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Abstract

QUIC is a recent transport protocol that provides reliable, secure
and quick service on top of UDP in the internet. As QUIC is imple-
mented in the application space rather than in the operating system’s
kernel, it is more efficient to dynamically develop and roll out. Cur-
rently, there are two parallel specifications, one by Google and one by
IETF, and there are a few implementations. In this paper, we show
how state machine inference can be applied to automatically extract
the state machine corresponding to the protocol from an implementa-
tion. In particular, we infer the model of Google’s QUIC server. This
is done using a black-box technique, making it usable on any imple-
mentation of the protocol, regardless of, for example, the programming
language the code is written in or the system the QUIC server runs on.
This makes it a useful tool for testing and specification purposes, and
to make various (future) implementations more easily comparable.

1 Introduction

Internet applications require reliable, secure and fast communication. Reli-
ability is most often achieved by the Transmission Control Protocol (TCP)
and security is provided by the Transport Layer Security (TLS) protocol.
Both of these protocols run in the end nodes, i.e. in clients and servers.
Although the high speed is fundamentally maintained by the network in-
frastructure, it has to be preserved for the applications. TCP and TLS,

1



underlying these applications, have a crucial role in the performance per-
ceived by the user.

Quick UDP Internet Connections (QUIC) is Google’s recent protocol to
offer a more efficient alternative to the reliable TCP and secure TLS. It
aims at shorter connection establishment, multiplexed streams and applies
several other optimization mechanisms. QUIC transports packets over the
User Datagram Protocol (UDP), a widely deployed light-weight transport-
layer protocol, and runs within the application as opposed to the kernel.
Therefore, QUIC is much easier to incrementally develop and roll out than
TCP or UDP.

Developed first in 2013, QUIC has constantly been improved, making its
implementation and specification in a state of flux. A protocol specification
of a distributed program is important not only for implementation, but also
interconnectivity and testing purposes. To capture the essence of a specifi-
cation, a state machine can define all possible states, including responses to
incoming messages in every state. Based on that state machine, implemen-
tations can be tested. We note that typically, the client side and the server
side implement different states.

Ideally, a state machine could be provided in the specifications of a pro-
tocol, though in practice this is often not the case. Such a model is not
yet given for QUIC. It is, however, possible to automatically extract a state
machine from an implementation. This method is known as state machine
inference or model learning. The resulting state machine can subsequently
be used to analyse the implementation.

Contribution In this paper, we infer a state machine of one of the im-
plementations of Google’s QUIC server. Such a model can reveal bugs or
contradictions. In QUIC’s case, the implementation fortunately turns out
to be sound. It merely shows one undocumented transition—which turns
out to be harmless. Besides the state machine, we explore a library used for
learning models from implementations and develop some tooling for QUIC.
This makes it easier to test other QUIC implementations in the future and
supports development of the protocol.

1.1 Related Work

Previously, state machine inference has been used successfully to extract
state machine models from implementations of several other network proto-
cols, including TCP [6], TLS [4] and Wi-Fi [11].
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Kakhki et al. [8] construct a state machine of QUIC by looking at the log
files created during the execution of the protocol. Their goal is to run QUIC
in a large number of different environments (several mobile and desktop
devices with different operating systems) and to use the state machine to
understand differences across QUIC versions and the different environments.
While their approach is passive, in this paper, we perform active learning
of the QUIC protocol, observing the output of the implementation when
actively sending input to it. Passive learning has a downside in that it
depends on the states that previous executions have seen. If past executions
have not entered edge cases, then the learned model is limited. This does
not hold for active learning, in which we send arbitrary requests in order to
reach the edge cases too. Next to this, our approach is completely black-box,
that is, we do not require any access to the application we are analysing,
apart from a network connection to send and receive QUIC messages.

Google claims that QUIC offers performance improvements [2], which is
reinforced by the product name that invites for further studies. Megyesi et
al. [12] show that in more than 40% of the studied scenarios, the page load
times significantly improved with the experimental version of QUIC com-
pared to traditional TCP and HTTP/1.x. Another field where QUIC has
improvements over existing procotols is security. It provides a secure (au-
thenticated and encrypted) channel by default. In [10], Lychev et al. report
a possibility for the handshake to fail due to an inconsistent state between
the client and the server. A formal analysis of the protocol did show that
QUIC’s multi-state key exchange meets the security properties as suggested
by the designers [5]. Based on the model that is presented in this work,
implementations might be simplified and enhanced.

2 QUIC

QUIC is a transport protocol designed to improve performance. It is built on
top of UDP in the user space, which allows for rapid deployment of changes
in QUIC.

There are two major design decisions that enable QUIC to have an im-
proved performance compared to TCP. First, it combines the cryptographic
and transport handshake to reduce the set-up latency and to provide a se-
cure channel by default. To achieve this, QUIC provides three types of
connection establishment, see Figure 1.

• Initial handshake (or Initital 1-RTT handshake): The client ini-
tially has little to no information about the server. The client starts
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with a client hello (CHLO) message which will be rejected with a REJ

message by the server. This contains a server configuration with its
long-term Diffie–Hellman public value, a certificate chain authenti-
cating the server and a timestamp. Now the client can send a new
complete CHLO message containing its initial tags and the received
ones from the REJ message. If the handshake is successful, the server
responds with an encrypted server hello (SHLO) message. The SHLO

message includes the server’s ephemeral Diffie–Hellman public value,
which is used to compute the ephemeral session key.

• Repeat handshake (or 0-RTT handshake): The client has already
seen the REJ message in some previous connection establishment. It
stored the tags from the REJ message so that it can craft the complete
CHLO message at once. Again, if the handshake is successful, the server
responds with an encrypted SHLO message. Using the initial shared key,
both parties can compute the ephemeral keys to send and receive any
further messages. If the client wishes to achieve 0-RTT latency, then
it must encrypt the request with the initial keys and send it before
it receives an answer from the server. In order to achieve this, the
server also stores the client’s nonce and its public value such that it
can compute the shared key.

• Failed 0-RTT (or Rejected 0-RTT handshake): If the server infor-
mation expired in the complete CHLO, the server responds with a REJ

message. In this case, the 0-RTT attempt failed, and the handshake
continues as if it was an initial handshake.

The second design decision to improve performance addresses the prob-
lem of head-of-line blocking. This occurs when a packet is lost in transit and
must be retransmitted. TCP’s reliable service guarantees that packets are
delivered in the same order as they have been sent. This makes TCP traffic
susceptible to head-of-line blocking: all subsequent packets must wait until
the lost packet has been received. QUIC uses multiple streams—lightweight
ordered abstractions—to reduce this problem.

Every stream is cut into frames. Various types of frames exist. First,
regular stream frames carry data used for connection establishment (e.g.
CHLO, REJ). These use the fixed stream 1. Next, acknowledgement frames,
discussed later, notify the sender about successful packet delivery. There is
also a frame used for congestion control, which we do not use in our setting
since we only have a single user on a local network. Lastly, there are two
frame types to close the connection; they are discussed later.

4



Client Server

Initial CHLO 

REJ 

Complete CHLO 

SHLO 

Encrypted Request 

Encrypted Response 

Initial 1-RTT Handshake 

Client Server

Complete CHLO 

SHLO 

Encrypted Request 

Encrypted Response 

Successful 0-RTT Handshake 

Client Server
Complete CHLO 

REJ 

Complete CHLO 

SHLO 

Encrypted Request 

Encrypted Response 

Rejected 0-RTT Handshake 

Encrypted Request 

Figure 1: Overview of different QUIC handshakes [9]

If a packet is lost, it only impacts those streams of which data was carried
in that packet. Subsequent data received on other streams is continued to
be reassembled and delivered to the application [7, 9].

3 State machine inference

To learn the state machine that is implemented for a protocol, we can use
state machine inference. This technique extracts the model from an imple-
mentation in a black-box fashion. The implementation is then called the
System Under Learning (SUL). The inference is performed using two types
of actions: 1. Sending sequences of messages (queries) to the implementa-
tion and observing the corresponding response; and 2. Resetting the SUL to
its initial state so that two queries can be executed independently. Note that
this black-box approach works on any implementation of the corresponding
protocol.

The process to infer a state machine consists of two steps. First, a learn-
ing algorithm is used to come up with a hypothesis of the implemented
state machine. For this we use the L* algorithm, originally published by
Angluin [1] and extended by Niese to apply it to Mealy machines [13]. Once
this algorithm produces a hypothesis, an equivalence algorithm is run. This
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Figure 2: State machine inference setup

algorithm verifies whether the produced model matches the implementa-
tion. This is done by sending messages to the implementation and checking
whether the responses match the hypothesis. In case of a mismatch, the
corresponding message–response sequence is provided to the learning algo-
rithm, which updates its hypothesis. Using the updated one, the algorithm
continues until finding an acceptable hypothesis. This hypothesis is then
provided to the equivalence algorithm again for verification. This process
continues until the equivalence algorithm deems the model correct and the
state machine is provided. Note again that because of the black-box ap-
proach, we can never be sure that the model we found is complete. The
equivalence algorithm sends a number of queries to the SUL and if all the
responses match the model, it is accepted. The number of queries, as well as
the minimum and maximum number of messages per query are parameters
to the algorithm.

The learning and equivalence algorithms work with abstract messages,
or symbols, that are part of the input and output alphabet. Of course, the
SUL does not understand these abstract symbols; so, a component is needed
in between the algorithms and the SUL to translate between the abstract
symbols and the actual protocol messages. This component is called the
mapper. It is basically a stateless implementation of the protocol, though it
might have to keep track of some minimal state. This might be necessary in
order to be able to successfully complete protocol sessions. For example, if
the protocol contains some kind of key exchange, the mapper needs to keep
track of the information exchanged that is necessary to compute the final
key. An overview of the setup for state machine inference can be found in
Figure 2.
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4 Setup

In this section we describe the concrete setup that we used to infer the state
machine of the QUIC server.

4.1 Learner

For the learner we made use of the tool StateLeaner1. This tool is a wrapper
around the LearnLib2 library, which implements several learning and equiv-
alence algorithms. StateLearner allows us to make use of these algorithms
with little effort. It only requires a specification of the abstract input alpha-
bet (in the form of a list of strings), after which it can be connected to our
QUIC specific mapper via a socket. After setting the desired parameters,
StateLearner can be run and will produce the final model.

4.2 Mapper

The mapper is tasked with translating the abstract symbols sent by the
learner into concrete QUIC messages that can be sent to the SUL and vice
versa for the responses from the SUL. The mapper needs to be capable of
sending messages in arbitrary order. This makes the mapper basically a
stateless QUIC client.

Initially, we tried to adapt the original QUIC client into such a mapper.
Unfortunately, this did not work as it was far from trivial to work with
the internals of the original client. We decided to create our own minimal
client, which allowed more flexibility for the analysis. The code to craft and
interpret the QUIC packets is implemented using Scapy3.

We used the limited documentation available at [3] to be able to under-
stand the packet structure of QUIC. Unfortunately, the information was not
very extensive, making it necessary to also use the original QUIC source
code as a reference. Importantly, certain frames within streams transmitted
in a packet. This made it challenging to create a minimal QUIC client. Ta-
ble 1 contains the messages that the client can construct. The source code
of the mapper is available on GitHub4.

A challenge to be resolved to infer models of QUIC, is the handling
of non-deterministic behavior. This problem arises from the difference in
behavior between regular clients and our learning setup. A regular client

1https://github.com/jderuiter/statelearner
2https://github.com/LearnLib/learnlib
3https://scapy.net/
4https://github.com/aredev/quic-scapy
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Learning
symbol

Concrete
QUIC Re-
quest

Explanation

INIT-CHLO Initial CHLO
request

Starts a fresh new connection and is used when
connecting to a previously unknown server.

FULL-CHLO Complete
CHLO Request

Uses the data from the initial CHLO with the
missing tags received in a rejection message.
This does not create a new connection ID un-
like the INIT-CHLO message. Instead, it uses
the previous connection ID. If there is no such
value, then it defaults to -1.

0RTT-CHLO Complete
CHLO request

Starts a fresh connection but uses the stored
tags which were missing from a previous initial
CHLO.

GET HTTP/2
GET Request
GET (Stream
Frame)

Makes an HTTP/2 GET request for the fixed do-
main www.example.org

CLOSE Connection
Close Frame

Notifies that the connection is being closed. If
there are streams in flight, those streams are all
implicitly closed when the connection is closed.

Table 1: QUIC messages supported by the mapper

typically goes through the protocol flow as fast as possible and knows what
messages to expect. In our learning setup, however, we send messages in
arbitrary order and do not know yet what message to expect in response to
a particular message—if any at all. As a result, we have to wait for some
time to determine what the response was or to decide whether no response
was sent by the server. However, in QUIC there is no link between requests
and responses; a retransmission to a previous request may be seen as a
response to the current request. To handle this, we use an ad-hoc solution
to infer models of QUIC. In order to increase certainty that a particular
response belongs to a given request, we repeat the request three times. We
then measure the occurrences of the response and the most frequent one
is considered to be the actual response. This does not hold in all cases.
For example, a connection can only be closed once. These exceptions are
handled with manual response filtering by isolating the request and sending
it several times. If during model learning we encounter an unseen response,
we test it manually and add it to the filter.
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Figure 3: Inferred model for the minimal input alphabet without 0-RTT

5 Analysis

We inferred models from the Google implementation of QUIC, specifically
version 39. For all experiments, we used the source code from the Chromium
repository5 with commit tag e611939ed2.

In our analysis, we make use of two different input alphabets, resulting
in two different models. The first, minimal input alphabet does not contain
the 0-RTT message. Thus, it contains all messages from Table 1 except the
0RTT-CHLO. This makes model learning easier because the mapper does not
need to store the received REJ tags. This eliminates some potential bugs.
The second, more extensive alphabet allows models in which a connection
can also be started using a previously received REJ message.

In both tests we use the same configuration for StateLearner. We use L*
as the learning algorithm. For the equivalence test, we use random queries.
The minimum input length is set at 5 and the maximum is 10. The number
of test queries that should be made in the equivalence test is set to 100.

The model inferred for the minimal alphabet can be found in Figure 3.
It was learned in 42 minutes using 104 queries. The initial state is state
0 and there are four possible transitions. If the client sends an INIT-CHLO

packet, the server responds with a REJ message. The other messages will be
ignored by the server, either by responding with a public reset (PRST) or no
response at all (message has expired, EXP). After receiving the REJ message
we get to state 1. In this state, it is possible for the client to set up new
connections by sending INIT-CHLO messages with fresh connection IDs, to

5https://github.com/chromium/chromium
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which the server will respond with a REJ message every time. The client
uses the tag/value pairs from the received REJ message and concatenates it
to its initial INIT-CHLO to get a FULL-CHLO message. If the tags are correct,
the server responds with a SHLO message. This can be seen in the transition
from state 1 to state 4. The other transition from state 1 show an erroneous
HTTP/2 GET request. However, the connection has not been established yet.
Therefore, the server does not respond to this request. The outcome of this
request is EXP. We do not see any unexpected states if we compare it with
the available documentation.

At this point, the connection between the client and the server has been
established and an HTTP/2 GET request can be made. This request results in
the HTTP response, as can be seen in the transition from state 4 to state 2. In
this last state we observe some curious behavior. We expect that it should
be possible to make multiple HTTP/2 GET requests and receive the same HTTP
response. However, this seems not to be the case. After making the first
HTTP request, the client does not receive any response from the server upon
subsequent requests. Manual inspection of the server actions showed that it
would respond the second and third time with an acknowledgement to the
request.

As this behavior is not mentioned in the documentation, we tried to find
its cause. First, it could be that requesting the same origin on the same
stream ID causes the server not to respond. However, it is not possible to
change the stream on which the request is made. QUIC uses stream 3 for
transmitting compressed headers for all other streams. This helps in pro-
cessing of the headers [3]. Another option was to change the domain name
and test whether we could make two consecutive GET requests to different
domains. However, this is not possible as the Server Name Indication (SNI)
tag binds the connection to a specific domain. We believe that the server
expects some client-side caching. Unfortunately, we were not able to verify
this.

Next, we look at the model inferred with the extended input alphabet,
including the 0-RTT, which can be found in Figure 4. It took 73 minutes and
225 queries to learn this model. Compared to the previous model, we see one
new input symbol. This is 0RTT-CHLO, which represents the message that
is the result of the concatenation of the previously received REJ tag/value
pairs to an INIT-CHLO request. Once the client has established a connection
with the server, it can use this message to set up a connection directly. We
can see this in state 4. After sending the complete CHLO request in state 1,
the client has knowledge of all the required tags and values by the server.
It can send the 0RTT-CHLO which results in a SHLO and make a HTTP2 GET
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Figure 4: Inferred model fro the extended input alphabet with 0-RTT

request. To achieve true 0-RTT, the client needs to make this request after
sending the 0RTT-CHLO without waiting for the response of the server. Also
in this model, we do not see any unexpected states.

While learning this model, we encountered some additional non-
determinism. A 0RTT-CHLO message changes in behavior over the course
of three consecutive requests. The first time it triggers a REJ response, the
second time it uses the received message to craft a complete CHLO message,
which then results in a SHLO message. The third time it also results in a
SHLO, because of the new connection ID it chooses. If we use the majority
approach to responses, a 0RTT-CHLO message always returns a SHLO—but
this is not correct. We could not send the 0RTT-CHLO three times back;
so, we have to find a different approach to achieve response certainty. We
perform some manual inspection and apply some response filtering. For
example, it is not possible to receive an HTTP response to an initial CHLO
message. This response might actually be a retransmission to a previous re-
quest. This response would then be discarded and a correct one is returned
to the learner.

6 Conclusion

In this paper, we have applied state machine inference to QUIC. To the
best of our knowledge, this is the first study to provide such a model speci-
fication. This approach works in a completely black-box fashion, making it
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suitable for any QUIC implementation regardless of implementation details,
including the programming language or the operating system. To infer mod-
els for the QUIC server, we have handled issues regarding non-deterministic
behavior. The resulting state machines are useful for manual analysis, to
understand the protocol implementation and to analyze its correctness. Al-
though we have used model learning on a particular, recent QUIC imple-
mentation, the resulting state machines could also be included in regression
testing. As a result, unintended changes in the implemented state machine
will be detected automatically.

Our method offers more insights into the QUIC server’s possible states, in
particular, those in Google’s implementation. In future work, we would like
to extend the mapper to also learn the client side of a QUIC implementation.
Moreover, as the IETF is working on a standardized version of QUIC, we
expect also other parties to implement the protocol soon. It will therefore
be possible to analyze and compare new QUIC implementations.
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