

A Secure Channel for Attribute-Based Credentials

Gergely Alpár Jaap-Henk Hoepman

Institute for Computing and Information Sciences – Digital Security Radboud University Nijmegen

November 8, 2013

G. Alpár November 8, 2013 Secure Channel for ABCs 1 / 18

Overview

ABCs and IRMA

Secure Channel

Protocol 1: ICA

Protocol 2: ABCDH

Conclusion

Attribute-Based Credential (ABC)

- Attributes
- Credential

Main Functions

Credential carrier is a smart card.

- Issuing
- Selective disclosure (SD)

(High-Level) Selective Disclosure

Figure: Selective disclosure for each credential.

G. Alpár

November 8, 2013

7 / 18

Security and Privacy of ABCs

- Security
 - Authenticity of issuer
 - Unforgeability of credentials
 - Non-transferability of attributes (credentials, user's device)
 - (Hiding of attributes)
- Privacy
 - Issuer (a.k.a. IdP) is not included in the verification
 - Issuer unlinkability
 - Multi-show unlinkability
 - Only attributes and their issuers reveal information

G. Alpár November 8, 2013 Secure Channel for ABCs

I Reveal My Attributes (IRMA)

Based on an *efficient*, *full* smart-card implementation [VA13] of Idemix [CL01, Sec12]

8 / 18

- MULTOS (Infineon SLE78)
- Issuing (5 attributes): 2.6 s
- Selective disclosure (5 ightarrow 0 attributes): 0.95 ightarrow 1.45 s
- Several credentials may be on a card
- No attribute property proofs (speed, simplicity)
- No equality proof (owing to the small RAM)
 - No proof of equal secret keys

To bind SD proofs, we need a secure channel.

G. Alpár November 8, 2013 Secure Channel for ABCs

Required: Secure Channel

There are a few requirements:

- Confidentiality, to hide
 - Selectively disclosed attributes
 - Requests from a verifier
 - Issuers of credentials
- Binding (without equality proof)
 - To bind proofs
 - To bind verification and issuance
- Authentication (for the key exchange)
 - Verifier's terminal public-key certificate: pk, "allowed attributes'
 - Card

BUT: the card *shouldn't* be identified!

G. Alpár November 8, 2013 Secure Channel for ABCs 10 / 18

Authentication Without Identification

• Selective disclosure (one credential):

$$\mathsf{SD}\left((a_i)_{i\in\mathcal{D}};n\right):=\mathsf{SPK}\left\{\mathsf{secret}\;\mathsf{in}\;C:(a_i)_{i\in\mathcal{D}}\in C\right\}(n)$$

- Preserving anonymity (only attributes reveal information)
- Verifying card validity
- · Binding this validity proof to the channel
- Valid card options:
 - A "validity" attribute; e.g.,

$$SD((a_1); n)$$
,

• A credential; possibly "empty proof"

$$SD(\emptyset; n)$$
,

G. Alpár

November 8, 2013

Secure Channel for ABCs

Implicit Card Authentication (ICA)

Diffie-Hellman Channel Protocol (ABCDH)

17 / 18

Conclusion

- A secure channel between an anonymous card and a verifier
- A security model
- Two protocols
- Implicit: ideal revocation
- Yet to develop efficient revocation techniques for ABCs
- Non-identifying authenticity
- Interacting with (potentially) untrusted entities (M2M, H2H)

Thank you for your attention!

Gergely Alpár
http://www.cs.ru.nl/~gergely
gergely@cs.ru.nl

IRMA project: https://www.irmacard.org

References

- Mihir Bellare and Phillip Rogaway, Entity authentication and key distribution, Advances in Cryptology—CRYPTO'93, Springer, 1994, pp. 232–249.
- Jan Camenisch, Nathalie Casati, Thomas Gross, and Victor Shoup, *Credential authenticated identification and key exchange*, Advances in Cryptology–CRYPTO 2010, Springer, 2010, pp. 255–276.
- Jan Camenisch and Anna Lysyanskaya, An Efficient System for Non-transferable Anonymous Credentials with Optional Anonymity Revocation, Advances in Cryptology EUROCRYPT 2001 (Birgit Pfitzmann, ed.), LNCS, vol. 2045, Springer Berlin / Heidelberg, 2001, pp. 93–118.
- Security Team, IBM Research, Specification of the Identity Mixer Cryptographic Library, version 2.3.4, Tech. report, IBM Research, Zürich, February 2012.
- Pim Vullers and Gergely Alpár, Efficient Selective Disclosure on Smart Cards Using Idemix, Policies and Research in Identity Management (IDMAN) (Simone Fischer-Hübner, Elisabeth de Leeuw, and Chris Mitchell, eds.), IFIP AICT 396, Springer, 2013, pp. 53–67.

G. Alpár November 8, 2013 Secure Channel for ABCs 18 / 18