers
around the axiom first to turn it into a closed formula.



Is ZF a hack? 9

4 Systems based on higher order logic

4.1 Isabelle/Pure

The first half of the context for the Isabelle/Pure logic is based on slides by
Stefan Berghofer [4]. Later I discovered Section 5.2 of [10]. The equality rules
have been modeled after the deduction rules from that section.

The Isabelle/Pure context has the following counts:

meta logic 8
proof terms 5
equality 10

total 23

and the following types:

type

[type] term

[term(prop)] proof

These types are the equivalents for higher order logic of the types for first order
logic from Section 2. But note that the prop and term types have been unified
by having a prop object of type type.

4.2 HOL Light

The HOL Light system [5] has a very elegant logical kernel. This makes it very
obvious what should be in a context that corresponds to the system.

In fact, for each primitive notion in the HOL Light context we can give an ML
expression that corresponds to it. In the following list we give these expressions
together with their ML types:

type.ml

1. hol_type type
2. ‘:bool‘ hol_type

3. ‘:A->B‘ hol_type

term.ml

4. term type
5. Comb term × term → term

6. Abs term × term → term

7. ‘(=)‘ term

thm.ml

8. thm type
9. REFL term → thm

10. TRANS thm → thm → thm



10 Freek Wiedijk

11. MK_COMB thm × thm → thm

12. ABS term → thm → thm

13. BETA term → thm

14. EQ_MP thm → thm → thm

15. DEDUCT_ANTISYM_RULE thm → thm → thm

16. new basic type definition hol_type

17. abs term

18. rep term

19. ⊢ abs(rep(a)) = a thm

20. ⊢ P (r) = (rep(abs(r)) = r) thm

num.ml

21. ‘:ind‘ hol_type

22. INFINITY_AX thm

class.ml

23. ETA_AX thm

24. ‘(@)‘ term

25. SELECT_AX thm

The items are headed with the names of the HOL Light source files in which
they are implemented. Note that the ten basic HOL Light inference rules (see
Section 5.3 of [5]) are only 7 of the 25 primitive notions (items 9–15).

To summarize the HOL Light context we have the following counts:

type.ml 3
term.ml 4
thm.ml 13
bool.ml 0
num.ml 2
class.ml 3

total 25

and the following types:

type

[type] term

[term(bool)] thm

(Apart from the names – prop is called bool here, and proof is called thm –
these are exactly the same types as the ones in the Isabelle/Pure context.)

5 Type theories

5.1 CC/λC: the Calculus of Constructions in the form of a Proper
Type System

The context for the calculus of constructions is based on a tutorial paper about
proper type systems by Henk Barendregt [3]. It has the following counts:



Is ZF a hack? 11

terms 4
specifications 3
judgments 2
equality 7
proper type system 5
λC sorts 4
λC axioms 1
λC rules 4

total 30

and the following types:

pterm

[pterm] sort

[pterm][pterm] axiom

[pterm][pterm][pterm] rule

[pterm][pterm] in

[pterm][pterm] eq

The type pterm is the type of pseudo-terms. The next three types encode the
information about the proper type system: the type sort(s) is inhabited when
s is a sort of the PTS, the type axiom(c,s) is inhabited when c : s is an axiom
of the PTS, and the type rule(s1,s2,s3) is inhabited when (s1, s2, s3) is a rule
of the PTS. The type in(A,B) encodes the judgment A : B. Finally the type
eq(A,B) represents A =β B.

It might seem strange that the λC PTS has two sorts (∗ and �), while there
are four primitive notions about the λC sorts in the list. These four notions are:

* star : pterm := PRIM

* box : pterm := PRIM

* sort_star : sort(star) := PRIM

* sort_box : sort(box) := PRIM

5.2 ECC: Luo’s Extended Calculus of Constructions

The context for the extended calculus of constructions ECC is based on the
original paper about the system [6]. It has the following counts:

universe levels 3
terms 10
conversion 12
type cumulativity 8
inference rules 13

total 46

and the following types:



12 Freek Wiedijk

omega

pterm

[pterm][pterm] eq

[pterm][pterm] sub

[pterm][pterm] in

The type omega holds the natural numbers used to encode the universe levels.
The type pterm is for the ECC terms. The types eq(A,B), sub(A,B) and
in(A,B) represent respectively A ≃ B, A � B and A : B (see p. 2 of [6] for the
meaning of those symbols.)

5.3 MLWext: extensional Martin-Löf type theory with W-types but
no type universes

Originally we tried to formalize Martin-Löf type theory from the standard ref-
erence about the subject [9], but there the rules are scattered throughout the
book. Then we found a very nice paper by Peter Aczel [1], that gives the rules
of the system compactly in a few pages (pp. 7–9) and even has a nice three
letter acronym for the system, so that type theory’s MLW can share this kind
of identification with set theory’s ZFC.

The context for MLWext has the following counts:

terms 1
judgments 4
equality rules 8
congruence rules 2
the empty type 4
the unit type 7
the Booleans 13
product types 9
sum types 11
W-types 8
extensionality 10

total 77

and the following types:

pterm

[pterm] type

[pterm][pterm] eq_type

[pterm][pterm] in

[pterm][pterm][pterm] eq_in

The first type is for pseudoterms. The latter four types are the four basic judg-
ments of Martin-Löf type theory (see Section 4.1 of [9]):

A set
A = B

a ∈ A

a = b ∈ A



Is ZF a hack? 13

In [1] these judgments are written (see the description of pseudobody on p. 3) as:

M type

M1 = M2

M0 : M

M1 = M2 : M

Our Automath specifications of type theory all use a type for pseudoterms. This
means that it is possible to write Automath terms that are well-typed in the
Automath sense (they have type pterm) but that do not correspond to terms
that are well-typed in the type theory. The judgments are then used to encode
what it means for a pseudoterm to be well-typed in the type theory itself.

An alternative would be to put the type theory types in the Automath types
themselves, similar to the way that the types are encoded in the higher order
logic contexts. This would lead to the following types:

type

[type] term

[type][type] eq_type

[A:type][term(A)][term(A)] eq

However, this is less faithful to the usual descriptions of type theory. If one uses
such an encoding, then conversion needs an explicit Automath function in the
terms. Thorsten Altenkirch explained to me that addition of such a function to
a system necessitates the addition of several extra rules. Alternatively one might
replace the equality of type theory (where both sides have the same type) by
John-Major equality [7]. This would lead to the the following set of types:

type

[type] term

[type][type] eq_type

[A:type][B:type][term(A)][term(B)] eq

Note that replacing the judgment a = b ∈ A by the judgment a ∈ A = b ∈ B

would be a significant departure from traditional Martin-Löf type theory.

6 Category theory

6.1 McLarty’s axiomatization of a well-pointed topos with natural
numbers and choice

The context for category theory as a foundations of mathematics is based on
an e-mail message [8] by Colin McLarty to the FOM mailing list. It has the
following counts:



14 Freek Wiedijk

many-sorted first order logic 15
category theory 8
terminal object and cartesian products 9
non-trivial Boolean topos 10
natural numbers 1
well-pointed topos with choice 2

total 45

and the following types:

prop

[prop] proof

sort

[sort] elt

These types are a variation on the types of Section 2, for many-sorted first order
logic. Instead of term the rules use elt(s), with s a sort of the system. The
two sorts of category theory then are introduced by the rules:

* object_sort : sort := PRIM

* arrow_sort : sort := PRIM

* object : TYPE := elt(object_sort)

* arrow : TYPE := elt(arrow_sort)

Apart from the rules for many-sorted first order logic, this context is just a long
list of axioms.

7 Conclusion

7.1 Discussion

The conclusions of this paper are that:

All these foundational systems have roughly the same complexity.

and:

The number of primitive concepts in these systems is bigger
than one would expect.

To support the first claim we have put the statistics of the contexts for these
systems in three bar diagrams (Fig. 2–4). The conclusions from that are the
following. Set theory is not as simple as one might expect (it needs 32 concepts!),
but it still is one of the simplest foundations. Therefore the answer to the question
in the title of this paper seems to be: ‘ZF might be a hack, but we do not have
anything better.’ Type theory – that is, the calculus of constructions written as
a PTS – is still simpler, but if one wants to extend it to a serious system in which
one really can do all mathematics, it becomes much more complex. Finally, HOL
is the simplest system if one only looks at the number of concepts needed.



Is ZF a hack? 15

FOL
set theory

ZFC
NF

higher order logic
Pure
HOL

type theory
CC

ECC
MLW

category theory
Topos

Fig. 2. Comparing systems according to the number of primitive notions

FOL
set theory

ZFC
NF

higher order logic
Pure
HOL

type theory
CC

ECC
MLW

category theory
Topos

Fig. 3. Comparing systems according to the (compressed) size of the specification



16 Freek Wiedijk

FOL
set theory

ZFC
NF

higher order logic
Pure
HOL

type theory
CC

ECC
MLW

category theory
Topos

Fig. 4. Comparing systems according to the size of the λ-term

Of course one should note that we are not comparing exactly matching sys-
tems here: some of these systems have classical logic and the axiom of choice,
while others do not. And one might argue that Isabelle/Pure and the (extended)
calculus of constructions are too poor to encode mathematics in a reasonable way
by itself,2 for which reason their bars have been grayed in the figures. We sum-
marize all this in the following table (the ‘◦’ in the row of NF means that NF
disproves the axiom of choice):

classical choice ‘all math’
FOL •
ZFC • • •
NF • ◦ •
Pure
HOL • • •
CC
ECC
MLW •
Topos • • •

Adding classical logic or choice to a system generally does not make a big dif-
ference, though. Generally such an addition involves only one extra primitive
notion, and only a few lines of Automath text.

Some remarks about the sizes of these contexts. The NF context is small (if
one disregards the gray bars it is the smallest in two out of three categories),

2 The calculus of constructions cannot prove all equalities that one would like to have.
This is obvious from the existence of the proof irrelevance model, which shows that
0 6= 1 is not provable.



Is ZF a hack? 17

so it seems an attractive foundation. Unfortunately its consistency strength is
unknown.3

The Isabelle/Pure and HOL Light logics are very similar, but the HOL Light
context is much larger. This is because it is a full context for mathematics
(while Isabelle/Pure is not) including infinity and choice: to introduce these
two concepts some logic needs to be developed, which is a sizable part of the
specification. Also, in the HOL Light context really the whole story is present,
including the type definition mechanism. The Isabelle/Pure context represents
only an abstracted version of the Isabelle system.

The second conclusion of this paper is that these contexts are more complex
than one would expect. The smallest serious one (HOL Light) has 25 primi-
tive notions. Naively one would hope to be able to build all mathematics from
something like about 10 notions. A list of 25 items sounds like a long list! (The
‘standard model’ of elementary particle physics – the foundations of physics –
has a list of 18 unexplained dimensionless numbers. This always struck me as a
large number. But foundations of mathematics is even worse!)

A reader comments: After Thorsten Altenkirch read this paper his reaction was:

I can’t help making the obvious comment that simplicity can’t be measured
by size. Actually, I often find that the contrary is the case that simpler
systems are slightly longer than more complicated ones.
E.g. if you look at some of these obfuscated C-programs which are very
short but doing something very subtle (people sometimes put them into
their sigs), would you call them ‘simple’? Are those not precisely what
people call a ‘hack’?
I mean I think it is a good idea to look for something which short and
simple. And obviously length can be more easily measured than simplicity.
It is just that you say we measure the size to find out which one is
simplest.

For the record: I agree with Thorsten that simple and short are not the same
thing. (I had a remark about this, but somehow it did not survive my editing
the paper.) So I now put Thorsten’s comment in, to address the point.

Please note that I did not try to make the contexts as small as possible by
‘obfuscating’ them. In each case I tried to keep as close to the original ‘informal’
description of the system as I could. For instance, it is easy to reduce the number
of ZFC axioms by putting them all in one big conjunction. I certainly did not
do this.

3 The consistency strengths of NFU (‘NF with urelements’), and of NFU with choice
and infinity added, are known. Both are weaker than ZFC. Bob Solovay told me that
the first has a consistency strength strictly between I∆0 +Exp and I∆0 +SuperExp,
while the second has the same consistency strength as HOL Light.



18 Freek Wiedijk

7.2 Future work

There are several things that can be done with this:

– One can try to prove these contexts adequate. It is easy to show that the
various systems can be represented in their contexts as presented here, but
one also has to show that it is not possible to derive something in the con-
text – maybe by using the strength of the logical framework – which is not
derivable in the system itself. (Whether this is the case also might depend
on the framework itself: potentially LF/λP might be able to derive less in
the same context than the Automath framework ∆Λ.)
While interesting, the adequacy of the contexts is not relevant for this paper.
The goal here is to estimate the complexity of the foundational system. Even
if a context is not adequate, it probably gives a good impression of the
complexity of the corresponding system.

– One can build ‘De Bruijn criterion’ style checkers based on these contexts.
Automath then would be an independent checker for formal mathematics
formalized in one of these systems.
For instance one could have HOL Light generate a stream of correct Au-
tomath definitions when doing its proofs. This is closely related to the first
kind of HOL to Coq translation described in [13].

– More foundational systems might be represented in the style of this paper.
Possible candidates are von Neumann-Bernays-Gödel and Morse-Kelley set
theory, Church’s original version of higher order logic, and Russell’s theory
of ramified types.

– The fact that these contexts need so many primitive notions is philosoph-
ically unsatisfactory. A system should be looked for that is equivalent to
ZFC, but is less complex than the systems presented here. Such a system
then would be less of a hack than ZF.

Acknowledgments. Thanks to Thorsten Altenkirch for advice on MLW. Thanks
to Herman Geuvers for explaining to me why the calculus of constructions by
itself is not enough for all of mathematics. Thanks to Dan Synek and Bas Spitters
for putting up with my ravings about my collection of contexts. Thanks to
Randall Holmes for advice on NF.

References

1. Peter Aczel. On Relating Type Theories and Set Theories. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs, Proceedings
of Types ’98, volume 1657 of LNCS. Springer-Verlag, 1999. 〈http://www.cs.man.
ac.uk/∼petera/ts-st.ps.gz〉.

2. Mark Balaguer. Platonism and Anti-Platonism in Mathematics. Oxford University
Press, 1998.

3. Henk Barendregt. Problems in type theory. In U. Berger and H. Schwichtenberg,
editors, Computational Logic, Proceedings of the NATO Advanced Study Institute
on Computational Logic, held in Marktoberdorf, 1997, volume 165 of Series F:



Is ZF a hack? 19

Computer and Systems Sciences. Springer-Verlag, 1999. 〈ftp://ftp.cs.kun.nl/
pub/CompMath.Found/marktoberdorf.ps.Z〉.

4. Stefan Berghofer. New features of the Isabelle theorem prover – proof terms and
code generation, 2000. 〈http://www4.in.tum.de/∼berghofe/papers/TYPES2000
slides.ps.gz〉.

5. John Harrison. The HOL Light manual (1.1), 2000. 〈http://www.cl.cam.ac.uk/
users/jrh/hol-light/manual-1.1.ps.gz〉.

6. Zhaohui Luo. ECC, an extended calculus of constructions. In Proceedings 4th
Annual IEEE Symp. on Logic in Computer Science, LICS’89, Pacific Grove, CA,
pages 386–395, Los Alamitos, CA, 1989. IEEE Computer Society Press. 〈http:
//www.dur.ac.uk/∼dcs0zl/LICS89.ps.gz〉.

7. Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD
thesis, University of Edinburgh, 1999. 〈http://www.dur.ac.uk/c.t.mcbride/
thesis.ps.gz〉.

8. Colin McLarty. Challenge axioms, final draft. Message 〈199802061421.
JAA28643@po.cwru.edu〉 as sent to the FOM mailing list, 〈http://www.cs.nyu.
edu/pipermail/fom/1998-February/001181.html〉, 1998.

9. Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf ’s Type Theory, An Introduction. Oxford University Press, 1990. 〈http://www.
cs.chalmers.se/Cs/Research/Logic/book/book.ps〉.

10. L.C. Paulson. The Isabelle Reference Manual, 2003. 〈http://isabelle.in.tum.
de/doc/ref.pdf〉.

11. Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov, edi-
tors, Handbook of Automated Reasoning, chapter 17, pages 1063–1147. Elsevier Sci-
ence Publishers, 1999. 〈http://www-2.cs.cmu.edu/∼twelf/notes/handbook00.
ps〉.

12. Frank Pfenning and Carsten Schuermann. Twelf User’s Guide, Version 1.4, 2002.
〈http://www-2.cs.cmu.edu/∼twelf/guide-1-4/twelf.ps〉.

13. F. Wiedijk. Encoding the HOL Light logic in Coq. 〈http://www.cs.kun.nl/
∼freek/notes/holl2coq.ps.gz〉, 2002.


