1 Project info

la) Project Title: Fault-tolerant Real-time Algorithms Analyzed Incrementally
1b) Project Acronym: FRAAI

1c) Principal Investigator: prof.dr. F.W. Vaandrager

2 Summary

In many application domains there is a strong dependency on computing systems and the avail-
ability of a continuous service is often extremely important. Most of these systems are designed
to be fault-tolerant.

The enormous complexity of the algorithms that achieve fault-tolerance makes it impossible
to obtain sufficient confidence in their correctness just by informal inspection. Formal methods
have been applied successfully to validate smaller examples, but it is evident that more research
is needed to be able to handle large examples.

In practice, typically an incremental approach is followed. One starts with a (relatively)
simple algorithmic problem, for instance including only some simple failures, and, after a solution
for this problem has been verified, one gradually (1) weakens the failure hypothesis, and/or (2)
strengthens the specification by adding requirements. The incremental approach is often quite
successful because the same arguments that ensure correctness of the basic algorithm remain
(more or less) valid for the more complex versions. The aim of this project is to formalize this
type of reasoning: we want to develop theory which allows us to reuse formal correctness proofs
of simple fault-tolerant algorithms within proofs of more complex ones.

3 Classification

6.5, 1.3, 1.2

4 Composition of the Research Team

The next table specifies the persons directly involved in this project, which will be carried out
within the group Informatics for Technical Applications (see http://www.cs.kun.nl/ita/) at
the University of Nijmegen (KUN), the Netherlands. Prof. Vaandrager will act as promotor of the
PhD student.

Name Specialism hrs/week
prof.dr. F.W. Vaandrager = automata based verification, embedded systems 4
dr. J.J.M. Hooman assertional verification, PVS 2
drs. H.C.W. Kuppens scientific programmer 8
NN (Project PhD student) protocol verification 40

5 Research School

The research in this project will be carried out in the context of research school IPA (Institute for
Programming research and Algorithmics).



6 Description of the Proposed Research

6.1 Problem Statement

In many application domains there is a strong dependency on computing systems and the avail-
ability of a continuous service is extremely important. Examples include process control, aircraft
control, telecom applications and on-line transaction processing (e.g. stock exchange). Failures of
hardware and software components are, however, unavoidable. Hence most of these systems are
designed to be fault-tolerant. For instance, special algorithms are used to detect errors, minimize
loss of services due to failures, and to recover from component failures.

In general, there is a hierarchy of distributed algorithms that provide a certain real-time and
fault-tolerant service (see, e.g. [Cri89b]). For instance, starting from a network of processors with
local clocks and a simple communication mechanism, there are distributed algorithms that ensure
synchronized clocks. Based on that, a more powerful communication mechanism, such a atomic
broadcast, can be implemented. This mechanism can then be used to implement certain agreement
algorithms, e.g. to reach a consistent view on the set of correct processors which can be used to
redistribute workload.

Since such a stack of algorithms/protocols may form the basis for numerous critical applica-
tions, correctness is often vitally important. However, the combination of distribution, local clocks,
real-time, and fault-tolerance makes it extremely difficult to guarantee that these algorithms in-
deed provide to the required services. Observe that real-time and fault-tolerance are intertwined;
timing information is often used to detect errors and redundancy introduced for fault-tolerance
influences the real-time behavior of the system. Moreover, when recovery from failures is impor-
tant, one also has to reason about different types of memory; volatile memory has fast access but
might get lost during crashes, so an essential part of the state has to kept in stable memory.

This complexity makes it impossible to obtain sufficient confidence in the correctness of these
algorithms just by informal inspection, especially due to the possibility of the combination of
failures. Formal methods have been applied successfully to validate smaller examples. But even
though in the literature various methods have been proposed to break down the verification task for
these protocols into manageable subtasks (stepwise refinement, compositionality, communication
closed layers, abstract interpretation,..) and even though there has been enormous progress in
the area of tool support (model checkers, theorem provers,..) it is evident that more research is
needed to be able to formally verify these large and complex algorithms.

6.2 Approach

The proposed project aims to address the above problem along three lines:

1. Theory
In particular, we aim at results that permit incremental verification of fault-tolerant algo-
rithms (or, more generally, reactive systems).

2. Tools
Strong tool support is indispensable when dealing with complex systems. We emphasize the
use of theorem provers, although model checkers and simulation tools will play a valuable
role in the exploration phase.

3. Applications
Since scalability of the proposed method is a key issue, we will evaluate our ideas on a
number of complex fault-tolerant algorithms which also include some recovery possibilities.

Below, we will elaborate on these three research lines.

6.2.1 Theory

Complex fault-tolerant algorithms and protocols are typically structured in terms of a number
of layers, built on top of each other as for instance in the ISO OSI protocol hierarchy [Tan81].



Within each individual layer, one can often identify a number of sequential phases. Over the last
two decades, much theory has been developed which allows one to exploit this type of overall
structure of reactive systems in the process of formal verification. Roughly speaking, the theory
of stepwise refinement [AL91, LV95, RE9S] allows one to deal with each layer separately, whereas
the theory of communication closed layers [JPXZ94] makes it possible to analyze separately the
phases within each layer. But even though in this way one can break down the huge complexity
of realistic fault-tolerant systems, the complexity of the remaining parts is often still enormous.

In practice, typically an incremental approach is followed in both the design and verification
of complex distributed algorithms. One starts with a (relatively) simple algorithmic problem, for
instance including none or only some simple failures, and, after a solution for this problem has been
designed and verified, one gradually (1) weakens the failure hypothesis, and/or (2) strengthens the
specification of the algorithm by adding requirements. Thus, for example, one may attempt to deal
with additional classes of failures, establish graceful degradation in the case of too many failures,
increase performance, consider additional protocol services such as the detection of undesired loops
in the network topology, etcetera. The incremental approach is often quite successful because the
same arguments that ensure correctness of the basic algorithm remain (more or less) valid for the
more complex versions. The aim of the proposed project is to formalize this type of reasoning:
we want to develop theory which allows us to reuse formal correctness proofs of simple algorithms
within proofs of more complex algorithms.

Basically, we have the following picture:

AlgorithmA 1 SpecificationA
Lo L3

AlgorithmB 4 SpecificationB

If both algorithms and specifications are represented as automata then ; and 4 denote behavior
inclusion; this approach is for instance taken in the I/O automata framework [LT87, Lyn96]. If
both algorithms and specifications are represented as logic formulas, then C; and 4 simply
denote logical implication; this is the TLA approach [Lam94, Lam99]. Finally, if algorithms
are represented as automata and specifications as logic formulas, then —; and 4 correspond to
logical satisfaction (|=); this is for instance the approach of Manna and Pnueli [MP92, BBC100].
Depending on the types of their arguments, also relations Co and T3 may correspond to behavior
inclusion, logical implication or satisfaction, but this is not necessary. If, for instance, AlgorithmB
is obtained from AlgorithmA by introducing more failures, then actions of AlgorithmB may be
executed several times only partially and we have no classical refinement. Also, in the case of new
failures it is often allowed to maintain a weaker service. In such a case there will be no refinement
relation between SpecificationB and SpecificationA. Still, our goal will always be to reuse the proofs
of C1, Co and [C3 in the proof of relation 4. Possible ways to achieve this are

e Formulate restrictions under which extensions remain to satisfy the original spec (e.g. be-
cause new failures are “undone” such that a good state is obtained).

e Find a suitable reformulation of refinement, e.g. by making a distinction between correct
actions (that should correspond to actions of earlier levels) and actions from which on has
to recover and shown that their effect has been undone.

e Represent proofs in a clear and inspectable way such that it is easy to check where dis-
turbances can be expected (and repaired) by new failures. A proof representation which is
particularly promising is the notion of a (generalized) verification diagram [MP95, Lam95,
MBSU98, BBC*T00].

Another theoretical question that we would like to address within the project, less important
but still worth mentioning, concerns the choice of suitable representations of the algorithms. Here
several points are relevant. First one wants to choose a representation close to the informal for-
mulation. E.g. protocols are often represented in some form of pseudo code or as a state machine



(automaton), whereas properties of communication media of the effect of failures are often more
closely represented by some logical assertion. To get more confidence in the assertional spec, it
might be beneficial to formulate an equivalent automaton, thus also establishing consistency. For
verification purposes, it might be convenient to switch from one representation to the other. In
general, theoretical results indicate that it should be possible to move from one representation to
the other but that in different situations the one or the other might be more concise. Concerning
the representation, we would like to combine our mutual expertise in the field of protocol verifica-
tion, combining assertional and automata approaches. Note that both approaches are state-based.

6.2.2 Tools

As pointed out by Wolper in his inaugural speech, manual verification is at least as likely to be
wrong as the program (or algorithm) itself. To manage the complexity of verification, tool support
is therefore indispensable. Different tools are needed at various places of the verification process.
Even though it is our explicit aim to use existing tools as much as possible, some work will have
to be done to link existing tools to each other, to extend these tools with new features, and to
write interfaces to make the interaction with the tools more efficient. Based on our experience
within the VHS project, see for instance [BHV00, BFHT01b, BFHT01a, HRSV01], we believe that
in order to get the required work done, 0.2 fte support of an experienced scientific programmer
is required. The research related to tools will mainly be a matter of engineering: find the most
suitable combination of existing tools for different phases of the verification. Below we list a
number of different classes of tools that we will probably use during different stages of the project.

Model checking If a system is finite-state, arbitrary temporal properties can be automatically
established or refuted, using explicit-state or symbolic model checking [CGP99]. Even though
distributed fault-tolerant real-time algorithms typically are highly parameterized and infinite state,
we expect that it will be useful, during the so-called exploration phase, to construct finite-state
instances of these algorithms that can be model checked to search for bugs, and that can be used
for simulation. This will help in getting more confidence in the understanding and modeling of
the dependable systems. Within our group we have extensive experience with a number of model
checkers, such as Uppaal [BGKT96], HyTech [HH95] and Spin [Hol91].

Deductive verification After the exploration phase we move to more realistic models with
larger data-dependency (e.g. for recovery there are often rather complex data structures in stable
memory), and intend to use theorem-proving. For various reasons (support of higher-order logic,
powerful prover,..) we will probably use PVS [ORSH95].

Verification diagrams Verification diagrams provide a high-level, graphical representation of
the proof of a (temporal) property [MP95, Lam95, MBSU98, BBCT00]. By means of an algorithmic
procedure it can be checked that the diagram indeed proves the property at hand. Verification
diagrams have been implemented very nicely in the Stanford Temporal Prover STeP [BBCT00].
Although we will certainly benefit a lot from the work in STeP, we are not planning to use this
tool in the main case studies of our project, mainly because (a) the assertion language of STeP is
based in first-order logic; we believe that in order to deal with complex fault-tolerant distributed
algorithms we need the expressivity and flexibility of higher-order logic, and (b) thus far, STeP
does not support stepwise refinement; we believe stepwise refinement is essential in an incremental
approach to verification. A consequence is that we will have to reimplement much of the work
on verification diagrams in the setting of PVS (possibly including an interface that can handle
verification diagrams). A difference is that we plan to develop verification diagrams for refinement
proofs, whereas STeP supports verification diagrams for proofs of temporal logic formulas.

Invariant generation Recently, some very promissing techniques have been proposed by which
simple invariants of the system being analyzed can be generated automatically [BLS96, BBM97].



We hope to be able to use the package for invariant generation that is currently implemented on
top of PVS at the University of Kiel, based on the approach of [BLS96].

6.2.3 Applications

Since scalability of the proposed approach is an important issue, we intend to evaluate our ideas
on an industrial fault-tolerant system. Although it is usually difficult to get a realistic case study
which is still interesting for industry, there are excellent opportunities to obtain such an example
in the current project. Prof.dr. Jeroen Bruijning of KPN Research (and part-time affiliated with
the University of Nijmegen), already expressed his strong interest in our project and proposed
an interesting case study. This concerns the TAPS/NODE distributed platform for high-speed
low cost transaction processing that recently became operational at PTT Telecom. Low costs are
partly realized by using a cheap platform, consisting of standard PC’s and a local area network.
However, such components impose strong requirements on the software to guarantee the expected
behavior despite failures of components. In the current system there is a task manager which
coordinates the tasks in the system, making sure that all data is correctly processed and recorded.
Fault-tolerance is insured by a number of measures, such as some two-phase-commit protocol,
a heartbeat algorithm to detect malfunctioning processors, and the use of checkpoints on stable
storage to be able to continue after recovery without the loss of much data. There is also a proto-
col for the atomic update of a table with task information at the coordinator. Note that also the
coordinator might crash and suitable data has to be stored on stable memory to allow fast recovery.

In addition to this large case study, we intend to study other individual algorithms that involve
fault-tolerance, especially recovery protocols. There are many sources for such protocols, see for
instance [Mul93] and the protocols of Cristian [Cri89a, Cri91, CASD95, Cri96]. Precise descriptions
of interesting protocols can also be found in [LMWF94, Lyn96]. Another source for interesting
algorithms is an extensive bibliography of fault-tolerant distributed computing by Coan [Coa90].

6.3 Related Work

An early example of a design approach allowing for “invalid” intermediate stages can be found in
the work of Dijkstra [Dij79] (for a more formal reconstruction, see [CKdR92]). A recent example
of an incremental design approach that also allows for invalid intermediate stages is [MBWBO01],
but in this work no attempt is made to reuse correctness proofs.

An early formal approach to the design of fault-tolerant systems can be found in the work
of Schlichting and Schneider [SS83], who propose an axiomatic program verification technique for
developing provably correct programs for fail-stop processors. Also Cristian [Cri84, Cri85] presents
an axiomatic approach based on extended Hoare triples to deal with the effects of faults. A
Hoare-style proof system for CSP-like programs with failures can be found in [JMS87]. In [LJ92] a
fault-free program is transformed into a fault-tolerant program, by applying a fault-transformation
(introducing failures) and a subsequent recovery transformation. This transformational approach
is applied to a resource allocation problem in [L.J94]. Some basic theory about faults in the context
of labelled transition systems can be found in a paper by Janowski [Jan94]. In [Jan97], the same
author introduces fault-monotonic bisimulations in the context of CCS. We are not aware of any
systematic approach to incremental verification, as we propose to develop in this project, although
it is clear that many of the ideas put forward in the above cited papers are relevant. Also the
large body of work on stepwise refinement [AL91, LV95, RE98] is clearly very relevant. A recent
piece of work that appears to be particularly relevant is [KKLS00], which proposes a technique for
incrementally constructing safety specifications, abstract algorithm descriptions, and simulation
proofs.

As far as we know, the fault-tolerant systems literature mentioned above has not been applied
to large examples and is not supported by tools. Nevertheless, several fault-tolerant protocols
have been verified with some form of tool support, but usually without much underlying theory.
For instance, the interactive theorem prover PVS has been used to verify several fault-tolerance



protocols in the domain of aircraft control, see [ORSH95] for a nice overview. Rushby [Rus97]
presents a more systematic approach for a particular class of fault-tolerant protocols. First the
algorithm is represented as a functional program and verified using PVS. Next it is transformed
into an untimed synchronous system, and finally into a time triggered implementation. We refer
to Section 6.2.2 for more references on tool support.

Our own background for this project is, among others, an assertional framework for the verifi-
cation of distributed real-time systems [Hoo91, Hoo96a]. It has been applied to real-time protocols,
first based on manual verification [Ho093, Hoo94| and later supported by the interactive theorem
prover PVS [Ho095, Hoo96b, KHR97]. This real-time framework has also been extended to deal
with fault-tolerant protocols, such as an atomic broadcast protocol [ZH95] and a membership
algorithm for a dynamically changing network of processors [Hoo97].

The formal study of fault-tolerance started in an earlier, finished, STW/SION project “Fault
Tolerance”. This has resulted in a compositional semantics for fault-tolerant real-time systems,
an the verification of a simple triple modular redundancy example [CH92, CH93]. Moreover a
trace-based compositional proof system for fault-tolerant systems has been devised [SH93, SH94].

Recently, concurrency control protocols have been proved to satisfy serializability. In [CHvdS99)
a systematic way to extend these protocols with new actions and control information. We show
that is such an extension satisfies a few simple correctness conditions, the new protocol is serial-
izable by construction.

Very related to the current project is recent work on the formal specification and mechanical
verification of atomic commitment protocols (ACP’s) for distributed database systems. Timed
state machines are used to specify the processes, whereas the communication mechanism be-
tween processes is defined using assertions. We verified a non-blocking ACP of Babaoglu and
Toueg [BT93a] with our own recovery algorithm, since we found an error in the recovery mecha-
nism of [BT93b]. The verification has been checked mechanically by means of PVS, but was in
general rather ad hoc, investigating the feasibility of such complex verifications. It, however, also
revealed the need for more underlying theory to be able to very more complex applications more
easily. Current work includes the verification of a new protocol combining concurrency control,
centralized recovery (transactions may abort) and distributed recovery (volatile memory may get
lost locally).

We also have much experience in the use of timed automata [AD94] and the I/O automata
framework of Lynch et al [LT87, Lyn96] for protocol verification. Some representative case studies
are [BPV94, DGRV00, GV98, HSV94, SV99a, SS00, Rom01]. Main themes in our research have
been the further development of stepwise refinement methods, the extension of the I/O automata
framework with real-time, hybrid and probabilistic features [LV96, SV99b, LSV01], and the fur-
ther development of model checking technology for real-time systems [Feh99, BHV00, BFH'01b,
BFH"01a, BFHT0lc, HRSVO1].

Finally, we expect to benefit from related projects in our group Informatics for Technical
Applications (ITA), see http://www.cs.kun.nl/ita/, at the University of Nijmegen. Our group
is well-known for its work on models and logics for specification and verification of state based
systems. Unique about the group is that it brings together specialists on three different and
important approaches in this area: I/O automata, Hoare’s logic, and coalgebras. The group has
developed into a recognised center of excellence for the application of model checking and theorem
proving technology, and has extensive experience with a large number of different verification
tools such as Uppaal, Spin, SMV, Isabelle, and PVS. We participate in the European LTR project
Verification of Hybrid Systems (VHS) and the European IST project VerifiCard. Relevant, for
instance, is the intensive and successful collaboration in the context of VHS with the Universities
of Aalborg and Uppsala, dealing with the extension and application of timed model checking
technology. We also mention the new STW project HaaST on the verification of hard and softly
timed systems in which methods and tools for timed and stochastic systems will be studied.



7 Work Programme

In general we interleave theoretical research and the application to case studies.

Year 1:

(1 - 6) Detailed study of related theory about fault-tolerance, placing previously verified
fault-tolerant protocols in a theoretical perspective.

(7 - 12) Training in the use of verification tools. Treatment of a smaller case study of a
fault-tolerant system.

Year 2:

(13 - 18) Exploration of a large case study of a fault-tolerant system (probably from KPN
Telecom) to get a good understanding of the system and the fault-tolerant protocols.
Investigation of suitable tool support for visualization, simulation and model-checking
of a simple version of the system.

(19 - 24) Based on earlier theoretical investigations, already verified protocols and insight
in the large case study, we propose a formal approach to the incremental verification of
fault-tolerant real-time protocols.

Year 3:
(25 - 30) Application of the approach to the case study, verifying a basic version of the
protocols and gradually increasing the complexity of the failures that can be treated.
(31 - 36) Evaluation of our approach basd on the case study. Modifying the theory where
needed and adapting the proposed tool support.
Year 4:
(37 - 42) Applying the resulting framework to new examples of distributed real-time and
fault-tolerant protocols.
(43 - 48) Completion of PhD thesis.

8 a. Expected Use of Instrumentation

Experiments with powerful tools on complex protocols are part of this project. Some of these
tools are very time and memory consuming. We need a powerful workstation or PC, especially
for investigating how the amount of user interaction can be reduced.

9 Literature

Below five relevant papers from the applicants are listed.

[CHvdS00] D. Chkliaev, J. Hooman, and P. van der Stok. Mechanical verification of a non-blocking
atomic commitment protocol. In Workshop on Distributed System Validation and Verification
(DSVV’2000). Available on http://www.cs.kun.nl/~hooman/ACP.html, 2000.

[GV98] W.0O.D. Griffioen and F.W. Vaandrager. Normed simulations. In A.J. Hu and M.Y. Vardi,
editors, Proceedings of the 10th International Conference on Computer Aided Verification,
Vancouver, BC, Canada, volume 1427 of Lecture Notes in Computer Science, pages 332-344.
Springer-Verlag, June/July 1998. Full version available as [GV00].

[Ho097] J. Hooman. Verification of distributed real-time and fault-tolerant protocols. In Algebraic
Methodology and Software Technology (AMAST’97), pages 261-275. LNCS 1349, Springer-
Verlag, 1997.



[LV95] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, I: Untimed systems.
Information and Computation, 121(2):214-233, September 1995.

[ZH95] P. Zhou and J. Hooman. Formal specification and compositional verification of an atomic
broadcast protocol. Real-Time Systems, 9(2):119-145, 1995.

10 Requested Budget

We ask for the standard budget for a PhD student, kf 228, and travel, kf 7.35. In addition, we ask
0.2 x 4 x kf 90 = kf 72 to support the scientific programmer. As mentioned before (see Section 8),
we need powerful equipment which goes above the normally available machine support (X-terminal
or simple PC). Hence we require an additional 15 kf to be able to purchase a suitable workstation
or powerful PC. The total budget thus amounts to kf 322.35.
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