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In this paper, I establish the categorical structure necessary to interpret dependent inductive and
coinductive types. It is well-known that dependent type theories à la Martin-Löf can be interpreted
using fibrations. Modern theorem provers, however, are based on more sophisticated type systems
that allow the definition of powerful inductive dependent types (known as inductive families) and,
somewhat limited, coinductive dependent types. I define a class of functors on fibrations and show
how data type definitions correspond to initial and final dialgebras for these functors. This description
is also a proposal of how coinductive types should be treated in type theories, as they appear here
simply as dual of inductive types. Finally, I show how dependent data types correspond to algebras
and coalgebras, and give the correspondence to dependent polynomial functors.

1 Introduction

It is a well-established fact that the semantics of inductive data types without term dependencies can be
given by initial algebras, whereas the semantics of coinductive types can be given by final coalgebras.
However, for types that depend on terms, the situation is not as clear-cut.

Partial answers for inductive types can be found in [3, 8, 9, 11, 15, 20, 21], where semantics have
been given for inductive types through polynomial functors in the category of set families or in locally
Cartesian closed categories. Similarly, semantics for non-dependent coinductive types have been given
in [1, 2, 6] by using polynomial functors on locally Cartesian closed categories. Finally, an interpretation
for Martin-Löf type theory (without recursive type definitions) has been given in [22] and corrected
in [17].

So far, we are, however, lacking a full picture of dependent coinductive types that arise as duals
of dependent inductive types. To actually get such a picture, I extend in the present work Hagino’s
idea [14], of using dialgebras to describe data types, to dependent types. This emphasises the actual
structure behind (co)inductive types as their are used in systems like Agda.1 Moreover, dialgebras allow
for a direct interpretation of types in this categorical setup, without going through translations into, for
example, polynomial functors.

Having defined the structures we need to interpret dependent data types, it is natural to ask whether
this structure is actually sensible. The idea, pursued here, is that we want to obtain initial and final
dialgebras from initial algebras and final coalgebras for polynomial functors. This is achieved by showing
that the dialgebras in this work correspond to algebras and coalgebras, and that their fixed points can be
constructed from fixed points of polynomial functors (in the sense of [12]).

1It should be noted that, for example, Coq treats coinductive types differently. In fact, the route taken in Agda with copatterns
and in this work is much better behaved.
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To summarise, this paper makes the following contributions. First, we get a precise description of
the categorical structure necessary to interpret inductive and coinductive data types, which can be seen as
categorical semantics for an extension of the inductive and (copattern-based) coinductive types of Agda.
The second contribution is a reduction to fixed points of polynomial functors.

What has been left out, because of space constraints, is an analysis of the structures needed to obtain
induction and coinduction principles. Moreover, to be able to get a sound interpretation, with respect to
type equality of dependent types, we need to require a Beck-Chevalley condition. This condition can be
formulated for general (co)inductive types, but is also not given here.

Related work As already mentioned, there is an enormous body of work on obtaining semantics for
(dependent) inductive, and to some extent, coinductive types, see [3, 11, 15, 21]. In the present
work, we will mostly draw from [2] and [12]. Categorical semantics for basic Martin-Löf type
theory have been developed, for example, in [17]. An interpretation, closer to the present work, is
given in terms of fibrations by Jacobs [18]. In the first part of the paper, we develop everything on
rather arbitrary fibrations, which makes the involved structure more apparent. Only in the second
part, where we reduce data types to polynomial functors, we will work with slice categories, since
most of the work on polynomial functors in that setting [2, 12]. Last, but not least, the starting idea
of this paper is of course inspired by the dialgebras of Hagino [14]. These have also been applied
to give semantics to induction-induction [4] schemes.

Outline The rest of the paper is structured as follows. In Section 2, we analyse a typical example of
a dependent inductive type, namely vectors, that is, lists indexed by their length. We develop
from this example a description of inductive and coinductive dependent data types in terms of
dialgebras in fibrations. This leads to the requirements on a fibration, given in Section 3, that
allow the interpretation of data types. In the same section, we show how dependent and fibre-
wise (co)products arise canonically in such a structure, and we give an example of a coinductive
type (partial streams) that can only be treated in Agda through a cumbersome encoding. The
reduction of dependent data types to polynomial functors is carried out in Section 4, and finish
with concluding remarks in Section 7.

Acknowledgement I would like to thank the anonymous reviewers, who gave very valuable feedback
and pointed me to some more literature.

2 Fibrations and Dependent Data Types

In this section we introduce dependent data types as initial and final dialgebras of certain functors on
fibres of fibrations. We go through this setup step by step.

Let us start with dialgebras and their homomorphisms.

Definition 2.1. Let C and D be categories and F,G : C→D functors. An (F,G)-dialgebra is a morphism
c : FA→GA in D, where A is an object in C. Given dialgebras c : FA→GA and d : FB→GB, a morphism
h : A→B is said to be a (dialgebra) homomorphism from c to d, if Gh ◦ c= d ◦ Fh. This allows us to form
a category DiAlg (F,G), in which objects are pairs (A,c) with A ∈ C and c : FA→ GA, and morphisms
are dialgebra homomorphisms.

The following example shows that dialgebras arise naturally from data types.

Example 2.2. Let A be a set, we denote by An the n-fold product of A, that is, lists of length n. Vectors
over A are given by the set family VecA = {An}n∈N, which is an object in the category SetN of families
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indexed by N. In general, this category is given for a set I by

SetI =

{
objects X = {Xi}i∈I

morphisms f = { fi : Xi→ Yi}i∈I
.

Vectors come with two constructors: nil : 1→ A0 for the empty vector and prefixing consn : A×An→
An+1 of vectors with elements of A. We note that nil : {1} → {A0} is a morphism in the category Set1

of families indexed by the one-element set 1, whereas cons = {consn} : {A×An}n∈N→ {An+1}n∈N is a
morphism in SetN.

Let F,G : SetN→ Set1×SetN be the functors into the product of Set1 and SetN with

F(X) = ({1},{A×Xn}n∈N) G(X) = ({X0},{Xn+1}n∈N).

Using these, we find that (nil,cons) : F(VecA)→G(VecA) is an (F,G)-dialgebra, in fact, it is the initial
(F,G)-dialgebra.

Definition 2.3. An (F,G)-dialgebra c : FA→GA is called initial, if for every (F,G)-dialgebra d : FB→
GB there is a unique homomorphism h from c to d, the inductive extension of d. Dually, (A,c) is final,
provided there is a unique homomorphism h from any other dialgebra (B,d) into c. Here, h is the
coinductive extension of d.

Having found the algebraic structure underlying vectors, we continue by exploring how we can han-
dle the change of indices in the constructors. It turns out that this is most conveniently done by using
fibrations.

Definition 2.4. Let P : E→ B be a functor, where the E is called the total category and B the base
category. A morphism f : A→ B in E is said to be cartesian over u : I→ J, provided that i) P f = u, and
ii) for all g : C→ B in E and v : PC→ I with Pg = u◦ v there is a unique h : C→ A such that f ◦h = g.
For P to be a fibration, we require that for every B∈E and u : I→ PB in B, there is a cartesian morphism
f : A→ B over u. Finally, a fibration is cloven, if it comes with a unique choice for A and f , in which
case we denote A by u∗B and f by uB, as displayed in the diagram on the right.

C

u∗B B E

PC

I PB B

g

!h
uB

PPg

v
u

At first sight, this definition is arguably intimidating to someone
who has never been exposed to fibrations. The idea is that the base
category B contains as objects the indices of objects in E, and as
morphisms substitutions. The result of carrying out a substitution on
indices, is captured by the Cartesian lifting property. Let us illustrate
this on set families. We define Fam(Set) to be the category

Fam(Set) =

{
objects (I,X : I→ Set), I a set
morphisms (u, f ) : (I,X)→ (J,Y ) with u : I→ J and { fi : Xi→ Yu(i)}i∈I

in which composition is defined by

(v,g)◦ (u, f ) =
(

v◦u,{Xi
fi−→ Yu(i)

gu(i)−−→ Zv(u(i))}i∈I

)
.

A concrete object is the pair (N,VecA), where VecA is the family of vectors from Ex. 2.2.
We define a cloven fibration on set families. Let P : Fam(Set)→ Set be the projection on the first

component, that is, P(I,X) = I and P(u, f ) = u. For a family (J,Y ) and a function u : I→ J, we define
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u∗Y = {Yu(i)}i∈I and uY =
(
u,{id : Yu(i)→ Yu(i)}i∈I

)
. Then, for each (w,g) : (K,Z)→ (J,Y ) and v : K→ I

with w = u ◦ v, we can define the morphism (K,Z)→ (I,u∗Y ) to be (v,h) with hk : Zk → Yu(v(k)) and
hk = gk, since u(v(k)) = w(k).

An important concept is the fibre above an object I ∈ B, given by the category

PI =

{
objects A ∈ E with P(A) = I
morphisms f : A→ B with P( f ) = idI

.

In a cloven fibration, we can use the Cartesian lifting to define for each u : I→ J in B a functor u∗ : PJ→
PI , together with natural isomorphisms IdPI

∼= id∗I and u∗ ◦v∗ ∼= (v◦u)∗, see [18, Sec. 1.4]. The functor
u∗ is called reindexing along u.

Assumption 2.5. We assume all fibrations to be cloven in this work.

We are now in the position to take a more abstract look at our initial example.

Example 2.6. First, we note that the fibre of Fam(Set) above I is isomorphic to SetI . Let then z : 1→N
and s : N→ N be z(∗) = 0 and s(n) = n+ 1, giving us reindexing functors z∗ : SetN → Set1 and s∗ :
SetN→ SetN. By their definition, z∗(X) = {X0} and s∗(X) = {Xn+1}n∈N, hence the functor G, we used
to describe vectors as dialgebra, is G = 〈z∗,s∗〉. In Sec. 3, we address the structure of F .

We generalise this situation to account for arbitrary data types.

Definition 2.7. Let P : E→ B be a fibration. A (dependent) data type signature, parameterised by a
category C, is a pair (F,u) consisting of

• a functor F : C×PI → D with D = ∏
n
k=1 PJk for some n ∈ N and Jk, I ∈ B, and

• a family u of n morphisms in B with uk : Jk→ I for k = 1, . . . ,n.

A family u as above induces a functor 〈u∗1, . . . ,u∗n〉 : PI → D, which we will often denote by Gu. This
will enable us to define data types for such signatures, but let us first look at an example for the case
C = 1, that is, if F : PI → D is not parameterised.

Example 2.8. A fibration P : E→ B is said to have dependent coproducts and products, if for each
f : I→ J in B there are functors

∐
f and ∏ f from PI to PJ that are respectively left and right adjoint to

f ∗. For each X ∈ PI , we can define a signature, such that
∐

f (X) and ∏ f (X) arise as data types for these
signatures, as follows. Define the constant functor

KX : PJ → PI KX(Y ) = X KX(g) = idX .

Then (KX , f ) is the signature for coproducts and products. For example, the unit η of the adjunction∐
f a f ∗ will be the initial (KX , f ∗)-dialgebra ηX : KX(

∐
f (X))→ f ∗(

∐
f (X)), using that KX(

∐
f (X)) =

X . We come back to this in Ex. 2.10.

To define data types in general, we allow them to have additional parameters, that is, we allow
signatures (F,u), where F : C×PI→D and C is a non-trivial category. Let us first fix some notation. We
put F(V,−)(X) = F(V,X) for V ∈ C, which is a functor PI → D. Assume that the initial (F(V,−),Gu)-
dialgebra αV : F(V,ΦV )→ Gu(ΦV ) and final (Gu,F(V,−))-dialgebra ξV : Gu(ΩV )→ F(V,ΩV ) exist.
Then we can define functors µ(F̂ , Ĝu) : C→ PI and ν(Ĝu, F̂) : C→ PI , analogous to [19], by

µ(F̂ , Ĝu)(V ) = ΦV µ(F̂ , Ĝu)( f : V →W ) = (αW ◦F( f , idΦW ))

ν(Ĝu, F̂)(V ) = ΩV ν(Ĝu, F̂)( f : V →W ) = (F( f , idΩV )◦ξV )
∼ ,
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where the bar and tilde superscripts denote the inductive and coinductive extensions, that is, the unique
homomorphism given by initiality and finality, respectively. The reason for the notation µ(F̂ , Ĝu) and
ν(Ĝu, F̂) is that these are initial and final dialgebras for the functors

F̂ , Ĝu : [C,PI]→ [C,D] F̂(H) = F ◦ 〈IdC,H〉 Ĝu(H) = Gu ◦H

on functor categories. That the families αV and ξV are natural in V follows directly from the definition of
the functorial action as (co)inductive extensions. Hence, they give rise to dialgebras α : F̂(µ(F̂ , Ĝu))⇒
Ĝu(µ(F̂ , Ĝu)) and ξ : Ĝu(ν(Ĝu, F̂))⇒ F̂(ν(Ĝu, F̂)).

Definition 2.9. Let (F,u) be a data type signature. An inductive data type (IDT) for (F,u) is an initial
(F̂ , Ĝu)-dialgebra with carrier µ(F̂ , Ĝu). Dually, a coinductive data type (CDT) for (F,u) is a final
(Ĝu, F̂)-dialgebra, note the order, with the carrier being denoted by ν(Ĝu, F̂). If C = 1, we drop the hats
from the notation.

Example 2.10. We turn the definition of the product and coproduct from Ex. 2.8 into actual functors. The
observation we use is that the projection functor π1 : PI ×PJ → PI gives us a “parameterised” constant
functor: KJ

A = π1(A,−). If we are given f : I → J in B, then we use the signature (π1, f ), and define∐
f = µ(π̂1, f̂ ∗) and ∏ f = ν( f̂ ∗, π̂1). We check the details of this definition in Thm. 3.2.

3 Data Type Completeness

We now define a class of signatures and functors that should be seen as categorical language for, what is
usually called, strictly positive types [3], positive generalised abstract data types [15] or descriptions [8,
9]. Note, however, that none of these treat coinductive types. A non-dependent version of strictly positive
types that include coinductive types are given in [2].

Let us first introduce some notation. Given categories C1 and C2 and an object A ∈C1, we denote by
KC1

A : C1→ C2 the functor mapping constantly to A. The projections on product categories are denoted,
as usual, by πk : C1×C2→ Ck. Using these notations, we can define what we understand to be a data
type by mutual induction.

Definition 3.1. A fibration P : E→ B is data type complete, if all IDTs and CDTs for strictly positive
signatures (F,u) ∈S exist, where S is given by the following rule.

D = ∏
n
i=1 PJi F ∈DC×PI→D u = (u1 : J1→ I, . . . ,un : Jn→ I)

(F,u) ∈SC×PI→D

The functors in D are given by the following rules, assuming that P is data type complete.

A ∈ PJ

KPI
A ∈DPI→PJ

C = ∏
n
i=1 PIi

πk ∈DC→PIk

f : J→ I in B
f ∗ ∈DPI→PJ

F1 ∈DPI→PK F2 ∈DPK→PJ

F2 ◦F1 ∈DPI→PJ

Fi ∈DPI→PJi
i = 1,2

〈F1,F2〉 ∈DPI→PJ1×PJ2

(F,u) ∈SC×PI→D

µ(F̂ , Ĝu) ∈DC→PI

(F,u) ∈SC×PI→D

ν(Ĝu, F̂) ∈DC→PI

This mutual induction is well-defined, as it can be stratified in the nesting of fixed points.

As a first sanity check, we show that a data type complete fibration has, both, fibrewise and dependent
(co)products. These are instances of the following, more general, result.
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Theorem 3.2. Suppose P : E→B is a data type complete fibration. Let C=∏
m
i=1 PKi and π1 : C×PI→C

be the first projection. If Gu : PI→C is such that (π1,u) is a signature, then we have the following adjoint
situation:

µ(π̂1, Ĝu) a Gu a ν(Ĝu, π̂1).

Proof. We only show how the adjoint transposes are obtained in the case of inductive types. Concretely,
for a tuple V ∈ C and an object A ∈ PI , we need to prove the correspondence

f : µ(π̂1, Ĝu)(V )−→ A in PI

g : V −→ GuA in C

Let us use the notation H = µ(π̂1, Ĝu), then the choice of π1 implies that the initial (π̂1, Ĝu)-dialgebra
is of type α : IdC ⇒ Gu ◦H, since π̂1(H) = π1 ◦ 〈IdC,H〉 = IdC and Ĝu(H) = Gu ◦H. This allows

us to use as transpose of f the morphism V αV−→ Gu(H(V ))
Gu f−−→ GuA. As transpose of g, we use the

inductive extension of π̂1(KC
A )(V ) = V

g−→ GuA = Ĝu(KC
A )(V ). The proof that this correspondence is

natural and bijective follows straightforwardly from initiality. For coinductive types, the result is given
by duality.

This gives fibrewise coproducts by +I = µ(π̂1, Ĝu) and products by ×I = ν(Ĝu, π̂1), using u =
(idI, idI). Dependent (co)products along f : I→ J use u = f , see Ex. 2.10.

There are many more examples of data types that exist in a data type complete fibration. We describe
three fundamental ones.
Example 3.3. 1. The first example are initial and final objects inside the fibres PI . Since an initial

object is characterised by having a unique morphism to every other object, we define it as an initial
dialgebra, namely 0I = µ(Id, id∗I ). Then there is, for each A ∈ PI , a unique morphism !A : 0I → A
given as inductive extension of idA. Dually, we define the terminal object 1I in PI to be ν(id∗I , Id)
and for each A the corresponding unique morphism !A : A→ 1I as the coinductive extension of idA.

Note that this also follows from Thm. 3.2, if we require that (co)inductive data types also exist
if C = 1 (the empty product) and u = {} (empty family of morphisms). This allows us to define
the initial and final object as functors 1→ PI .

2. There are several definable notions of equality, provided that B has binary products. A generic one
is propositional equality Eq : PI→ PI×I , the left adjoint to the contraction functor δ ∗ : PI×I→ PI ,
which is induced by the diagonal δ : I → I × I. Thus it is given by the dependent coproduct
Eq =

∐
δ

and the constructor reflX : X → δ ∗(EqX).

3. Assume that there is an object Aω in B of streams over A, together with projections to head and
tail. Then we can define bisimilarity between streams as CDT for the signature

F,Gu : P(Aω )2 → P(Aω )2×P(Aω )2

F =
〈
(hd×hd)∗ ◦KEq(A),(tl× tl)∗

〉
and u = (idAω×Aω , idAω×Aω ).

Note that there is a category Rel(E) of binary relations in E by forming the pullback of P along
∆ : B→ B with ∆(I) = I× I, see [16]. Then we can reinterpret F and Gu by

F,Gu : Rel(E)Aω → Rel(E)Aω ×Rel(E)Aω

F = 〈hd# ◦KEq(A), tl
#〉 and Gu = 〈id#

Aω , id#
Aω 〉,
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where (−)# is reindexing in Rel(E). The final (Gu,F)-dialgebra is a pair of morphisms

(hd∼A : BisimA→ hd#(Eq(A)), tl∼A : BisimA→ tl#(BisimA)).

BisimA should be thought of to consist of all bisimilarity proofs. Coinductive extensions yield the
usual coinduction proof principle, allowing us to prove bisimilarity by establishing a bisimulation
relation R ∈ Rel(E)Aω together with h : R→ hd#(Eq(A)) and t : R→ tl#(R), saying that the heads
of related streams are equal and that the tails of related streams are again related.

The last example, we give, shall illustrate the additional capabilities of CDTs in the present setup
over those currently available in Agda. However, one should note that coinductive types in Agda provide
extra power in the sense that destructors can refer to each other. This is equivalent to having a strong
coproduct [18, Sec. 10.1 and Def. 10.5.2], which we do not require in the setup of this work and thus A
proof of this equivalence is left out because of space constraints.

Example 3.4. A partial stream is a stream together with a, possibly infinite, depth up to which it is
defined. Assume that there is an object N∞ of natural numbers extended with infinity and a successor
map s∞ : N∞→ N∞ in B, we will see how these can be defined below. Then partial streams correspond
to the following type declaration.

codata PStr (A : Set) : N∞→ Set where
hd : (n : N∞)→ PStr (s∞ n)→ A
tl : (n : N∞)→ PStr (s∞ n)→ PStr n

In an explicit, set-theoretic notation, we can define them as a family indexed by n ∈ N∞:

PStr(A)n = {s : N⇀ A | ∀k < n.k ∈ doms∧∀k ≥ n.k 6∈ doms},

where the order on N∞ is given by extending that of the natural numbers with ∞ as strict top element,
i.e., such that k < ∞ for all k ∈ N.

The interpretation of PStr(A) for A∈P1 in a data type complete fibration is given, similarly to vectors,
as the carrier of the final (Gu,F)-dialgebra, where

Gu,F : PN∞ → PN∞×PN∞ Gu = 〈s∗∞,s∗∞〉 F =
〈

KN∞

A
, Id
〉

and A = !∗N∞(A) ∈ PN∞ is the weakening of A using !N∞ : N∞ → 1. The idea of this signature is that
the head and tail of partial streams are defined only on those partial streams that are defined in, at
least, the first position. On set families, partial streams are given by the dialgebra ξ = (hd, tl) with
hdn : PStr(A)(s∞ n)→ A and tln : PStr(A)(s∞ n)→ PStr(A)n for every n ∈ N∞.

We can make this construction functorial in A, using the same “trick” as for sums and products. To
this end, we define the functor H : P1×PN∞ → PN∞ ×PN∞ with H = 〈!N∞ ◦π1,π2〉, where π1 and π2
are corresponding projection functors, so that H(A,X) = F(X). This gives, by data type completeness,
rise to a functor ν(Ĝu, F̂) : PN∞ → PN∞ , which we denote by PStr, together with a pair (hd, tl) of natural
transformations.

We have seen in the examples above that we would often like to use a data type again as index, which
means that we need a mechanism to turn a data type in E into an index in B. This is provided by, so
called, comprehension.
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Definition 3.5 (See [18, Lem. 1.8.8, Def. 10.4.7] and [10]). Let P : E→ B be a fibration. If each fibre
PI has a final object 1I and these are preserved by reindexing, then there is a fibred final object functor
1(−) : B→ E. (Note that then P(1I) = I.) P is a comprehension category with unit (CCU), if 1(−) has a
right adjoint {−} : E→ B, the comprehension. This gives rise to a functor P : E→ B→ into the arrow
category over B, by mapping A 7→ P(εA) : {A}→ P(A), where ε : 1{−}⇒ Id is the counit of 1(−) a {−}.
We often denote P(A) by πA and call it the projection of A. Finally, P is said to be a full CCU, if P is
full.

Note that, in a data type complete category, we can define final objects in each fibre, the preservation
of them needs to be required separately.

Example 3.6. In Fam(Set), the final object functor is given by 1I = (I,{1}i∈I), where 1 is the singleton
set. Comprehension is defined to be {(I,X)} =

∐
i∈I Xi and the projections πI map then an element of∐

i∈I Xi to its component i ∈ I.

Using comprehension, we can give a general account to dependent data types.

Definition 3.7. We say that a fibration P : E→ B is a data type closed category (DTCC), if it is a CCU,
has a terminal object in B and is data type complete.

As already mentioned, the purpose of introducing comprehension is that it allows us to use data
types defined in E again as index. The terminal object in B is used to introduce data types without
dependencies, like the natural numbers. Let us reiterate on Ex. 3.4.

Example 3.8. Recall that we assumed the existence of extended naturals N∞ and the successor map s∞

on them to define partial streams. We are now in the position to define, in a data type closed category,
everything from scratch as follows.

Having defined + : P1×P1→ P1, see Thm. 3.2, we put N∞ = ν(Id,1+ Id) and find the predecessor
pred as the final dialgebra on N∞. The successor s∞ arises as the coinductive extension (N∞,κ2)→
(N∞,pred), where κ2 is the coproduct inclusion. Partial streams PStr : P{N∞}→ P{N∞} are then given, as
in Ex. 3.4, by the final (Ĝ, F̂)-dialgebra with G = 〈{s∞}∗,{s∞}∗〉 and F = 〈!N∞ ◦π1,π2〉.

4 Constructing Data Types

In this section, we show how some data types can be constructed through polynomial functors, where I
draw from the vast amount of work on polynomial functors that exists in the literature, see [2, 12]. The
construction works by, first, reducing dialgebras to (co)algebras and, second, constructing the necessary
initial algebras and final coalgebras as fixed points of polynomial functors analogously to the construc-
tion of strictly positive types in [2]. This result works thus far only for data types that, if at all, only
use dependent coinductive types at the top-level. Nesting of dependent inductive and non-dependent
coinductive types works, however, in full generality.

Before we come to polynomial functors and their fixed points, we show that inductive and coinductive
data types actually correspond to initial algebras and final coalgebras, respectively.

Theorem 4.1. Let P : E→ B be a fibration with fibrewise coproducts and dependent sums. If (F,u) with
F : PI → PJ1×·· ·×PJn is a signature, then there is an isomorphism

DiAlg (F,Gu)∼= Alg

(∐
u1

◦F1 +I · · ·+I

∐
un

◦Fn

)
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where Fk = πk ◦F is the kth component of F. In particular, existence of inductive data types and initial
algebras coincide. Dually, if P has fibrewise and dependent products, then

DiAlg (Gu,F)∼= CoAlg

(
∏
u1

◦F1×I · · ·×I ∏
un

◦Fn

)
.

In particular, existence of coinductive data types and final coalgebras coincide.

Proof. The first result is given by a simple application of the adjunctions
∐n

k=1 a ∆n between the (fibre-
wise) coproduct and the diagonal, and

∐
uk
a u∗k :

FX −→ GuX (in PJ1×·· ·×PJn)

(
∐

u1
(F1X), . . . ,

∐
un
(FnX))−→ ∆nX (in Pn

I )∐n
k=1
∐

uk
(FkX)−→ X (in PI)

That (di)algebra homomorphisms are preserved follows at once from naturality of the used Hom-set
isomorphisms. The correspondence for coinductive types follows by duality.

To be able to reuse existing work, we work in the following with the codomain fibration cod : B→→B
for a category B with pullbacks. Moreover, we assume that B is locally Cartesian closed, which is
equivalent to say that cod : B→ → B is a closed comprehension category, that is, it is a full CCU with
products and coproducts, and B has a final object, see [18, Thm 10.5.5]. Finally, we need disjoint
coproducts in B, which gives us an equivalence B/I+J ' B/I×B/J, see [18, Prop. 1.5.4].

Definition 4.2. A dependent polynomial P indexed by I on variables indexed by J is given by a triple of
morphisms

B A

J I
s

f
t

If J = I = 1, f is said to be a (non-dependent) polynomial. The extension of P is given by the composite

JPK = B/J
s∗−→ B/B

∏ f−→ B/A

∐
t−→ B/I,

which we denote by J f K if f is non-dependent. A functor F : B/J → B/I is a dependent polynomial
functor, if there is a dependent polynomial P such that F ∼= JPK.

Remark 4.3. Note that polynomials are called containers by Abbott et al. [2, 1], and a polynomial P =

1 !←− B
f−→ A !−→ 1 would be written as A . f . Container morphisms, however, are different from those of

dependent polynomials, as the latter correspond strong natural transformations [12, Prop. 2.9], whereas
the former are in exact correspondence with all natural transformations between extensions [2, Thm.
3.4].

Because of this relation, we will apply results for containers that do not involve morphisms to poly-
nomials. In particular, [2, Prop. 4.1] gives us that we can construct final coalgebras for polynomial
functors from initial algebras for polynomial functors. The former are called M-types and are denoted by
M f for f : A→ B, whereas the latter are W-types and denoted by Wf .
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Assumption 4.4. We assume that B is closed under the formation of W-types, thus is a Martin-Löf
category in the terminology of [2].

By the above remark, B then also has all M-types.
Analogously to how [11, Thm. 12] extends [21, Prop. 3.8], we extend here [6, Thm 3.3]. As it was

pointed out by one reviewer, this result is actually in [5], the published version of [6].

Theorem 4.5. If B has finite limits, then every dependent polynomial functor has a final coalgebra in
B/I.

Proof. Let P = I s←− B
f−→ A t−→ I be a dependent polynomial, we construct, analogously to [11] the final

coalgebra V of JPK as an equaliser as in the following diagram, in which f × I is a shorthand for B×
I

f×idI−−−→ A× I and M f×I is the carrier of the final J f × IK-coalgebra.

V M f M f×I
g

u1

u2

First, we give u1 and u2, whose definitions are summarised in the following diagrams.

M f M f×I

J f K(M f )

J f × IK(M f ) J f × IK(M f×I)

u1

ξ f

ξ f×I

pMf

J f×IK(u1)

M f M f×I M f×I

J f × IK(M f×I)

J f × IK(M f×I×B) J f × IK(M f×I)

u1

u2

ξ f×I

ψ

ξ f×I

ΣA×IK

J f×IK(φ)

These diagrams shall indicate that u1 is given as coinductive extensions and ψ as one-step definition
(which can be defined using coproducts), using that M f×I is a final coalgebra. The maps involved in
the diagram are given as follows, which we sometimes spell out in the internal language of cod, see for
example [1], as this is sometimes more readable.

• p : ΣAΠ f ⇒ ΣA×IΠ f×I is the natural transformation that maps (a,v) to (a, t(a),v). It is given by
the extension Jα,β K : J f K⇒ J f × IK of the morphism of polynomials [12]

B A

B× I A× I

f

β α

f×I

where α = 〈id, t〉 and β = 〈id, t ◦ f 〉.

• The map K : Π f×I(M f×I)→Π f×I(M f×I×B) is given as transpose of 〈εM f×I ,π1◦π〉 : ( f × I)∗(Π f×I(M f×I))→
M f×I×B, where ε is the counit of the product (evaluation) and π is the context projection. In the
internal language K is given by K v = λ (b, i).(v(b, i),b).
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• φ : M f×I×B→M f×I is constructed as coinductive extension as in the following diagram

M f×I×B M f×I

J f × IK(M f×I)×B

J f × IK(M f×I×B) J f × IK(M f×I)

ξ f×I×id

φ

ξ f×I

e

J f×IK(φ)

Here e is given by e((a, i,v),b) = (a,sb,λ (b′,sb).(v(b′, i),b′)).

The important property, which allows us to prove that ξ f : M f → J f K(M f ) restricts to ξ ′ : V → JPK(V )
and that ξ ′ is a final coalgebra, is that x : Vi ⇐⇒ ξ f x = (a : A,v : Π f M f ), t a = i and (∀b : B. f b = a⇒
vb : Vsb). The direction from left to right is given by simple a calculation, whereas the other direction
can be proved by establishing a bisimulation and between u1 x and u2 x.

Hence V , given as a subobject of M f , is indeed the final JPK-coalgebra in B/I.

Combining this with [2, Prop. 4.1], we have that the existence of final coalgebras for dependent
polynomial functors follows from the existence of initial algebras of (non-dependent) polynomial func-
tors. This gives us the possibility of interpreting non-nested fixed points in any Martin-Löf category as
follows.

First, we observe that the equivalence B/I+J ' B/I×B/J allows us to rewrite the functors from
Thm. 4.1 to a form that is closer to polynomial functors:∐

u1

◦F1 +I · · ·+I

∐
un

◦Fn ∼=
∐

u

F ′

∏
u1

◦F1×I · · ·×I ∏
un

◦Fn ∼= ∏
u

F ′,

where J = J1 + · · ·+ Jn, u : J→ I is given by the cotupling [u1, . . . ,un] and F ′ : B/I→ B/J is given by
F ′ = 〈F1, . . . ,Fn〉 : B/I→∏

n
i=1 B/Ji ' B/J. Thus, if we establish that F ′ is a polynomial functor, we get

that
∐

u F ′ and ∏u F ′ are polynomial functors, see [1]. For non-nested fixed points, that is, Fk is either a
constant functor, given by composition or reindexing, this is immediate, as dependent polynomials can
be composed and are closed under constant functors and reindexing, see [12].

We say that a dependent polynomial is parametric, if it is of the following form.

K + I B A Is f t

Such polynomials represent polynomial functors B/K×B/I→B/I and allow us speak about nested fixed
points just as we have done in Sec. 2. What thus remains is that fixed points of parametric dependent
polynomial functors, in the sense of Sec. 2, are again dependent polynomial functors.

The proof of this is literally the same as that for containers [1, Sec. 5.3-5.5] or non-dependent poly-
nomials [11], except that we need to check some extra conditions regarding the indexing.

Theorem 4.6. Initial algebras and final coalgebras of parametric, dependent polynomial functors are
again dependent polynomial functors.
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Proof. Let

F = J B A I

G = I D C I

s f t

u g v

be dependent polynomials and H(X ,Y ) = JFK×I JGK be the parametric dependent polynomial functor in
question. Assuming that there is a polynomial

J Q P Ix h y

so that for K =
∐

y ∏h x∗ we have K(X)∼= H(X ,K(X)), we can calculate, as in [1], that we need to have
isomorphisms

ψ : A×I JGK(P)∼= P

ϕ : B+
∐

g

ε
∗Q∼= ψ

∗(Q)

where B+
∐

g ε∗Q is, as in loc. cit., is an abbreviation for Ba +
∐

d:Dc
Q(r d) in the context (a,(c,r)) :

A×I JGK(P). If K(X) shall be an initial algebra, ψ must an initial algebra as well, whereas if K(X)
shall be a final coalgebra, ψ must be one. The isomorphism ϕ is given as the initial (ψ−1)∗(B+

∐
g ε∗)-

algebra in both cases, see [1]. This we use to define x : Q→ J as the inductive extension of the map
[s,π2] : (ψ−1)∗(B+

∐
g ε∗ J)→ J. Given these definitions, the following diagrams commute.

A×I JGK(P) P

I

ψ

y

B+
∐

g ε∗Q ψ∗Q

J

ϕ

[s,x◦π2]

This gives us that the isomorphism given in the proofs of [1, Prop. 5.3.1, Prop. 5.4.2] also work for the
dependent polynomial case. The rest of the proofs in loc. cit. go then through, as well. Thus K is in both
cases again given by a dependent polynomial.

Summing up, we are left with the following result.

Corollary 4.7. All data types for strictly positive signatures can be constructed in any Martin-Löf cate-
gory.

Let us see, by means of an example, how the construction in the proof of Thm. 4.5 works intuitively.

Example 4.8. Recall from Ex. 3.4 that partial streams are given by the declaration

codata PStr (A : Set) : N∞→ Set where
hd : (n : N∞)→ PStr (s∞ n)→ A
tl : (n : N∞)→ PStr (s∞ n)→ PStr n

By Thm. 4.1, we can construct PStr as the final coalgebra of F : B/1×B/N∞ → B/N∞ with F(A,X) =

∏s∞
!∗A×∏s∞

X . Note that F is isomorphic to B/1×B/N∞ ' B/1+N∞
JPK−−→ B/N∞, where P is the polyno-

mial

P = 1+N∞ g←− 2×N∞ f−→ N∞ id−→ N∞ g(i,k) =

{
κ1∗, i = 1
κ2k, i = 2

f (i,k) = s∞ k.
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If we now fix an object A ∈ B/1, then F(A,−)∼= JP′K for the polynomial P′ given by

P′ = N∞ π←−∑
N∞

∑
s∞

∏
s∞

!∗A
f ′−→∑

N∞

∏
s∞

!∗A π−→ N∞,

where π is the projection on the index of a dependent sum and f ′(n,(s∞ n,v)) = (s∞ n,v).
Recall that we construct in Thm. 4.5 the final coalgebra of JP′K as a subobject of M f ′ . Below, we

present three trees that are elements of M f ′ , where only the second and third are actually selected by the
equaliser taken in Thm. 4.5.

(3,a0)

(∞,a1)

(15,a2)

...

(2,3,a0)

(∞,∞,a1)

(14,15,a2)

f ′ (3,b0)

(2,b1)

(1,b2)

(0,⊥)

(2,3,b0)

(1,2,b1)

(0,1,b2)

3 π

2
π

π

1

0

(∞,c0)

(∞,c1)

(∞,c2)

...

(∞,∞,c0)

(∞,∞,c1)

(∞,∞,c2)

Here we denote a pair (k,v) : ∑N∞ ∏s∞
!∗A with k = s∞ n and vn = a by (k,a), or if k = 0 by (0,⊥).

Moreover, we indicate the matching of indices in the second tree, which is used to form the equaliser.
Note that the second tree is an element of PStr(A)3, whereas the third is in PStr(A)∞.

5 Beck-Chevalley Condition for Data Types

When dealing with dependent types, we find ourselves often in the situation that we want to change
the index of a type through substitutions but still preserve the structure of said type. For example, we
constructed vectors indexed by some representation of natural numbers, but there is no reason that the
definition behaves the same among all choices. Thus, we would like to force that, for example, vectors
indexed by the canonical representation of natural numbers and those indexed by, say, lists over 1 are
essentially the same. We formally capture this by the Beck-Chevalley condition, proposed below. The
name comes from a condition that is usually imposed on dependent products and coproducts to ensure
that these are stable under reindexing. The relation is established in Thm. 5.4.

Let (F,G) be a signature with F : C×PI → D, G = 〈u∗1, . . . ,u∗n〉 and ui : Ji→ I. Assume that we are
given for each 1≤ i≤ n a pullback square

Li Ji

K I

w1

xi ui

v

(1)

Then there are isomorphisms ιG,i : x∗i ◦v∗ ∼= w∗i ◦u∗i , since P is a cloven fibration. This gives us func-
tors Gv : PK →∏

n
i=1 PLi with Gv = 〈x∗1, . . . ,x∗n〉 and W : ∏

n
i=1 PJi → PLi with W = w∗1×·· ·×w∗n, and an

isomorphism ιG : Gv v∗ ∼=WG.
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Let us, moreover, assume that there is a functor Fv : C× PK → ∏
n
i=1 PLi and an isomorphism

ιF : Fv(Id×v∗)⇒WF as indicated in the following diagram.

C×PI ∏
n
i=1 PJi = D

C×PK ∏
n
i=1 PLi

F

Id×v∗ W

Fv

∼=

Using this data, we can define a functor Cv : DiAlg
(

Ĝ, F̂
)
→DiAlg

(
Ĝv, F̂v

)
as follows. Let δ : Ĝ(H)⇒

F̂(H) be a dialgebra, then Cv(δ ) is the composition

Ĝv(v∗H) = Gv v∗H
ιGH
==⇒WGH =WĜ(H)

Wδ
=⇒WF̂(H) =WF〈IdC,H〉

(ιF)
−1〈IdC,H〉

========⇒ Fv(IdC×v∗)〈IdC,H〉= Fv〈IdC,v∗H〉= F̂v(v∗H).

For a dialgebra homomorphism β : H1 ⇒ H2 from δ1 to δ2, we put Cv(β ) = v∗β , which is a (Ĝv, F̂v)-
dialgebra homomorphism since the following diagram commutes.

Ĝv(v∗H1) Ĝv(v∗H2)

WĜ(H1) WĜ(H2)

WF̂(H1) WF̂(H2)

F̂v(v∗H1) F̂v(v∗H2)

Ĝv(v∗ β )

ιGH1 ιG nat. ιGH2

WĜ(β )

Wδ1 β hom. Wδ2

WF̂(β )

(ιF )−1〈Id,H1〉 ιF nat. (ιF )−1〈Id,H2〉

F̂v(v∗ β )

The functor laws for Cv follow from functoriality of v∗. Dually, we can define a functor Iv : DiAlg
(

F̂ , Ĝ
)
→

DiAlg
(

F̂v, Ĝv
)

by

Iv(δ : F̂(H)⇒ Ĝ(H)) = (ιG)−1H ◦Wδ ◦ ι
F〈IdC,H〉

Iv(β ) = v∗β .

These functors allow us to define what it means that data types are preserved by reindexing.

Definition 5.1. A coinductive data type (Ω,ξ ) for (F,G) fulfils the Beck-Chevalley condition, if for every
family of pullbacks v×I ui as in (1), there is a functor Fv and an isomorphism ιF as described above,
such that the coinductive extension of Cv(ξ ) to the the CDT (Ωv,ξ v) for (Fv,Gv), is an isomorphism
Cv(ξ )∼= ξ v. The Beck-Chevalley condition for IDTs is defined dually using Iv.



H. Basold 15

As the name suggests, this definition is supposed to capture the known Beck-Chevalley conditions.
To prove this, we need the following result.
Lemma 5.2. Let F1 : C1 → C2 be a functor and (F2 : C2×PI → C3,G) be a signature. If we define
F = F2 ◦(F1× Id) : C1×PI→C3, then µ(F̂ , Ĝ) = µ(F̂2, Ĝ)◦F1 and α(F̂ ,Ĝ) = α(F̂2,Ĝ)F1. Dually, we have
that ν(Ĝ, F̂) = ν(Ĝ, F̂2)◦F1 and ξ (F̂ ,Ĝ) = ξ (F̂2,Ĝ)F1.

Proof. This follows simply from the definitions. Let V ∈ C1, then

µ(F̂ , Ĝ)(V ) = µ(F(V,−),G) = µ((F2 ◦ (F1× Id))(V,−),G) = µ(F2(F1(V ),−),G)

= µ(F̂2, Ĝ)(F1(V )) = (µ(F̂2, Ĝ)◦F1)(V )

and the equality of the natural transformations follows immediately from their definition and the functor
equality above.

Let us come back to the example we mentioned in the beginning.
Example 5.3. Recall that we have used some object N as index for vectors that has maps z : 1→ N and
s : N→ N. The obvious choice to construct N is of course as µ(〈K1, Id〉,∆) with ∆ = 〈id∗1, id∗1〉, which
just captures exactly these constructors. However, we can also consider lists over 1, with constructors
nil : 1→ 1∗ for the empty list and ∗ :: (−) : 1∗→ 1∗ for prefixing with ∗. Then there is an isomorphism
g : 1∗ → N of (〈K1, Id〉,∆)-dialgebras. From here, we can derive two pullbacks (nil, id1) = g×N z and
(∗ :: (−),g) = g×N s. Then Beck-Chevalley condition then demands that g∗(VecA) ∼= µ(F,G) for the
functors F = 〈K1,Kg∗(A)× Id〉 and G = 〈nil∗,(∗ : (−))∗〉.

Now we can show the usual B-C condition and our version for data types to be equivalent.
Theorem 5.4. The adjunctions constructed in Thm. 3.2 are fibred iff they fulfil the Beck-Chevalley con-
dition for data types.

Proof. We prove this for the constructed right adjoints, the proof for the left adjoints follows by duality.
Recall that we defined for C = ∏

n
i=1 PJi , a right adjoint for all G = 〈u∗1, . . . ,u∗n〉 by ν(Ĝ, π̂1) : D→ PI

with π1 : C×PI → C. Given pullbacks (xi,wi) = v×I ui as in (1), we put D = ∏
n
i=1 PLi , W : C→ D

with W = w∗1×·· · ×w∗1 and Gv = 〈x∗1, . . . ,x∗n〉. We find the right adjoint of Gv to be ν(Ĝv, π̂ ′1) with
π ′1 : D×PK → D.

The Beck-Chevalley condition for adjoints requires that the canonical natural transformation γ :
v∗ ◦ν(Ĝ, π̂1)⇒ ν(Ĝv, π̂ ′1) ◦W is an isomorphism. We show that this coincides with our definition for
data types.

Let ξ be the final (Ĝ, π̂1)-dialgebra and ξ v the final (Ĝv, F̂v)-dialgebra. We note that π ′1 ◦ (W × Id) =
Wπ ′′1 , where π ′′1 : C× PK → C. Thus, we can choose for the B-C condition Fv = Wπ ′′1 and get, by
Lem. 5.2, ν(Ĝv, F̂v) = ν(Ĝv, π̂ ′1) ◦W . By finality, this means that γ is in fact the unique morphism
from Cv(ξ ) to ξ v. The B-C condition for data types requires this to be an isomorphism, just as the B-C
condition for adjoints does. This means that the constructed adjunctions are fibred iff they satisfy the
B-C condition for data types with the choice Fv =Wπ ′′1 .

In the same way, we can relate fibred final objects and the B-C condition.
Theorem 5.5. Terminal objects 1I , constructed as ν(id∗I , IdPI ), are fibred iff they satisfy the Beck-
Chevalley condition for data types.

Proof. We note that the pullback (1) degenerates, in this case, to only give a morphism v : K→ I. Then
we pick Idv = v∗ and the rest follows as in Thm. 5.4.
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6 Induction and Coinduction

The data types definable in a data type closed category are certainly useful but we also want to prove prop-
erties about them. For inductive types, one usually wants to prove propositions by induction, whereas for
coinductive types the equality between elements is important. Both proof methods are well-understood
fibrations L : L→D, where L is to be thought of as a logic with free variables ranging over data types in
D, see Hermida and Jacobs [16], and Ghani, Johann and Fumex [10]. However, the way to think about
dependent types is that these simultaneously define data types and a logic for these types, so that we can
actually construct L for a DTCC P : E→ B.

In this section, we first construct said logic over P, and give a weak induction principle within this
logic that can be proved without further assumptions. Then we instantiate, under additional assumptions,
the framework for “fibred” induction and coinduction, defined in [10]. It turns out that the crucial as-
sumption is a strong elimination principle for sums. Next, we show that strong elimination is equivalent
to dependent recursion, where the latter seems to be a more natural requirement. Finally, we derive a
simple coinduction principle for DTCCs.

6.1 Internal Logic

L E

E B

L

y
P

{−}

We begin by defining a notion of predicates ϕ over data types in a DTCC P : E→ B.
For a data type A, these are given as objects in P{A}, that is, data types depending on
A. This situation is captured by the pullback (change of base) shown on the right. We
call L : L→ E the internal logic of P. Explicitly, objects in L are pairs (A,ϕ) with
ϕ ∈ P{A} and morphisms (A,ϕ)→ (B,ψ) are pairs ( f ,g) with f : A→ B, g : ϕ → ψ and { f}= Pg. The
internal logic fibration L restricts, for each I ∈ B, to a fibration LI : PLI → PI , where PLI is the fibre of
P◦L above I. The reindexing functor for u : I→ J is then given by

u#(A,ϕ) = (u∗A,{uA}∗ϕ) u#(idA, f ) = (idu∗A,{uA}∗ f )

where uA : u∗A→ A is the cartesian lifting of u, see Def. 2.4.
As seen in Thm. 3.2, we can define a sum Σ f : PI → PJ along all f : I→ J in B as left adjoint to f ∗,

in other words, P is a bifibration, see [18, Lem. 9.1.2]. We use these sums mostly to turn a predicate
over A into a data type in PI , where I = PA. In this case, we use the notation ΣA := ΣπA for the projection
πA : {A} → I given in Def. 3.5. Crucially, these projections come, by their definition, in the form of a
natural transformation π : {−}⇒ P. This allows us to define a fibrewise comprehension-like functor for
LI .

Lemma 6.1. For each I ∈ B, we have the following.

1. LI is a bifibration with Σ f :A→B(A,ϕ) = (B,Σ{ f}ϕ).

2. LI has a right adjoint 1I
(−) : PI → PLI , given by 1I

A = (A,1{A}).

3. There is a functor {−}I : PLI → PI , given by {(A,ϕ)}I = ΣAϕ , with projections π I : {−}I ⇒ LI .

Proof. 1. (Bi)fibrations are preserved under change of base [18, Lem. 1.51 and Lem. 9.1.2].

2. Fibred final objects are preserved under change of base [18, Lem 1.8.4], hence we get 1(−) : E→L.
Since it is a fibred functor, we can restrict it to 1I

(−) : PI → PLI .



H. Basold 17

3. To define the action of {−}I on morphisms ( f ,g) : (A,ϕ)→ (B,ψ), we use that there is a unique
morphism h : ϕ→{ f}∗ψ with { f}ψ ◦h= g, where { f}ψ : { f}∗ψ→ψ is the cartesian morphism
above { f}= Pg, see Def. 2.4. Then we can put

{( f ,g)}I = ΣAϕ
ΣAh−−→ ΣA { f}∗ψ

βψ−→ (P f )∗ (ΣBψ)∼= ΣBψ,

using the canonical natural transformation β : ΣA { f}∗⇒ P( f )∗ΣB, which arises because P( f ) ◦
πA = πB ◦{ f}, and the the isomorphism coming from P( f )∗ = id∗I ∼= Id.

If f and g are the identity, the chosen h is the identity as well, hence {(idA, idϕ)}I = idΣAϕ . To
show that {( f2,g2)◦ ( f1,g1)}I = {( f2,g2)}I ◦{( f1,g1)}I , one uses that β is natural, the coherence
conditions of a cloven fibration and the fact that the chosen h1 and h2 for g1 and g2, respectively,
compose.

The projections are obtained as follows. For each A, we can define a morphism prjA : 1{A}→
π∗A A as the unique map mediating the counit εA : 1{A} → A of 1 a {−} and the Cartesian lifting

πA A : π∗A A→ A. This gives a map ϕ
!ϕ−→ 1{A}

prjA−−→ π∗A A, hence a unique morphism π I
ϕ : ΣAϕ → A.

Naturality of π I follows.

6.2 Induction and Dependent Recursion

We are now going to study dependent recursion and induction principles for inductive data types in the
scene set above.

First, we derive a weak dependent recursion principle that can be defined in any DTCC. The idea is
that we can track dependencies using sums, that is, given (A,ϕ) ∈ PLI , we can pack this predicate to
{(A,ϕ)}I = ΣAϕ ∈ PI .
Proposition 6.2. Let (F,u) be a signature with F : PI → C, (A,α) an initial (F,Gu)-dialgebra, and
d : F{(A,ϕ)}I→Gu{(A,ϕ)}I , such that π I

ϕ : {(A,ϕ)}I→ A is a homomorphism. Then there is a unique
homomorphism h : (A,α)→ ({(A,ϕ)}I,d) with π I

ϕ ◦h = idA.

Proof. The homomorphism h is the inductive extension of d and, since π I
ϕ ◦h is an endomorphism on α ,

it must be the identity by uniqueness of inductive extensions.

Example 6.3. Recall that we defined vectors as the initial (F,Gu)-dialgebra with F = 〈1,KA× Id〉 and
Gu = 〈z∗,s∗〉, giving rise to the constructor α = (nil,cons). In this case, the condition on d = (d1,d2)
becomes

d1 : 1→ z∗(ΣVecA(ϕ)) z∗(π I
ϕ)◦d1 = nil

d2 : A×ΣVecA(ϕ)→ s∗(ΣVecA(ϕ)) s∗(π I
ϕ)◦d2 = cons◦(idA×π

I
ϕ),

which is, modulo the use of sums, the usual condition for induction base and step.
Proposition 6.2 allows us to prove predicates on an initial dialgebra, this approach has, however,

two shortcomings. First, we can use the principle only on initial dialgebras, since we otherwise cannot
construct the homomorphism with the required property. Secondly, the result of the induction is buried
under a sum, hence we can use the result of an induction only in (non-dependent) recursion. Both
problems can be fixed if we assume strong sums.

We say that P has strong sums, if the dependent pairing κ : {ϕ} → {ΣAϕ} has an inverse, where
κ = {πA (ΣAϕ) ◦ ηϕ} and η : Id⇒ π∗A ΣA. This allows us to prove the following lemma, which is key to
derive an induction principle.
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Lemma 6.4. If P admits strong sums and full comprehension, then KI a {−}I .

Proof. The crucial point is that we need strong elimination ΣAϕ → ϕ to define the counit of KI a {−}I .
We leave the details of the verification out.

Combining Lem. 6.4 and a variation of [10, Cor. 6.6], we get an induction principle on the the
algebras arising from data types, see Thm. 4.1, under the assumption that sums in E are strong. Note
that we, in contrast to [10], only have comprehension on fibres PI available, since we cannot define the
action on morphisms on all of E. This is, however, not a necessary requirement to carry out the proofs in
loc. cit.

Let us briefly discuss how strong sums arise in the type system of Agda. The commonly used
definition of sums (Σ-types) is the following.

record Σ (A : Set) (B : A→ Set) : Set where
p1 : A
p2 : B p1

Note that the second destructor refers to the first, which is not allowed in our setup and leads to a strong
elimination principle for Σ. Our definition actually corresponds to

data Σ′ (A : Set) (B : A→ Set) : Set where
in : (a : A)→ B a→ Σ′ A B

for which we can only define fstB : Σ′AB→ A, corresponding to the π I
B we defined above. If we were to

have a dependent recursion principle

x : A,y : Bx ` f : C (inxy)
z : ΣAB ` rec f : Cz

then we could, in fact, derive strong elimination by using C = fst∗B(B) and f = y.
This leaves us with the question of how dependent elimination can be defined using dialgebras, i.e.,

how far can we go without using strong elimination of sums, but rather derive it? As a start, we restate the
result in [13, Thm. 4.14] under weaker conditions, namely without using the full adjunction 1I

(−) a {−}
I .

Lemma 6.5. If P : E→ B is a DTCC, then there is a functor L I : PLI → P→I given by L I(A,ϕ) =
π I

ϕ : ΣAϕ → A, and a functor U I : P→I → PLI . Moreover, U I preserves final objects and, if P has full
comprehension, then L I preserves final objects as well.

Proof. Functoriality of L I follows readily from π I being a natural transformation. U I is given, as in [13],
by

U I( f : A→ B) = Σ
I
f (1

I
A) = Σ

I
f (A,1{A}) = (B,Σ{ f}1{A}).

The definition of U I on morphisms is slightly more complicated, see loc. cit., we note however that it
only uses properties of cartesian liftings.

The proof that U I preserves final objects is given by Ghani et al. [13, Thm. 4.14]. That L I preserves
terminal objects means that it maps 1I

A =
(

A,1{A}
)

to an isomorphism. This is indeed the case here, as,

by fullness, the map π I
ϕ : ΣA1{A} → A is an isomorphism, see [18, Ex. 10.5.4]. The rest of the proof

in [13] can be preserved.
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As in [10], we can combine these functors into a lifting of functors F : PI→ PJ to functors F : PLI→
PLJ by putting F = RJF→L I , where F→ : P→I → P→J is given by F→( f : A→ B) = F f : FA→ FB. This
allows us to lift a signature (F,G) : PI→∏k=1,...,n PJk with G = 〈u∗1, . . . ,u∗n〉 to a signature (F ,G) : PLI→
∏k=1,...,n PLJk , by putting Fk = RJk F→k L I and Gk = u#

k . The liftings F and G preserve fibred final objects
by Lem. 6.5 and by reindexing preserving fibred structure, respectively. Hence they are truth-preserving,
in the sense that F ◦1I

(−)
∼=
(

∏k=1,...,n 1Jk
(−)

)
◦F and the same for G.

Let us now analyse what dialgebras for these lifted functors are. Recall that a morphism r : F(A,ϕ)→
G(A,ϕ) in is in fact an n-tuple of pairs ((d1,b2), . . . ,(dn,bn)), such that (d1, . . . ,dn) : FA→ GA is an
(F,G)-dialgebra, bk : Σ{Fkπ I

ϕ}1
Jk

Fk{ϕ}I → {uk A}∗ϕ and {dk} = P(bk). If A ∈ SetI and ϕ ∈ Set
∐

i∈I Ai , then

we have {ϕ}I(i ∈ I) =
∐

x∈A(i) ϕ(i,x), and for each j ∈ Jk and x ∈ FkA the components of bk are of the
form

bk( j,x) :
∐

u∈Fk({ϕ}I)( j)
Fk(π

I
ϕ )u=x

1( j,u)→ ϕ(uk j,dk x).

Most importantly, note the use of dk in the codomain of bk.
The intuition is that each bk proves that, from the induction hypothesis that ϕ holds at the argument

of the constructor dk, ϕ holds at dk x. For example, let A = VecB, F2 = B× Id, u2 = s, and d2 = cons.
Then the assumption of b2(k,(a ∈ A,v ∈ VecBk)) boils down to a proof of ϕ k v, and the conclusion of
b2 is that ϕ holds at k+1 and consk(a,v).

To explain dependent recursion, we define DiAlgF,G (1) : DiAlg (F,G)→ DiAlg
(
F ,G

)
by mapping

a dialgebra d : FX→GX to a dialgebra d′ : F
(
1I

X
)
→G

(
1I

X
)
, using that the liftings are truth-preserving.

If we now require that DiAlgF,G (1) preserves initial dialgebras (cf. [16]), we get dependent recursion
for A = µ(F,G), as there is then a unique homomorphism (idA,h) : (A,1{A})→ (A,ϕ), i.e., for each k,
i ∈ I and x ∈ A, a map hk(i,x) : 1→ ϕ(i,x). This allows us, since 1 is final, to canonically construct an
element of ϕ for each i and x. In other words, we can carry out dependent recursion on A = µ(F,G),
and prove predicates by induction. Combining this with the derivation of strong sum elimination from
dependent recursion and Lem. 6.4, we have the following result.
Corollary 6.6. A data type closed category admits dependent recursion, hence induction, iff it has strong
sums.

6.3 Coinduction

As observed by Hermida and Jacbos [16], coinduction is concerned with relations that witness the equal-
ity between elements of coinductive types. We show here how to establish a simple form of coinduction
on elements of final dialgebras.

Rel(PI) PLI

PI PI

LI

∆

We first define relations internal to a data type closed category. Such rela-
tions are given as objects in the pullback, displayed on the right, of LI along
∆ with ∆(A) = A×I A. Let us abbreviate A×I A to A2 in the following. The
representation of Rel(PI), we will use, has objects (A,R) with PR = {A2} and
morphisms ( f ,g) : (A,R)→ (A′,R′) with f : A→ A′, g : R→ R′ and Pg = { f ×I f}.

Gu(Q(A,R)) Gu(A)2

F(Q(A,R)) F(A)2

d

∇Gu◦Gu(π
I
R)

ξ ×I ξ

∇F◦F(π I
R)

Within this setup, we can define a (quotient-like) func-
tor Q : Rel(PI)→ PI by Q(A,R) = ΣA2R = {(A2,R)}I . Let
δ : IdPI ⇒ ∆ be the diagonal and ∇H : H(A2)→ H(A)×I

H(A) the canonical morphism. Then we can derive the fol-
lowing coinduction principle.
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Proposition 6.7. Let (F,u) be a signature with F : PI → C, (A,ξ ) a final (Gu,F)-dialgebra, (A,R) ∈
Rel(PI) and d : Gu(Q(A,R))→ F(Q(A,R)), such that the diagram on the left commutes. Then there is a
unique h : Q(A,R)→ A with δA ◦h = π I

R.

Proof. By definition, we have for i = 1,2 that πi ◦∇Gu = Gu(πi), hence we find πi ◦∇Gu ◦Gu(π
I
R) =

Gu(πi ◦π I
R), and the same for F . Thus πi ◦π I

R is a homomorphism from d to ξ and must therefore be
equal to h. Since this holds for i = 1,2, we have π I

R = δA ◦h.

Example 6.8. Let F = 〈KA, Id〉 and u = (id1, id1), so that streams Aω are given by ν(Gu,F) with (hd, tl) :
Gu(Aω)→ F(Aω). The conditions for a dialgebra Gu(ΣAω×Aω (R))→ (A,ΣAω×Aω (R)) over a relation R
on Aω then capture the usual bisimulation proof principle.

This coinduction principle suffers again from the problem that it cannot be applied to arbitrary di-
algebras. Moreover, we can use it to prove functions to be equal, by proving that they agree on every
argument. Hence, in an intensional type theory, the requirement to have final dialgebras must be relaxed
to weakly final dialgebras. In that case, we like would to still be able to give a canonical notion of, for
example, bisimulation. Ghani et al. [10] have defined a canonical lifting of functors to relations, but this
lifting process relies on having a quotient functor, and there does not seem to be a way out of this, like
for the liftings we used for induction. Thus we leave the question of how to describe coinduction open
for now.

7 Conclusion and Future Work

We have seen how dependent inductive and coinductive types with type constructors, in the style of
Agda, can be given semantics in terms of data type closed categories (DTCC), with the restriction that
destructors of coinductive types are not allowed to refer to each other. This situation is summed up in the
following table.

Condition Use/Implications
Cloven fibration Definition of signatures and data types
Data type completeness Construction of types indexed by objects in base (e.g., vectors for

N ∈ B) and types agnostic of indices (e.g., initial and final objects,
sums and products)

Data type closedness Constructed types as index; Full interpretation of data types

Moreover, we have shown that a large part of these data types can be constructed as fixed points of
polynomial functors.

Let us finish by discussing directions for future work. First, a full interpretation of syntactic data
types has also still to be carried out. Here one has to be careful with type equality, which is usually
dealt with using split fibrations and a Beck-Chevalley condition. The latter can be defined generally for
the data types of this work, in needs to be checked, however, whether this condition is sufficient for
giving a sound interpretation. Finally, the idea of using dialgebras has found its way into the syntax of
higher inductive types [7], though in that work the used format of dialgebras is likely to be too liberal to
guarantee the existence of semantics. The reason is that the shape of dialgebras used in the present work
ensures that we can construct data types from (co)coalgebras, whereas this is not the case in [7]. Thus it
is to be investigated what the right notion of dialgebras is for capturing higher (co)inductive types, such
that their semantics in terms of trees can always be constructed.
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A Proofs Section 4

We need the following technical tool.

Lemma A.1 (Primitive corecursion). Let C be a category with binary coproducts and F : C→ C an
endofunctor on C with a final coalgebra (M,ξ : M→ FM). For every morphism c : X → F(X +M) in
C, there is a unique map h : X +M→M, such that h◦κ2 = idM and the following diagram commutes.

X M

F(X +M) FM

c

h◦κ1

ξ

Fh

Proof. We define h as the coinductive extension as in the following diagram.

X X +M M

F(X +M) F(X +M) FM

c

κ1 h

[c,Fκ2◦ξ ] ξ

Fh

It is easily checked that the rectangle on the right commutes if and only if the above identities hold. Thus
uniqueness of h follows from uniqueness of coinductive extensions.

Primitive corecursion allows us to define one-step behaviour as follows.

Lemma A.2 (One-step extension). Let F and (M,ξ ) as above, and let f : M → FM be a morphism.
Then there exists a unique g : M→M, such that ξ ◦g = f .

Proof. We define g = h◦κ1, where h arises by primitive corecursion of Fκ2 ◦ f . It is then straightforward
to show that ξ ◦ g = f if and only the identities of primitive corecursion hold. Thus g is the unique
morphism for which this identity holds.

Using the definition of V as equaliser of u1 and u2, we can characterise elements of V as follows.
First we note that V is indexed over I by q = V

g−→ M f
ρ−→ A t−→ I, where ρ is the root map given by

composing ξ f with projection for coproducts. Abusing notation, we will use V instead of q, and write
x : Vi if x : V and qx = i.

Let X be an object in B. An object R ∈ B/X2 is called a relation, and we say that elements x,y : X are
related by are, denoted (x,y) : R, if there is a z : R, such that π1(Rz) = x and π2(Rz) = y.

Lemma A.3 (Internal bisimulations). Let f : B→ A be a polynomial and R ∈ B/M2
f a relation over M f

such that

∀(x1,x2) : R. if ξ f (xk) = (ak,vk)

then a1 = a2 = a

and (∀b : B. f b = a⇒ (v1 b,v2 b) : R).

Then for all (x1,x2) : R, we have that x1 = x2.

Proof. It is easy to see that this allows us to define a coalgebra structure on R : U → M2
f such that

πk ◦R : U→M2 are homomorphism for k = 1,2, which implies by finality of M f that π1 ◦R = π2 ◦R.
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In the following lemmas we use the notation introduced in the proof of Thm. 4.5.

Lemma A.4. If y : M f and b : B such that φ(u1 y,b) = u1 y, then qy = sb and u1 y = u2 y.

Proof. We let ξ f y = (a,v) and then find that

ξ f×I (φ(u1 y,b)) = (a,sb,λb′.φ(u1 (vb′),b′))

= (a, t a,λb′.u1 (vb′)) by assumption

= ξ f×I (u1 y).

Thus sb = t a = qy and φ(u1 (vb′),b′) = u1 (vb′) for all b′ : B with f b = a. This gives us

ξ f×I (u1 y) = (a, t a,λb′.u1 (vb′))

= (a, t a,λb′.φ(u1 (vb′),b′)) see above

= ξ f×I (u2 y)

as required.

Lemma A.5. Let i : I and x : M f , then the following are equivalent

1. x : Vi

2. u1 x = u2 x and qx = i

3. ξ f x = (a : A,v : Π f M f ), t a = i and (∀b : B. f b = a⇒ vb : Vsb)

4. ξ f x = (a : A,v : Π f M f ), t a = i and v : Π f (s∗V )

Proof. The equivalences 1 ⇐⇒ 2 and 3 ⇐⇒ 4 are the definitions, so let us prove 2 ⇐⇒ 3.
We begin by proving 2⇒ 3. Let x : M f with u1 x = u2 x and qx = i. Then we have for x f x = (a,v)

that t a = qx = i,
ξ f×I (u1 x) = J f × IK(u1)(pM f (ξ f x)) = (a, t a,λb.u1(vb))

and

ξ f×I (u2 x) = J f × IK(φ)(ΣA×IK (ξ f×I (u1 x)))

= J f × IK(φ)(ΣA×IK (a, t a,λb.u1 (vb))

= (a, t a,λb.φ(u1 (vb),b)).

By these calculations and Since u1 x = u2 x, we also have for all b : B with f b = a that u1(vb) =
φ(u1 (vb),b). Applying Lem. A.4 to y = vb we get that q(vb) = sb and u1 (vb) = u2 (vb), thus vb : Vsb
and 3 holds.

For the other direction, assume that ξ f x = (a : A,v : Π f M f ), t a = i and (∀b : B. f b = a⇒ vb : Vsb).
We show that u1 x = u2 x by giving a bisimulation R that relates u1 x and u2 x. We put

X = 1+ΣB.s∗V

R : X →M f ×M f

R(∗) = (u1 x,u2 x)

R(b,y) = (u1 y,φ(y,b))
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which is a relation over M f . To prove that R is a bisimulation, there are two cases to consider. First, we
have (u1 x,u2 x) : R. Note that

ξ f×I (u1 x) = (a, t a,λb.u1 (vb))

and

ξ f×I (u2 x) = (a, t a,λb.φ(u1 (vb),b))

so that ρ f×I (u1 x) = (a, t a) = ρ f×I(u1 x). Moreover, we have for all b : B that u1 (vb) and φ(u1 (vb),b)
are related by R. For the second case, let b : B and y : Vsb. Then for x f y = (a′,v′) we have

ξ f×I (u1 y) = (a′, t a′,λb′.u1 (v′ b′))

and

ξ f×I φ(y,b) = (a′,sb,λb′.φ(u1 (v′ b′),b′)).

Since y : Vsb, we have, by definition, that sb = qy = t a′, thus (a′, t a′) = (a′,sb). Moreover, u1 (v′ b′) and
u1(v′ b′,b′) are again related by R. Hence, we can conclude that R is a bisimulation, and so u1 x= u2 x.
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