Towards Practical Attribute-Based Signatures

Brinda Hampiholi, Gergely Alpar, Fabian van den Broek, and Bart Jacobs

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands
Email: {brinda, gergely, f.vandenbroek, bart}@cs.ru.nl

Abstract. An attribute-based signature (ABS) is a special digital sig-
nature created using a dynamic set of issued attributes. For instance, a
doctor can sign a medical statement with his name, medical license num-
ber and medical speciality. These attributes can be verified along with
the signature by any verifier with the correct public keys of the respec-
tive attribute issuers. This functionality not only makes ABS a much
more flexible alternative to the standard PKI-based signatures, but also
offers the ability to create privacy-preserving signatures. However, none
of the ABS constructions presented in the literature is practical or eas-
ily realizable. In fact, to the best of our knowledge, there is currently
no ABS implementation used in practice anywhere. This is why we put
forward a new ABS technique based on the IRMA attribute-based au-
thentication. IRMA already has an efficient and practical smart-card
implementation, and an experimental smart-phone implementation too.
They are currently used in several pilot projects.

In this paper, we propose an ABS scheme based on the existing IRMA
technology, extending the currently available IRMA devices with ABS
functionality. We study the practical issues that arise due to the in-
troduction of the signature functionality to an existing attribute-based
authentication scheme, and we propose possible cryptographic and in-
frastructural solutions. We also discuss use cases and implementation
aspects.

Keywords: attribute-based signature, attribute-based credential, IRMA,
authentication, timestamp, contextual privacy.

1 Introduction

Digital signatures are cryptographic primitives that are used by a person to
digitally sign a message, thus declaring that he agrees with the message. The
digital signature standard based on asymmetric cryptography requires a signer
to sign with his private key and the corresponding public key is used for verifying
this signature. The public key of the signer stated in the public-key certificate
identifies the signer and links all the messages that he ever signed. This type
of digital signature does not allow the signer to make the context or role of the
signer explicit, and this limits the cases in which the signer can sign under a
particular set of attributes and reveal nothing else about himself.

In the case of a medical statement signed by a doctor, the doctor’s attributes
such as his qualification, speciality and license number (for accountability pur-
pose) are necessary along with his signature. With the current public-key infras-
tructure (PKI) based signature, a doctor has to reveal his full identity, public-key
certificate every time he digitally signs a document. This results in the unnec-
essary (or undesired) disclosure of excess data about the doctor’s identity and
all his signatures will always be linkable to him irrespective of the context. This
violates the principle of data minimization and harms the privacy of the signer.

Furthermore, a PKI-based signature provides the signer identity but the iden-
tity itself does not say much about the individual attributes of the signer that
are relevant from the perspective of a signature verifier. Such a signature would
just state that “This message is signed by a signer with common name ‘Jack’
holding public key ‘x’ as attested in the corresponding public key certificate signed
by CA %y’.”. Considering the above example, the verifier does not know if the
message was indeed signed by a doctor whose speciality is orthopaedics; he just
knows that the message was signed by Jack holding public key x. This issue
can be solved if the signer could sign under a set of attributes (e.g. ‘doctor’,
‘orthopaedics’) specified by the verifier’s signature policy.

Attribute-based signatures (ABSs) allow a person to sign under a set of se-
lected authentic/certified attributes based on the context. The signature reveals
no more than the fact that a signer, with a specific set of attributes satisfying
a certain condition, has attested the message. Here, the signature proves that
the attributes hold for him at the time of signing and the signature is generated
using a secret key associated with the signer. The signature verification will fail if
the message was changed after signing, which ensures the integrity of the signed
message. In the case of an ABS, non-repudiation of the signer can be achieved by
enforcing the disclosure of signer-identifying attributes in the signature policy
(e.g. the attribute to be revealed may be ‘is a doctor with medical license number
12345’). However, when the disclosed attributes are non-identifying such as ‘age
> 18’ or ‘is a doctor’, the verifier cannot link the signed message to the real
identity of the signer solely based on the signature, like for group signatures [1].
Some use cases in which privacy of the signer is essential such as anonymous
voting, anonymous petitions etc., can thus also benefit from ABSs.

Role-based signature generation with ABSs. A traditional digital signature seems
to offer the same signing functionality as an ABS (to a limited extent), if it
dedicates one signing key pair for each role under which a signer wishes to sign.
It means that the signer who is a doctor, for instance, can generate a key pair, get
a medical certification authority sign his public key and use the corresponding
private key to sign as a doctor. Note, however, that he needs to generate another
key pair and get the public key certified from the national government to be able
to sign his tax declaration form as a citizen. Another example is the Belgian
PKI-based national eID card, which allows the cardholders to perform digital
signature function but always as a particular Belgian citizen. In principle, such
a card would require n signing keys for n roles that a cardholder might rightfully
assume while signing. This gives rise to complicated key management issues. In

contrast, an ABS allows the signer to digitally sign messages or documents under
different roles with a single signing key. Role-based signatures based on ABSs
also make the role of the signer explicit to the verifiers thus, avoiding confusion.
Consider the two instances when a notary handles the sale of his client’s property
and the sale of his own private property. With ABSs, he can sign as a notary in
the former instance and as the owner of a property in the latter instance. The
difference in the signer’s roles is not apparent to the verifiers when the notary
signs both sale documents with PKI-based signatures whereas ABS clearly states
the role of the signer in each of his signatures. In sum, ABSs are a generalization
of role-based signatures with possibly additional privacy guarantees.

Related work. Attribute-based signatures (ABSs) have been explicitly introduced
by Shanigng and Yingpei [2] rethinking attribute-based encryption. Maji et al. [3]
proposed an ABS scheme in which attributes belonging to a user are represented
as a credential bundle. They employed a non-interactive proof of knowledge sys-
tem to prove the knowledge of a credential bundle that satisfies a given access
formula. Okamoto et al. [1] propose a decentralized multi-authority ABS which
supports non-monotone predicates and prove it to be fully secure in the random-
oracle model. Herranz et al. [5] propose constant-size ABS schemes for the case
of threshold predicates which can also be extended to admit other, more expres-
sive kinds of monotone predicates. All these schemes employ bilinear pairings
for their construction, which makes them complicated and less practical. Anada
et al. [6] propose an ABS scheme without pairings in the random-oracle model.
Their scheme first obtains a generic attribute-based identification (ABID) from
a boolean proof system, combines ABID with a credential bundle scheme, and
then applies the Fiat-Shamir paradigm to obtain a generic ABS scheme with
attribute privacy.

As we see, there has been a certain amount of research done in the ABS field
so far. However, the proposed schemes are very theoretical and focus only on
the core cryptography. To the best of our knowledge, none of the above schemes
is realized and put into practice. Some of these papers such as [3] mention some
use cases which could use their ABS construction. Nevertheless, none of them
talks about the implementation of their ABS constructions, nor do they discuss
the practicalities in realizing attribute-based signatures.

Contributions. IRMA (I Reveal My Attributes)! [7] is an attribute-based au-
thentication technology based on the Idemix [8] specification. A distinguishing
feature of IRMA is that it has already an efficient and practical smart card im-
plementation [9]. An important observation is that extending IRMA’s authenti-
cation mechanism to support attribute-based signatures involves relatively little
work. This paper explores the way IRMA can be used for generating practical
attribute-based signatures. A similar idea is mentioned in an ABC4Trust? deliv-
erable [10] where the authors suggest the possibility of including a application-
specific message as an optional input to the credential presentation protocol that

! https://www.irmacard.org
2 https://abc4trust.eu/

https://www.irmacard.org
https://abc4trust.eu/

authenticates and signs the message with the user’s private key. However, they
do not discuss the way to do it in practice, whereas we focus on the practical
set-up. Also, we suggest that attribute-based signatures provide a viable option
to current digital signatures.

An attribute-based signature within IRMA is essentially a non-interactive
proof of knowledge of authentic attributes (see Section 3). We use the phrase
IRMA signature to refer to this particular realisation of an attribute-based sig-
nature, as opposed to the general concept of attribute-based signatures. Any
device that carries the signer’s attributes in IRMA is called an IRMA token. An
IRMA token can be for instance, a smart card or a mobile phone. In this paper,
we propose a practical ABS scheme arising from an existing implementation of
the IRMA attribute-based authentication. The idea of merging both authenti-
cation and signature on the same token enables fast realization and roll-out of
the technology.

2 About IRMA

The IRMA project aims to design and develop attribute-based credentials (ABCs)
in practice. It is a partial implementation [9] of the Idemix technology [3,11].
Idemix is an attribute-based credential system, developed at IBM Research in
Ziirich. IRMA currently has implemented the privacy-enhancing features of ABC
such as selective disclosure of attributes using zero-knowledge protocols.

The main idea behind IRMA is that authentic attributes stored on a token
can be shown selectively via a zero knowledge proof. The token-holder has to
give explicit permission to read a specified set of attributes (e.g. age, name)
by entering a PIN code known only to him. For instance, an IRMA token can
be used to prove the possession of a valid concert ticket or valid credentials to
enter an office building by just revealing the ‘ticket’ or ‘is an employee’ attribute
rather than revealing all the attributes on the token. In such cases there is no
need to reveal a uniquely identifying attribute and this attribute-based method
prevents linking of different proofs and implicit profiling of the token holder.

Attributes & Credentials. An attribute is a characteristic or a qualification of a
person. Attributes can either be identifying or non-identifying properties. For ex-
ample, ‘full name’, ‘address’, ‘Social Security Number’ are identifying attributes
as the person can be uniquely identified by such attributes. Attributes, such as
‘student’ and ‘age over 18’ are non-identifying attributes as they do not uniquely
identify a person; such properties can belong to other people as well. Collectively,
these attributes can constitute the identity of a person.

Attributes are authentic. In the IRMA set-up, several related attributes are
grouped into a cryptographic container known as a credential [7]. Authorities
issue credentials to users following an authentication process. Each credential
has an expiry date that denotes the validity of all the attributes contained in
that credential. There could be n such credentials on the IRMA token issued
by n issuers. However, for reasons of simplicity, in this paper, we consider all
attributes to be contained in a single credential.

Cryptographic background of IRMA. TRMA is based on the Idemix protocol
suite [8,11] and Camenisch-Lysyanskaya (CL) signature scheme [12,13]. All the
zero-knowledge (ZK) proofs in the Idemix library are implemented as non-
interactive ZK proofs using the Fiat-Shamir heuristic [14]. A brief description of
Schnorr’s schemes and the CL signature are provided in Appendix A and B.

3 IRMA’s selective disclosure proofs as digital signatures

The concept of revealing only a selection of necessary attributes for completing
a transaction is termed as Selective Disclosure in Idemix and IRMA. Selective
disclosure is a zero-knowledge protocol currently used for authentication pur-
poses. But, as will be shown here, it can also be used by an IRMA token holder
for signing under selected attributes. When a selective disclosure (SD) proof is
used for signing purposes, it becomes an IRMA signature. The key idea is that
a non-interactive zero-knowledge (NIZK) proof (or so-called signature of knowl-
edge) [14,15] signs a message. See Section A in the appendix for the description
of the way a NIZK proof is constructed.

During an IRMA authentication, the verifier sends a nonce to the IRMA
token to be included in the SD proof generation. This nonce is strongly bound
to the proof and it helps the verifier check the freshness of the proof. It is meant
to prevent a user from replaying the same proof to authenticate during different
authentication sessions. We adapt this approach in a simple manner: If the hash
of a message is used during an SD proof generation instead of the nonce, then the
SD proof becomes the user’s signature on the message. So, the main functional
difference between an SD proof in IRMA authentication and IRMA signatures
is the way the nonce is defined.

An SD proof acting as a user’s signature is written as

SD((a;)iep; h(msg)),

where a; is an attribute within a credential, D is the set of disclosed attributes,
and h(msg) is the hash of the message to be signed. Typically, an SD proof
that becomes an IRMA signature proves the signer’s possession of attributes
and of the secret key involved in the proof generation. As this SD proof is a non-
interactive zero-knowledge proof, first, the signer commits to a set of attributes
and creates a commitment®; then he computes a challenge by hashing the com-
mitment and the message to be signed. Conceptually, the challenge computation
is denoted as

challenge = H(commitment, h(msg)). (1)

We input the hash h(msg) of the message instead of the message itself to the
hash function H that computes the challenge. This double hashing of the input
might seem unnecessary. However, we intend as little change in existing IRMA

3 As described in Appendix C, in a selective disclosure proof a commitment comprises
an attribute issuer’s randomized signature A’ and the derived value Z.

Message/ Document

h(msg)

Attribute Issuer

Signing Module

[IRMA Signature (SD Proof)]

Message/ Document

Public key of the
attribute issuer

h(msg)

IRMA Token

IRMA Signature valid?

Fig. 1: IRMA signature generation and verification

[Disclosed attributes]

authentication tokens as possible, and they expect a fixed-length nonce as the
input to the selective disclosure proof. The hashes of messages are of fixed length,
so they are functionally interchangeable with nonces. Also, computing the hash
of a long message can be delegated to an external, more resourceful device from
an IRMA token whose computational power and memory are limited. Here H
and h can technically use the same hash algorithm e.g. SHA-3. The hash of
a message or a document to be signed is denoted by ‘h(msg)’ and the hash
function to compute challenge in the non-interactive SD proof is denoted by “H’
throughout this paper.

3.1 IRMA signature scheme

The IRMA signature scheme depicted in Figure 1, consists of four algorithms:
Key Generation, Attribute Issuance, Signature Generation, Signature Verifica-
tion.

(1) Key Generation. Upon initialisation of an IRMA token, a secret key is gen-
erated and stored securely. It is used during attribute issuance, authentication
and in signing. Since all these functions require this secret key, they are bound
to the token, and hence to the signer.

(2) Attribute Issuance. An IRMA token owner can obtain attributes from au-
thorized attribute issuers. An attribute issuer signs the credential containing
attributes with its private signing key; the corresponding public key is used by
verifiers, both in authentication and in signature verification.

(3) Signature Generation. A selection of the signer’s attributes on an IRMA
token forms the internal input to the signing module on the token. The hash

h(msg) of the message to be signed forms the external input. The IRMA token
outputs the required attributes and an SD proof ensuring that “the token owner
has signed h(msg) and possesses the attributes say, a; and as issued by the
issuer”. A credential® on an IRMA token carries a CL signature (see Section B)
which is randomized during a selective disclosure. We preserve the randomization
of CL signature in IRMA signatures to ensure unlinkability among signature
verifications. This randomization happens within the IRMA token. We also use
the randomized CL signature to get trusted timestamps for the IRMA signature,
as will be discussed in Section 4.1. Using the randomized CL signature, a signer
generates an IRMA signature, a selective disclosure proof SD((ai)ieD; h(msg))
over h(msg). The operations that have to be performed to generate a SD proof
are described in Algorithm 1 in Section C.

(4) Signature Verification. Any verifier who wants to verify the signature on
h(msg) needs to have the public key of the issuer that has issued the relevant
attributes to the IRMA token. The verifier calculates the hash of the message
and uses it along with the issuer’s public key parameters for verification. The
verification steps are given in Algorithm 2 in Section C. During this verification,
the verifier checks that the message was signed by an IRMA token holder who
possesses the required attributes issued by an authorized issuer.

Privacy and security assurances provided by IRMA signatures. In terms of pri-
vacy, there are no public parameters of the IRMA token that act as an identifier
of the token or token holder. Thus, it is impossible for the verifier to iden-
tify or link signatures to a particular signer if the disclosed attributes are non-
identifying. This holds even if the signer signs the same document multiple times.
In terms of security, IRMA signatures guarantee integrity and authenticity, more
specifically:

— The message is not altered after signing.

— The attributes and the secret key are bound to the issuance and the signature.

3.2 Diversification between SD proofs used for authentication and
signatures

Our goal is to use both the signature and authentication functions with the
same set of attributes on the same IRMA token. An SD proof is used either
for authentication with a fresh nonce or for signature generation with the hash
of a message as input. As we already have an implementation of IRMA SD
proofs for authentication, IRMA signatures can be easily realized in practice.
Additionally, it is user friendly to have both attribute-based authentication and
signature functions on the same token, along with an interactive user interface.
We are well aware of the fact that, as the hash of a message and a random nonce
look alike, an adversary could possibly send the hash of a message posing as a
random nonce during an authentication session and make the user unknowingly

4 A credential is conceptually comparable with a public-key certificate. But unlike a
certificate, a credential is randomizable and enables selective disclosure.

sign this hash with the selective disclosure proof. This is a potential attack
scenario in which an authentication session is misused to get a signature of the
user without the user being aware of it. In this section, we propose a method
to diversify signature and authentication protocol runs, in order to prevent the
afore-mentioned attack.

Although two secret keys could be used for authentication and signing to
separate the two functionalities on the token, all the user credentials would then
have to be issued twice on that token as well, corresponding to both secret
keys. This is because the secret key is associated with the issuance of every
attribute to the IRMA token. Then, using two dedicated keys would be very
similar to having authentication and signature functions on two different IRMA
tokens. This contradicts our original goal. In order to avoid the duplication of
all attributes on the token for authentication and signing purposes, we intend to
use the same secret key for both purposes.

Domain separation is an efficient means to construct different function in-
stances from a single underlying function. If the underlying function is secure,
the derived functions can be considered as independent functions [16]. One can
implement domain separation by appending or prepending different constants
to the input for each of the function instances. We propose to apply domain
separation for securely diversifying IRMA authentication and signing instances.
We reserve a few bits, called Dbit, as the first input to the hash function while
computing the challenge (see Line 11 in Algorithm 1) on the signer’s end. Math-
ematically, the Dbit value is prepended to the rest of the inputs and indicates if
the IRMA token is being used for authentication or for signing. In the current
context, we need to separate two domains so we can use a single bit in Dbit.
This bit will be set to 0 in case of authentication and 1 in case of signatures. We
can program the signature generation module such that it takes user consent as
the basis while deciding the value of Dbit. If the user gives his consent to sign a
message msg, then the signature generation module (Algorithm 1) sets the Dbit
to 1 and expects h(msg) as one of the other inputs to the challenge computation.
Thus, we rely on a correct token implementation.

The challenge computation during an IRMA signature generation previously
denoted by (1) now becomes,

¢ = H(Dbit = 1, commitment, h(msg)), (2)

where c is the challenge, H is the hash function used to compute the challenge
and h(msg) is the hash function used to hash the message to be signed. If a
valid signature is knowingly created by the legitimate signer, then during the
verification, a verifier can successfully check its validity by reconstructing the
challenge with Dbit = 1.

3.3 Brief security analysis of IRMA signatures

In this section, we informally analyze the security of our IRMA signature system
by considering the possible ways in which an attacker can undermine the system.

We assume that the attacker has access to a polynomially bounded set of IRMA
authentication transcripts denoted by AT and signature-message pairs denoted
by SM. In the original IRMA authentication scenario, the attacker tries to
spoof an authentication using the transcripts from the set AT. This is proven
to be impossible in the paper by Camenisch et al. [12]. When we introduce
IRMA signatures, three more possibilities arise for the attacker to undermine
our system:

1. spoof an IRMA authentication by using the signatures from SM;

2. forge a new IRMA signature using the authentication transcripts from AT

3. forge a new IRMA signature using the signature-message pairs from SM.

Case 1: Using IRMA signatures to impersonate a user during authentication.
An attacker attempts to authenticate with one of the IRMA signatures from
SM. We show that this is possible if he successfully finds either of the following
two collisions. We also mention how we deal with such scenarios.

(i) Collision between the hash of a signed message and an authentication nonce.
h(msg) = nonce

where h(msg) is the hash of a signed message msg from SM and nonce is
a random number sent by the verifier during an authentication session. The
attacker can impersonate a user and maliciously authenticate if he finds a
collision between the hash of the signed message that he already had and
the nonce belonging to an authentication session.

However, because of the domain separation (see Section 3.2), the attacker
cannot make the verifier accept this signature as a valid authentication proof.

(ii) Collision between the hash functions used for computing challenge in signa-
ture and authentication instances.

H(Dbit = 1, commitment, h(msg)) = H(Dbit = 0, commitment, nonce)

where H is the hash function used for computing the challenge within an
SD proof. The inputs for H during the signature verification are Dbit = 1
and hash of a message h(msg) whereas the inputs are Dbit = 0 and nonce
for an authentication proof verification. The attack succeeds if the attacker
finds a collision between these two H instances. This is equivalent to having
the same challenge results from the hash functions in authentication and
signature sessions in spite of different inputs. If the attacker manages to find
the above collision then he wins; he can then authenticate with a signature.
We note that the attacker’s chances of winning in this scenario depends on
the collision resistance of the hash function being used in IRMA. If hash
functions with no known collision attacks such as SHA-2 or SHA-3 is used
then the above attack is highly improbable.

Case 2: Using IRMA authentication transcripts to forge a new IRMA signature.
An attacker eavesdrops on many IRMA authentication sessions and collects au-
thentication transcripts as denoted by AT at the beginning of this section. Then
he tries to forge an IRMA signature out of an authentication transcript in the
set AT. He is successful if he finds a collision in the two scenarios detailed in
Case 1 and the same logic is followed here.

Case 3: Using IRMA signature-message pairs to forge a new IRMA signature.
As we said before, the attacker possesses IRMA signatures for several messages
of a user. In this case, the domain separation bit Dbit is 1 for all signatures that
the attacker already has. It is not sufficient if the adversary manages to find a
hash collision between a previously signed message and a new message to create
a valid signature; the attacker will also have to possess the right attributes of the
user on his IRMA token to forge that user’s signature. The security assumptions
underlying the IRMA technology (same as the assumptions made by Idemix)
prevent such forgery attacks. These assumptions are briefly mentioned below.

— As IRMA uses the Camenisch-Lysyanskaya (CL) signature scheme (see Sec-
tion B for explanation), respective discrete logarithms based proofs prove
the possession of valid attributes on the IRMA token.

— Unforgeability of IRMA signatures holds under the strong RSA assumption
and the computational Diffie-Hellman assumption.

— In IRMA, a single proof involving all the attributes required by the signing
policy, secret key of the IRMA token is considered as a valid signature. So,
colluding users cannot combine their attributes associated with their secret
keys in a single proof. This guarantees collusion resistance.

So we conclude that the adversary will not succeed in forging a new and valid
IRMA signature with the help of given signature-message pairs, even if those
pairs are of adversary’s choice. Thus, an IRMA signature is existentially un-
forgeable under a chosen-message attack.

4 Infrastructural concerns for IRMA signatures

4.1 Timestamps in IRMA signatures

A practical aspect that becomes important when we migrate from authentica-
tion to signature functionality is the actual time of signing. A timestamp on
the digital signature attests when the message or the document was signed. It
provides a unequivocal proof that the contents of the signed document existed
at a point-in-time and have not changed since then.

In the case of IRMA signatures, there are two kinds of dates or timestamps
to be considered:

1. date and time at which the signature was generated,
2. expiry dates of the attributes under which the signer has signed h(msg).

K
&

1) A', h(msg), h(attributes) ‘
2) Timestamp token T = {t_data, TA signature(t_data)}

< ﬂ oy,
i 3—3) Message, IRMA signature, attributes (with their expiry dates), T4>-¢_b Tl
Verifiers

Signer 4) Verify the IRMA signature and timestamp token T

Fig. 2: Timestamping the IRMA signature

To include the time of signing, a signer has two options: The signer can use
the local time of his IRMA token (if available) as part of the message to be
signed. If a verifier requires a more secure timestamp, the signer can obtain an
authorized timestamp signed by a Timestamp Authority (TA). A TA is an entity
that is trusted to provide accurate time information.

The selective disclosure proof in IRMA discloses the expiry dates of the
attributes involved in the proof by default. These expiry dates are included in
the set of disclosed attributes and they can easily be verified by the verifier.
Since attributes should be valid when generating an IRMA signature, the expiry
dates should be greater than the time included in the timestamp. Therefore,
it is recommended to include a validity check at the beginning of an SD proof
generation algorithm (see Algorithm 1 in the Appendix).

We propose a timestamping scheme that enables a signer to get a signed
timestamp from a TA for an IRMA signature as shown in Figure 2. In our scheme,
a signer sends a timestamp request to the TA to get a trusted timestamp. The
timestamp request consists of randomized CL signature®, hash of the message to
be signed and hash of the attributes, denoted by A’, h(msg) and h(attributes)
respectively. This request does not reveal any information about the signer or the
message to the TA, hence, it is privacy friendly. TA issues a signed timestamp.
Upon receiving the timestamp, the signer inputs the timestamp to the IRMA
signature generation. The timestamping scheme is illustrated in Figure 2 and
elaborated in the following steps:

1. Timestamp request. The signer requests TA for a timestamp by sending
A’ h(msg), h(attributes).
2. Timestamp token calculation. TA does the following:

5 The randomized CL signature is used in both IRMA signature generation and veri-
fication (see Algorithms 1 and 2).

— concatenates all the data sent by the signer in the timestamp request
with the current timestamp ¢ and digitally signs ¢_data.

— combines t_data and TA’s signature on t_data together into a timestamp
token T and sends T to the signer.

3. IRMA signature gemeration with the timestamp token. The signer provides
the timestamp token T" as one of the inputs to the IRMA signature generation
algorithm (see Algorithm 1). Now, during the challenge computation, T is
hashed along with the diversifier Dbit, commitment and h(msg) as,

¢ = H(Dbit = 1, commitment, h(msg),T). (3)

Finally, the signer sends the IRMA signature on h(msg), T, and the disclosed
attributes to the verifier.

4. IRMA signature with timestamp verification. Upon receiving the IRMA sig-
nature, the verifier verifies

— the IRMA signature using the attribute issuer’s public key and the dis-
closed attributes,
— the TA’s signature on ¢_data within the timestamp token T' by using the
TA’s public key,
— if A’ h(msg), attributes are the same in the IRMA signature and t_data
that is within the timestamp token T
As we see, an IRMA signature comprises multiple logical layers. Table 1
summarizes the three signatures that have to be verified during an TRMA
signature with timestamyp verification.

Table 1: Abstraction of signature layers involved in IRMA signatures.

ISignature [Public key used to verify [Signing party
Attribute-based signature |Disclosed attributes & issuer’s signature|Signer
Randomized CL signature|Attribute issuer’s public key Attribute issuer
DSA or RSA signature |TA’s public key TA

Because of the verifications performed in the above step 4 (IRMA signature with
timestamp verification), a verifier knows/or has cryptographic assurance of the
following properties.

— The IRMA signature was not generated before the time indicated by the
TA’s timestamp t.

— The signature on the message with the enclosed attributes is bound to this
timestamp t.

— The message that is signed has remained unchanged since the time ¢.

In addition, the implementation guarantees that the signer’s attributes used for
signing were valid at time ¢, since this is checked in Algorithm 1.

4.2 Revocation of credentials in IRMA

The IRMA project has been focused on preserving user-privacy in authentica-
tion. The revocation scheme [17] for IRMA authentication that has been pro-
posed by the IRMA design team avoids identifiers in revocation that would
enable linking the revocation checks to a single user. This scheme involves a
semi-trusted party in the system, a Revocation Authority (RA) that is responsi-
ble for revoking the credentials. The RA keeps track of the revocation values of
revoked credentials.

In the existing IRMA-revocation scheme [17] the time is split into epochs
(time intervals) and the RA chooses a generator for each epoch and each verifier.
When a credential is revoked the RA makes a global revocation list RL that
consists of revocation tokens R;, , that are computed from the generators and
the individual revocation values of the credential holders. The RA sends this
revocation list RL to all the registered verifiers. During an authentication with
a revocation check, the verifier sends the IRMA token its specific per-epoch
generator, and the token calculates the revocation response R by embedding
its token-specific revocation values. This value R is generated along with the
selective disclosure proof and made available to the verifier. The verifier can just
check R € RL to know if the credential used in the generation of the selective
disclosure proof is revoked or not.

However, in the case of signatures, a signer need not know the verifiers in
advance, so, the verifier-specific generators would not work. Also, the per-epoch
concept will have to be modified to suit the signature verification scenario. If
the signer calculates a revocation token for the current epoch along with the
signature, the verifier has to do a revocation check in that epoch. In the case
of a delayed verification in a different epoch, the verifier will have to retrieve
the revocation token list from the RA corresponding to the epoch in which
the signer signed. We realize that the design of a privacy-friendly revocation
scheme for digital signatures that ensures complete unlinkability is not trivial.
The existing revocation scheme for IRMA authentication has to be adapted to
IRMA signatures which is subject to further research.

As a possible solution for revocation, attribute expiry dates can be short
and re-issuing of attributes can be made simple. If a security breach or a key
compromise is detected then the attribute issuer would just stop re-issuing the
attributes to that particular IRMA token.

5 Discussion

We briefly describe a few use cases for attribute-based IRMA signatures, and
give an estimate of their performance.

5.1 TUse case scenarios

Use cases requiring the flexibility offered of role-based IRMA signatures.

1. In the introduction we briefly mentioned a medical doctor signing a med-
ical statement about a patient using his own medical license number and
specialisation attributes. This can be applied to many professionals signing
documents in which their competence is a useful part of the signature. More
generally, this leads to what may be called role-based signatures.

2. With such role-based signatures one can distinguish professional and per-
sonal signatures. For instance, the signature of a notary should be different
when he is selling a house professionally or privately. Attribute-based signa-
tures are ideally suited for making such differences explicit, for all verifiers
to see.

Use cases for signatures that ensure signer privacy/anonymity.

3. Anonymous voting. In large scale elections, there are usually two main phases:
(i) registration and (ii) vote casting. A crucial difference between these two
phases is that the first one should be identifying, whereas the second one
should not.

During the registration phase, a potential voter can authenticate to a voting
authority in a properly identifying manner, e.g. via his citizen registration
number. This identity is needed to check if the person at hand is eligible to
vote.

If the check is successful, then the voting authority can blindly issue a random
‘voting ID’ attribute (via blind signatures) to his IRMA token. During the
election phase, this voter can sign his vote with his IRMA token under
his ‘voting ID’ attribute. The (random) voting IDs of all the voters are
stored and if any voter tries to vote for the second time, then the voter
ID matches with one of the previously stored voter IDs. This second vote
can either be discarded or it can replace the first vote based on the voting
authority’s policy decision. Thus, we can keep the voters anonymous and also
avoid double voting scenario by using IRMA signatures. Here we note that
a potential voter can use the same IRMA token for authenticating during
registration and for signing anonymously during the vote casting phase.

4. Anonymous petitions is another application similar to the anonymous voting
that can benefit from IRMA signatures.

5. IRMA signatures can also be used by confidential sources who want to keep
themselves unidentified to a journalist to whom they reveal information.
But still they can include some relevant attributes in the signatures on their
statements, in order to provide credibility.

5.2 Estimating the efficiency of IRMA signatures

As we have described in Section 3, a selective disclosure proof can serve both
authentication and signing purposes. The applied method depends on the input
values given to the proof generation algorithm. Thus, the performance times
of an IRMA authentication and an IRMA signature are comparable. We use
the performance results obtained and documented in the Idemix chapter of Pim

Vauller’s PhD thesis [18] as a starting point for our estimation. Based on these
values we assess the execution time of the IRMA signature generation and ver-
ification instances. The smart card type used in this calculation is an Infineon
SLE78 chip with MULTOS platform (ML3-36K-R1). In IRMA, a typical cre-
dential consists of 5 attributes. For estimating the running time of a selective
disclosure proof, we consider two cases. Disclosing one attribute takes 1.2 sec-
onds, while disclosing four attributes takes 0.93 seconds. Note that the more
attributes are disclosed, the fewer are hidden and the shorter time it takes. Fur-
thermore, we also note that in practice the fifth attribute, the secret key, is never
revealed.

Now let us turn from IRMA authentication to IRMA signatures. The total
time taken for an entire signature generation operation is the sum of a selective
disclosure proof and other minor operations like timestamp retrieval, denoted by
6. The value of ¢ is dependent on the network connection speed as the timestamp
request and retrieval takes place online. Therefore, the total execution time for
an IRMA signature generation (in the case when only 1 out of 4 attributes from
a credential is disclosed) can be estimated as (1.2 +) seconds.

The signature verification consists of an extra modular exponentiation oper-
ation w.r.t. the signature (SD proof) generation. Thus, we expect that the time
taken for SD proof verification is a bit more than the time taken for its genera-
tion. However, the signature verification terminals (e.g. personal computers) are
usually computationally more powerful in terms of both time and memory than
a smart card. So the time taken to verify an SD proof is mostly in the order of
a few milliseconds.

We see that IRMA signature generation on smart cards is reasonably efficient
in terms of execution time to be put into practice. The execution time could be
further decreased if mobile phones are used as IRMA tokens for generating IRMA
signatures.

6 Concluding remarks

We present the first practical and easily realizable form of attribute-based signa-
tures by building on top of the IRMA technology. What we call IRMA signatures
are created by extending the existing smart card (and phone) implementation of
IRMA authentication. We show how we can securely use authentication and sig-
nature functions on a single IRMA token using the same secret key. In addition
we elaborate on the infrastructural aspects related to usable digital signatures
such as secure timestamping. There is ongoing work in adapting the existing
revocation scheme for attribute-based signatures without forgoing any of its pri-
vacy and unlinkability guarantees.

In conclusion, IRMA signatures offer much greater functionality and flexibil-
ity than traditional PKI-based digital signatures in terms of role-based signing,
contextual privacy guarantees to the signers, and ease of comprehending the
signature semantics to the verifiers.

References

10.

11.

12.

13.

14.

15.

16.

17.

David Chaum and Eugéne Van Heyst. Group signatures. In Advances in Cryptol-
ogy—FEUROCRYPT’91, pages 257—265. Springer, 1991.

. Guo Shanigng and Zeng Yingpei. Attribute-based signature scheme. In Informa-

tion Security and Assurance, 2008. ISA 2008, pages 509-511. IEEE, 2008.
Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signa-
tures. In Topics in Cryptology—CT-RSA 2011, pages 376-392. Springer, 2011.
Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures
for non-monotone predicates in the standard model. In Public Key Cryptography—
PKC 2011, pages 35—-52. Springer, 2011.

Javier Herranz, Fabien Laguillaumie, Benoit Libert, and Carla Rafols. Short
attribute-based signatures for threshold predicates. In Topics in Cryptology—CT-
RSA 2012, pages 51-67. Springer, 2012.

Hiroaki Anada, Seiko Arita, and Kouichi Sakurai. Attribute-based signatures with-
out pairings via the fiat-shamir paradigm. In Proceedings of the 2nd ACM workshop
on ASIA public-key cryptography, pages 49-58. ACM, 2014.

Gergely Alpar and Bart Jacobs. Credential design in attribute-based identity man-
agement. In Bridging distances in technology and regulation, 3rd TILTing Perspec-
tives Conference, pages 189-204, 2013.

IBM Research, Security Team. Specification of the Identity Mixer Cryptographic
Library, version 2.3.4. Technical report, IBM Research, Ziirich, February 2012.
Pim Vullers and Gergely Alpdr. Efficient selective disclosure on smart cards us-
ing Idemix. In Simone Fischer-Hiibner, Elisabeth de Leeuw, and Chris Mitchell,
editors, Policies and Research in Identity Management (IDMAN), pages 53-67.
Springer, 2013.

Jan Camenisch, loannis Krontiris, Anja Lehmann, Gregory Neven, Christian
Paquin, Kai Rannenberg, and Harald Zwingelberg. D2. 1 architecture for attribute-
based credential technologies—version 1. ABC/ Trust Deliverable D, 2, 2011.

Jan Camenisch and Els Van Herreweghen. Design and implementation of the
idemix anonymous credential system. In Proceedings of the 9th ACM conference
on Computer and communications security, pages 21-30. ACM, 2002.

Jan Camenisch and Anna Lysyanskaya. An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation. In Birgit Pfitz-
mann, editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of
LNCS, pages 93-118. Springer Berlin / Heidelberg, 2001.

Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with Efficient Proto-
cols. In Stelvio Cimato, Giuseppe Persiano, and Clemente Galdi, editors, Security
in Communication Networks, volume 2576 of LNCS, pages 268—289. Springer Berlin
/ Heidelberg, 2002.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In Advances in Cryptology—CRYPTO’86, pages
186-194. Springer, 1987.

Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161-174, 1991.

Keccak team. Note on keccak parameters and usage. http://keccak.noekeon.
org/NoteOnKeccakParametersAndUsage.pdf. Online; accessed 6-July-2015.
Wouter Lueks, Gergely Alpar, Jaap-Henk Hoepman, and Pim Vullers. Fast revo-
cation of attribute-based credentials for both users and verifiers. IFIP Advances
in Information and Communication Technology, 2015.

http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf
http://keccak.noekeon.org/NoteOnKeccakParametersAndUsage.pdf

18. Pim Vullers. Efficient Implementations of Attribute-based Credentials on Smart
Cards. PhD thesis, Radboud University Nijmegen, The Netherlands, 2014.

A Schnorr’s Identification scheme

Schnorr’s identification scheme [15] is a simple three-way zero-knowledge proof
scheme which proves the knowledge of a discrete logarithm x of a specific number
y (mod n):

PK{(z):y=g° (modn)}

where PK is the proof of knowledge, = is the discrete logarithm of y and g is
the generator belonging to the cyclic group G, of order q.

In order to prove knowledge of x = log, y, the prover interacts with the verifier
as follows:

1. The prover commits to randomness r € [0, ¢ — 1]; therefore, the first message
t=g" € G4 is also called a commitment.

2. The verifier replies with a challenge ¢ € [0,¢ — 1] chosen at random. (In
practice, ¢ can be chosen from a smaller set — depending on the security
parameter —, but here we omit these details.)

3. After receiving ¢, the prover sends the third and last message (the response)
s=r+cx (mod q).

The verifier accepts, if g° = ty° in Gj.

The security of Schnorr’s identification scheme relies on the hardness of the
discrete logarithm problem. In the interactive proof, the verifier can be sure in
the last step that the prover knows the discrete logarithm of y if it satisfies the
correctness condition:

gs — gr—i-cz — grgcm — t(gm)r — tyc
Applying the Fiat—Shamir heuristic [14], one can achieve a non-interactive scheme
which reduces the number of rounds of information exchange between the prover
and the verifier. This is often used to translate a zero-knowledge protocol into
a signature scheme, or to reduce the communication overhead of the interactive
protocols. To make a zero-knowledge protocol non-interactive the challenge c is
not retrieved from the verifier but computed as

¢ = Hash(msg, t),
where msg is the message to be signed and ¢ is the commitment. The Idemix
technology uses similar non-interactive proofs of knowledge.

B Camenisch-Lysyanskaya (CL) signature

Camenisch et al. propose a provably secure signature scheme for issuing a sig-
nature on a set of attributes and proving the knowledge of those attributes [13].

The resulting signature from their scheme is termed as CL signature and it is
used as a building block for IRMA. We briefly explain the structure of a CL
signature in this section.

Let us consider the safe primes p and ¢ as the signer’s private keys. The
signer randomly selects a,b,c € QR,,. Then a, b, ¢ are published as public keys.
If a message m is to be signed, a random number v and a prime number e are
chosen and the signature is computed as shown below:

A= (ambvc)671 mod |QR,| (mod n)

Since we know the values of p and ¢ and they are safe primes, we also know p’
and ¢’ and | QR,, |= p'¢’. The CL signature over the message m is composed as

m: {A e v}

In the IRMA context, we can define the Camenisch-Lysyanskaya signature over
the messages m as the triplet (A, e, v) such that e is the random prime used
as the ephemeral RSA public key for this signature and v is a random number
and A is the RSA signature over the message m. The following check is done in
order to verify the correctness of the above CL signature:

A =a™b’c (mod n)

If the verification equation holds, the signature is valid; otherwise, the signature
is invalid. The CL signature described here can also be applied over a block of
messages. The unforgeability of the CL signature scheme relies on the Strong-
RSA assumption.

A CL-signature (A, e,v) can be randomized easily. First, one has to select a
random value r from a specific, large interval, then, one performs the following
computation:.

A':=A-b" (mod n), v i=v+er.

Indeed, (A’,e,v’) is also a valid signature over message m:

A h™ = (AD) b = AT bV b = A b = a™ ¢ (mod n).

C IRMA signature and verification algorithms

In this section, we provide the technical details and algorithms used for the
IRMA signature generation and verification. As we have described earlier in
Section 3.1, a signer signs a message under a set of attributes with his secret key
and a verifier uses the attribute issuer’s public key to verify this IRMA signature.
The public key of the attribute issuer is (n, S, Z, {R; }iep) where M denotes the
set of attribute indices, and hence the maximum number of attributes issued by
that issuer. In IRMA selective disclosure, D denotes the set of attributes to be
disclosed from the IRMA token to the verifier and H denotes the set of attributes

Algorithm 1 IRMA signature generation algorithm.
1: function IRMA-SIGN({a; }iep, {aiticm, (A’ e,v"), h(msg), (n, S, Z,{Ri}iem), T)
2: for all i € D do

Verify the validity of each a; w.r.t. timestamp in T

if invalid then EXIT
€ < RanbowMm()
¥ + RAaNDOM()
Z+ A 5% modn
for all i € H do

a; < Ranpom()
10: Z+ Z-R¥ modn

11: c HASH(Dbit,A',Z,h(msg),T) //compute challenge using commitment,

h(msg), timestamp

12: €+ €+c-e
13: D D+c-v
14: for all i € H do
15: a; < a; +c-a;

return (c, A’,é,9,{a; }ien,T)

Algorithm 2 TRMA signature verification algorithm.
1: function IRMA-VERIFY((c, A’, é,0, {G;i }icu, {ai }icp), h(msg), (n, S, Z,{R;: }iem,T))
2: 2+ Z7¢ A%. 58" modn
for alli € D do
Z <« Z-RS™ modn

for all i € H do
Z+ Z-R¥% modn

if ¢ # HasH(Dbit, A’, Z, h(msg), T) then return INVALID
return VALID

on the token that needs to be hidden from the verifier. Therefore, H and D are
disjoint sets of attributes: HU D = M and HND = (.

Algorithm 1 describes the operations that have to be performed to generate
a proof of knowledge of the secret key and the hidden attributes. The proof
proves the remaining attributes {a;};cp, that are hidden during this phase, are
known by the signer (i.e. token). In the case of IRMA signature generation,
Algorithm 1 takes hash the of message to be signed, denoted by h(msg) and
timestamp, denoted by T as inputs while computing the challenge ¢. The IRMA
signature is essentially a selective disclosure proof that is generated over h(msg)
and 7. This signature can then be verified using the Algorithm 2.

	Towards Practical Attribute-Based Signatures

