
TECHNISCHE UNIVERSITÄT CAROLO-WILHELMINA ZU BRAUNSCHWEIG

Bachelor’s Thesis

Parallelism investigation for elliptic
curve key exchange

Henning Basold

November 30th, 2010

Institut für Datentechnik und Kommunikationsnetze
Prof. Dr. Berekovic

supervised by:

Matthias Hanke

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Braunschweig, November 30th, 2010

Abstract

In this bachelor thesis the operations on elliptic curves, which are needed for key
agreement, are analyzed for possible parallelization. The goal is a parallelization at
a very small granularity suitable for hardware implementation.
This thesis consists of an introduction to the needed mathematical background

and the derivation of the necessary algorithms from this background. Afterwards the
algorithms are analyzed for possible parallelization.
These steps involve an implementation using SystemC and Verilog to get a model

which is used to measure the speedups through altering algorithms. This model
is suitable to be synthesized as e.g. an ASIP (Application Specific Instruction Set
Processor).
The model consists of a software and a hardware part. The operations on elliptic

curves and below are implemented in hardware. The protocol for key exchange is
implemented in software (that means it should be executed on a general purpose
processor).

Keywords Elliptic Curve Cryptography, Parallelization, Key Agreement

            

 

Institut für Datentechnik 
und Kommunikationsnetze 

Hans‐Sommer‐Strasse 66 
D‐38106 Braunschweig 

Germany 

Fon    +49(0)531/391‐3734 
Fax  +49(0)531/391‐4587 

Prof. Dr.‐Ing. Mladen Berekovic 

Fon  +49(0)531/391‐3166 

berekovic@ida.ing.tu‐bs.de 

30.06.2010 

 

Aufgabenstellung zur Bachelorarbeit 

Student:  Henning Basold (Informatik) 
Betreuer:  Matthias Hanke 

Titel:    Parallelism investigation for elliptic 
curve key exchange   

 

Der Lehrstuhl für VLSI Design entwickelt im Rahmen des Artemis‐Projektes 
"SMART ‐ Secure Mobile Visual Sensor Network Architecture" einen 
rekonfigurierbaren Prozessor (RASIP ‐ Reconfigurable Application Specific 
Instruction Set Processor) für drahtlose Sensorknoten.  Dieser soll für 
unterschiedliche kryptographische Algorithmen möglichst energieeffizient und 
performant arbeiten. 

Für eine hohe Effizienz des Prozessors ist insbesondere die Parallelisierung 
einzelner Algorithmenabschnitte erfolgversprechend. Insbesondere 
Spezialinstruktionen, die auf mehreren Datenpfaden gleichzeitig ausgeführt 
werden, wird große Bedeutung beigemessen. 

In dieser Bachelorarbeit soll zunächst ein sequentieller Algorithmus für den 
Schlüsselaustausch mit elliptischen Kurven in C entwickelt werden. Darauf 
aufbauend sind parallelisierbare Abschnitte zu identifizieren. Die Ergebnisse sollen 
zu einer parallelisierten Lösung des Algorithmus führen, der von seiner 
Ausführungszeit her mit der sequentiellen Variante zu vergleichen ist.  Als Maß soll 
dabei die Anzahl der Zyklen, die für einen Pragrammablauf notwendig sind 
verwendet werden. Für diese Gegenüberstellung sind entsprechende Testvektoren 
zu erzeugen und eine Testumgebung aufzubauen. Abschließend müssen die 
Ergebnisse dokumentiert werden.  

 

Abgabetermin ist der 02.12.2010 

 

 

Prof. Dr.‐Ing. Mladen Berekovic        Student 

Contents

List of Figures xi

1 Mathematical Background 1
1.1 Introduction . 1
1.2 Groups . 1
1.3 ElGamal encryption . 3
1.4 Finite fields . 4

1.4.1 Polynomial fields . 5
1.5 Elliptic Curves . 6

1.5.1 Geometrical operations . 7
1.5.2 Algebraic operations . 9

2 Algorithms 11
2.1 Introduction . 11
2.2 Operations in F2n . 11

2.2.1 Definitions . 11
2.2.2 Addition . 12
2.2.3 Substraction . 12
2.2.4 Multiplication . 13
2.2.5 Division . 14

2.3 Operations in E(F2n) . 21
2.3.1 Affine coordinates . 21
2.3.2 Projective coordinates . 21

2.4 ECMQV . 24

3 Parallelization 27
3.1 Introduction . 27
3.2 Operations in F2n . 27
3.3 Operations in E(F2n) . 27

3.3.1 Affine coordinates . 27
3.3.2 Projective coordinates . 29

4 Results 32
4.1 Implementation . 32
4.2 Environment . 32

4.2.1 Testing . 32
4.2.2 Measurements . 33

ix

Contents

4.3 Timings . 33
4.4 Suggestions for future research . 36

Bibliography 37

x

List of Figures

1.1 Visualization of a cyclic group 〈g〉 with |〈g〉| = 6 2
1.2 Elliptic curve over finite field F29 . 7
1.3 Addition on elliptic curves . 8
1.4 Point doubling on elliptic curves . 8
1.5 Addition of an inverse on elliptic curves 9

2.1 State machine for algorithm 2.11 . 20
2.2 State machine for algorithm 2.11 (parallelized) 20

3.1 Data dependencies of the point addition using affine coordinates . . . 28
3.2 Data dependencies of the point doubling using affine coordinates . . . 29
3.3 Data dependencies of the point addition using projective coordinates 30
3.4 Data dependencies of the point doubling using projective coordinates 31

4.1 Timings for EC addition . 34
4.2 Timings for EC multiplication . 35

xi

List of Abbreviations

ASIP Application Specific Instruction Set Processor

CDH Computational Diffie-Hellman assumption

DAG Directed Acyclic Graph

DLP Discrete Logarithm Problem

EC Elliptic Curve

ECC Elliptic Curve Cryptography

GF Galois Field

xii

1 Mathematical Background

1.1 Introduction
In this chapter all necessary mathematical background will be given. This includes
a short introduction into group theory and some operations using this foundation.
Afterwards we will see this theory at work in a simple encryption algorithm: the
ElGamal encryption.
For the introduction to elliptic curves we need a small fraction of field theory. Of

special interest here are finite fields which are very useful for cryptography.
Last but not least we will take a look at the key ingredient: the elliptic curves.

1.2 Groups
Definition 1.1 (Group)
Let G be a non-empty set and · : G×G→ G an operation on G. The pair (G,·)
is named group if · has the following properties.

1. Associativity: (∀a, b, c ∈ G) : (a·b)·c = a·(b·c)

2. Neutral element e ∈ G: (∀a ∈ G) : e·a = a = a·e

3. Existence of an inverse: (∀a ∈ G)(∃a′ ∈ G) : a′·a = e = a·a′

Note: The order of the group G is the cardinality |G| of the underlying set. If
|G| ∈ N this is the number of elements in G.

Note: If a·b = b·a for all a, b ∈ G then the group (G,·) is called abelian or
commutative.

Note: The operation · may for example be +. To use known symbols, the neutral
element of a group (G,·) will be called 1 and of a group (H,+) it will be called 0.
If the combination of operation and set is clear from the context the group (G,·)

will be referenced only by G.
Also the dot in a·b will be left out (ab) if it enhances the reading experience. This

can be done due to the associativity.

Note: Since a′ in a·a′ = e is uniquely determined we write a−1 for a′.

If not differently noted the group G will be multiplicative ((G,·)) in the following.
So it has the unit 1 ∈ G.

1

1 Mathematical Background

Example 1.1
Z = (Z,+) is a group with the neutral element 0.

Definition 1.2 (Exponentiation)
Let (G,·) and (H,+) be groups and a ∈ G, b ∈ H and k ∈ N0. The exponentiation
ak and the multiple k·b are defined as follows:

ak := a·a · · · a︸ ︷︷ ︸
k times

k·b := b+ b+ · · ·+ b︸ ︷︷ ︸
k times

a0 := 1 ∈ G 0·b = 0 ∈ H

Definition 1.3 (Element order)
Let G be a group and a ∈ G. The order is a function ord : G→ N∪ {∞} defined as
follows:

ord(a) =
∞, (∀i 6= j) : ai 6= aj

minn∈N{an = 1}, else

Definition 1.4 (Generator/cyclic group)
If there exists an element g ∈ G with G = {gk : g ∈ Z} then g is called the generator
of G and G is a cyclic group. This is written as G = 〈g〉.
If ord(g) = n ∈ N (that is ord(g) is finite) it follows that 〈g〉 = G = {1 = g0, g =

g1, g2, ..., gn−1}. So ord(g) = |G|.

Note: In the following we will consider only finite cyclic groups.

In figure 1.1 the concept of a cyclic group is illustrated. The composition g1·g3 =
g4 is illustrated. No composition of arbitrary elements of the group ever leaves the
cycle.

g
0

g
1

g
2

g
3

g
4

∙

g
5

Figure 1.1: Visualization of a cyclic group 〈g〉 with |〈g〉| = 6

The composition of g1 and g3 to g4 motivates the following lemma. It follows
directly from the associativity.

Lemma 1.5 (Exponent rules)
Let G be a group and a ∈ G an element. Then the following holds for all k, l ∈ N0:

2

1.3 ElGamal encryption

1. akal = ak+l

2. (ak)l = akl = (al)k

For the ElGamal method the last thing we need is the inverse of the exponentiation.
That is we want to reduce the fraction ak

ak = ak·a−k to 1. To achieve this we extend
the definition of the exponentiation to Z. From that the inverse follows naturally.

Definition 1.6
Let G be a finite cyclic group, a ∈ G and k ∈ N0. Then

a−k := (a−1)k.

Lemma 1.7
a−k is the inverse to ak that is aka−k = 1 = a−kak.

Proof. The proof is performed inductively:

aka−k

1.5= (a1)k·(a−1)k

= a · · · a︸ ︷︷ ︸
k times

· a−1 · · · a−1︸ ︷︷ ︸
k times

= a · · · a︸ ︷︷ ︸
k-1 times

·(a·a−1)· a−1 · · · a−1︸ ︷︷ ︸
k-1 times

= (a1)k−1·1·(a−1)k−1

= (a1)k−1·(a−1)k−1

...
= 1

1.3 ElGamal encryption
In the following the ElGamal encryption is introduced. We look at the more abstract
version which operates on arbitrary groups.
The algorithm itself is not used here because the goal is not to encrypt data but to

exchange keys. But the algorithm shows nicely the principles of cryptography using
elliptic curves.

Definition 1.8 (Generalized ElGamal encryption)
Let G = 〈g〉 be a finite cyclic group and n = ord(g). M ∈ G is the message which
Alice (A) wants to transport to Bob (B).
g and n are the domain parameters on which A and B agree beforehand.

3

1 Mathematical Background

• Key generation:
B chooses d ∈ 2 . . . n− 1 and assigns a := gd. a is B’s public key and d is his
private key.

• Encryption:
A chooses e ∈ 2 . . . n− 1 and assigns b := ge. To encrypt M A calculates
C := M·ae. b and e are ephemeral keys used only for one session.
A sends (C, b) to B.

• Decryption:
Let s = b−d. From that it follows that M = s·C.

Theorem 1.9
The generalized ElGamal encryption is correct.

Proof. The symbols are the same as in 1.8.

s·C s,C= b−d·ae·M
a,b= (ge)−d·(gd)e·M
1.5= g−de·gde·M
1.7= 1·M
= M

Note: In 1.8 d, e are chosen from Zn \ {0, 1} because ord(g) = n and g0 = 1 and
g1 = g. So numbers above n−1 don’t generate new keys and for 0 and 1 the encryption
is trivial to break.

If an attacker Eve (E) can eavesdrop everything A and B exchange, she only gets
g, a = gd, b = ge and C. But to decrypt C she has to calculate gde from a and b. In
certain groups this holds and is called the computational Diffie-Hellman assumption
(CDH).
A counter example is (Zp,+). A group in which the CDH assumption holds is

(Zp,·). In (Zp,·) the CDH assumption is equivalent to the discrete logarithm prob-
lem (DLP). That is to retrieve d from a = gd.
For more about the CDH assumption see [3, p.132 et seq.].

1.4 Finite fields
To define elliptic curves for cryptographic use one concept is needed: finite fields.

4

1.4 Finite fields

Definition 1.10 (Field)
Let K 6= ∅ be a nonempty set and + : K ×K → K · : K ×K → K two operations
on K.

(K,+,·) is called a field if the following holds:

• (K,+) and (K \ {0},·) are commutative groups

• Distributivity: (∀a, b, c ∈ K) : a(b+ c) = ab+ ac and (a+ b)c = ac+ bc

If |K| ∈ N K is a finite field. Finite fields are also called Galois fields (GF).

Note: K \ {0} are all elements which have an inverse under ·. Generally K× ⊆ K
denotes all elements which have an inverse under some operation.

Finite fields have a very special structure:

Theorem 1.11
If K is a finite field |K| = pn where p is a prime number and n ∈ N0.

Proof. See [5, p.264].

Because of this special structure the class of all finite fields with order pn is denoted
as GF (pn). From the finiteness of the elements in GF (pn) follows that all finite fields
of order pn are isomorphic. That is there is a one-to-one correspondence between the
elements. An element from GF (pn) is called a representation. This will be used in
1.4.1. Fpn stands for one such representation.
The different fields can be structured into classes by looking at their internal struc-

ture. This is needed to choose the correct equations for elliptic curves.

Definition 1.12
Let K be a finite field and 1 ∈ K the neutral element with respect to the multipli-
cation. Then the characteristic of K is defined as

char(K) = min{n ∈ N : n·1 = 0}

where · is the multiplication from definition 1.2.

Note: It is important to note that the above definition is only valid for finite fields.
In infinite fields it may happen that char(K) =∞.

Example 1.2
char(Z3) = 3 because 3·1 = 1 + 1 + 1 = 3 ≡ 0 (mod 3).

1.4.1 Polynomial fields
Now we use the fact that all finite fields are isomorphic. One example for a repre-
sentation are polynomials over another field modulus a reduction polynomial:

5

1 Mathematical Background

Definition 1.13
Let K be a field. Then K[x] is the set of polynomials with factors from K:

K[x] = {f(x) : f(x) = anx
n + . . .+ a2x

2 + a1x+ a0, a0, . . . , an ∈ K,n ∈ N}

n is the degree of f denoted as deg(f) := n.

Definition 1.14 (Irreducible)
Let f, g, h ∈ K[x]. If

f = g·h ⇒ g ∈ K× or h ∈ K×

then f is named irreducible.

Note: Note that the condition g ∈ K× is equivalent to deg(g) = 0.

Definition 1.15
Let f, g ∈ K[x]. There exist q, r ∈ K[x] so that

f = qg + r and deg(r) < deg(g)

With this we extend the modulus operation: f mod g := r.

Theorem 1.16 (Polynomial field)
Let K be a field with |K| = k and p ∈ K[x] be irreducible with deg(p) = n. The set

K[x]/(p) = {f mod p : f ∈ K[x]}

is a finite field. It has the order |K[x]/(p)| = kn.

Proof. See [5].

Example 1.3
For the purpose of implementing the operations in binary logic (on a computer or in
transistor logic) the field of binary polynomials is the most interesting.
This field from GF (2n) is represented by Z2/(p) where p is a polynomial with

factors from {0, 1}. A polynomial can be represented by a tuple of factors if one
agrees on the exponent of each xk corresponding to the position of a factor in the
tuple. So a binary polynomial can be represented by a bit vector directly in memory.
The characteristic of Z2/(p) is 2 since 1 + 1mod = 0.

1.5 Elliptic Curves
In the following we will introduce elliptic curves and define geometrical operations
on them. These operations will form an additive operation which in turn forms a
group structure.
Elliptic curves are defined by the points that fulfill the following equation

y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5

6

1.5 Elliptic Curves

0

5

10

15

20

25

30

0 5 10 15 20 25 30

3

3

3
3
3

3

3

3
33

3

3

3

3

3

3
3

33
3

3
3

3
3

3

33

3

3

3

33

3
3

3

Figure 1.2: Elliptic curve over finite field F29

where a1, . . . a5 are factors from an (mostly) arbitrary field. The “mostly” refers to
the characteristic of the field. For fields of characteristic 2 or 3 we have to use slightly
reduced equations. But more on that later.
In figure 1.3 a typical elliptic curve has been sketched. They look like this over

fields like R. But those would be useless for cryptographic usage. Over finite fields
like Z2/(p) they look like in figure 1.2. This is a lot more chaotic. The structure
of a curve can be seen to some extend. It is repeated if the curve reaches the right
border. But very little differences at the left border lead to big differences going to
the right. We might think of this as a good pseudo random number generator if we
use bigger fields for the curve.
Now we go for the combination of the points on the curves.

1.5.1 Geometrical operations
In the following we denote points (in the Euclidean plane) as P = (x1, y1) and
Q = (x2, y2). Those are assumed to be on the curve.
Let P 6= Q. The addition of P and Q is done by drawing a line through P and Q.

The line hits the curve in exactly one point R′ which is not equal to P or Q. To get
R = P +Q we now have to mirror R′ at the x-axis.
This process is visualized in figure 1.3.

7

1 Mathematical Background

R'

P

Q

P + Q + R' = 0

R

Figure 1.3: Addition on elliptic curves

If P = Q then P + Q = P + P thus this is called point doubling. It is done by
drawing the tangent at P . We then again get a point R′ in which the tangent hits
the curve again. To get R = P + P R′ has to be mirrored again.
The point doubling is visualized in figure 1.4.

R'

P

P + P + R' = 0

R

Figure 1.4: Point doubling on elliptic curves

It is worth noting that the operands to the addition may be exchanged without
changing the result. This is pretty obvious from the geometrical point of view. So
the addition is commutative.

8

1.5 Elliptic Curves

For now we have an operation on the points of an elliptic curve that is well defined
(i.e. for every pair P,Q P + Q lies on the curve). If we want to interpret this as a
group structure we need an inverse to the addition and a neutral element.
For this let us look at figure 1.5. There is a line drawn through P and its mirroring

called −P . The line never hits the curve again. And this is the only situation in
which that happens if we connect points on an elliptic curve. We define an imaginary
point ∞ which is “hit” by the line as the result of this operation. If we add ∞ to an
arbitrary point on the curve using the normal addition defined above we get always
get the point back. This is because connecting an arbitrary point with ∞ always
results into a line parallel to the y-axis.

P

-P

P + (-P) + ∞ = 0

Figure 1.5: Addition of an inverse on elliptic curves

This way we have defined a neutral element ∞ and an inverse −P .
To sum up: an elliptic curve E over a field K defines a set of points

E(K) := {P : P lies on E} ∪ {∞}
and an operation + with the neutral element∞ and the inverse of a point P denoted
as −P . Together (E(K),+) form a commutative group.

1.5.2 Algebraic operations
Now we look at the algebraic definitions. To ease those we only define elliptic curves
over fields of characteristic 2 because those are used in the implementation.

Definition 1.17
Let K be a finite field with char(K) = 2. Then

E(K) := {(x, y) ∈ K ×K : y2 + xy = x3 + ax2 + b} ∪ {∞}, a, b ∈ K

9

1 Mathematical Background

is the set of points on the elliptic curve defined by y2 = x3 + ax+ b.
Let further be P = (x1, y1) and Q = (x2, y2) then define the following:

• −P := (x1, x1 + y1)

• P +Q := (x3, y3), where

x3 = s2 + s+ x1 + x2 + a, y3 = s(x1 + x3) + x3 + y1, s = y1 + y2

x1 + x2

• P + P := 2P := (x3, y3), where

x3 = s2 + s+ a, y3 = x2
1 + sx3 + x3, s = x1 + y1

x1

Note: The subtraction a − b and division c
d
are just short forms of a + (−b) and

(c·d−1).

Theorem 1.18
(E(K),+) forms a commutative group.

Proof. The proof is of very technical nature. It is a straightforward construction
from the geometrical imagination. It can partly be found in [10, p. 247].
But to get a first impression one may interpret s as the slope of the line/tangent

in each case.

10

2 Algorithms

2.1 Introduction
In this chapter all necessary algorithm for an encryption with elliptic curves will be
collected and implemented.
The algorithms are divided into four parts:

1. operations on finite fields F2n from GF (2n) (2.2)

2. operations in Z (not covered here)

3. operations on E(F2n) (2.3)

4. algorithms for key exchange (2.4)

1 and 2 are foundations for 3 whilst 2 and 3 are needed for 4.

2.2 Operations in F2n

2.2.1 Definitions
Used values:

• F2n = Z2[x]/(p), p ∈ Z2[x] irreducible

• p(x) = xn +R(x), deg(p) = n, deg(R) < n

• R(x) = ∑n−1
i=0 rix

i ∈ Z2[x]

• f, g, h ∈ F2n where

f = f(x) = an−1x
n−1 + an−2x

n−2 + . . .+ a1x+ a0 =
n−1∑
i=0

aix
i

g =
n−1∑
i=0

bix
i

h =
n−1∑
i=0

cix
i

ai, bi, ci ∈ Z2, i = 0, . . . , n− 1

Used symbols:

11

2 Algorithms

• F,G,H ∈ Zn
2 (bit vectors of f, g, h) where

F = (an−1, an−2, . . . , a1, a0)
G = (bn−1, . . . , b0)
H = (cn−1, . . . , c0)

• F [i] = ai, G[i] = bi, H[i] = ci, i = 0, . . . n− 1 (bit access)

Used operations:

• xor: a⊕ b = (a+ b) mod 2, a, b ∈ Z2

• left shift: F � k = (an−k−1, an−k−2, . . . , ak, 0, . . . , 0)

• swapping: swap(a, b) = (b, a)

2.2.2 Addition

h = (f + g) mod p

=
(

n−1∑
i=0

aix
i +

n−1∑
i=0

bix
i

)
mod p

=
(

n−1∑
i=0

((ai + bi) mod 2)·xi

)
mod p

=
(

n−1∑
i=0

(ai ⊕ bi)xi

)
mod p

=
n−1∑
i=0

(ai ⊕ bi)xi since deg(f + g) < deg(p)

⇒ H[i] = F [i]⊕G[i], i = 0, . . . n− 1

Algorithm 2.1 Addition in F2n

for i = 0 to n− 1 do
H[i]← F [i]⊕G[i]

end for
return h

2.2.3 Substraction
From a− b ≡ a+ b (mod 2) immediately follows f − g ≡ f + g (mod p).

12

2.2 Operations in F2n

2.2.4 Multiplication

h = f·g mod p

=
(

n−1∑
i=0

aix
i

)
·g mod p

=
(

n−1∑
i=0

(aix
i·g)

)
mod p

=
(

n−1∑
i=0

(aix
i·g mod p)

)
mod p

=
n−1∑
i=0

(aix
i·g mod p) deg(aix

ig mod p) < deg(p)

If aj = 1:
ajx

j·g mod p

= xj·g mod p

= gxxj−1 mod p

≡ (gx mod p)·(xj−1 mod p)
...
≡ [((gx mod p)·x mod p) . . .] ·x mod p︸ ︷︷ ︸

j times

gx mod p

=
(

n−1∑
i=0

bix
i

)
·x mod p

=
n−1∑
i=0

bix
i+1 mod p

By polynomial long division we get:
(bn−1x

n + bn−2x
n−1 + . . .+ b0x) : (xn +R(x))

= bn−1R(x) + bn−2x
n−1 + . . .+ b0x

which leads to
gx mod p

≡ bn−1R(x) + bn−2x
n−1 + . . .+ b0x mod p

=
(
bn−1

n−1∑
i=0

rix
i

)
+

n−2∑
i=0

bix
i+1, deg(R) < n

=

∑n−1

i=0 (ri + b′i)xi, bn−1 = 1∑n−1
i=0 b

′
ix

i, bn−1 = 0

13

2 Algorithms

where b′i = bi−1, b
′
0 = 0, i = 1, . . . n − 1, that is G′ = G � 1. This leads to the

following algorithm.

Algorithm 2.2 g(x)·x mod p in F2n

if G[n− 1] = 1 then
return (G� 1) +R

else
return G� 1

end if

Based on this we get

h =
n−1∑
i=0

(aix
i·g mod p) see above

=
n−1∑
i=0

(aidi)

where
di = xi·g mod p = di−1x mod p, d0 = g

This corresponds to the following algorithm.

Algorithm 2.3 f(x)·g(x) mod p in F2n

h← 0
for i = 0 to n− 1 do
h← h+ F [i]·g
g ← g·x mod p {Algorithm 2.2}

end for
return h

The multiplication F [i]·g can be reduced to a simple check since F [i] ∈ Z2.

2.2.5 Division
Since f

g
= f·g−1 we have to calculate the inverse of g. This means:

g·g−1 ≡ 1 (mod p)
⇔ g·g−1 = m·p+ 1 ,m ∈ N0

⇔ g·g−1 −m·p = 1
⇒ (∃u, v ∈ F2n) : u·g + v·p = 1 (∗)

u and v can be found using the extended Euclidean Algorithm (EEA). Now we
want to derive an efficient version of the EEA for polynomials. The EEA relies on

14

2.2 Operations in F2n

the fact that gcd(a, b) = gcd(a, b−ca). In F2n b−ca = b+ca. So now we have to seek
for a c so that deg(b+ ca) < deg(b) otherwise the algorithm would not terminate.
Let 0 < d = deg(b)− deg(a). Such a d exists, otherwise change a and b.

⇒ deg(a·xd) = deg(b)
⇒ deg(b+ a·xd) < deg(b)

⇒ gcd(a, b) =

gcd(a, b+ axd) deg(a) ≤ deg(b)
gcd(b, a) deg(a) > deg(b)
b a = 0

This leads to algorithm 2.4. The recursion there is already transformed into an
iteration.

Algorithm 2.4 gcd(f, g) in F2n (Euclidean algorithm)
Require: deg(f), deg(g) < deg(p)
while f 6= 0 do
d← deg(g)− deg(f)
if d ≥ 0 then
g ← g + f·xd

else
(f, g)← swap(f, g)

end if
end while
return g

The precondition ensures that deg(f·xd) < deg(p). This can be used to implement
the multiplication by a simple shift (algorithm 2.5).

Algorithm 2.5 f·xd in F2n

Require: deg(f) + d < deg(p)
return F � d

The Euclidean algorithm for gcd(a, b) can be extended by the following invariant:

f·u1 + g·v1 = a (2.1)
f·u2 + g·v2 = b (2.2)

where gcd(a, b) is calculated with the initial arguments f and g. It can be proven
by induction over the number of steps that this is really invariant if u1,2 and v1,2
undergo the same transformations as a and b.

15

2 Algorithms

This leads to the following recursion:

gcd((a, u1, v1), (b, u2, v2)) =

gcd((a, u1, v1), (b′, u′2, v′2)), deg(a) ≤ deg(b)
gcd((b, u2, v2), (a, u1, v1)), deg(a) > deg(b)
(b, u2, v2), a = 0

where
d = deg(b)− deg(a)
b′ = b+ axd

u′2 = u2 + u1x
d

v′2 = v2 + v1x
d

This function can be used in the following: (b, u, v) = gcd((f, 1, 0), (g, 0, 1)) (cf.
invariant). With this we get: f·u+ g·v = b. This is exactly what we were looking
for in (∗) (p. 15).
The algorithm can be retrieved analogously to algorithm 2.4.

Algorithm 2.6 deg(f) in F2n

Require: f 6= 0
for i = n− 1 to 0 do
if F [i] 6= 0 then
return i

end if
end for

The EEA uses the degree of a polynomial. It can be retrieved by algorithm 2.6. In
algorithm 2.4 the exact degree has to be calculated twice. Which potentially means
walking through all bits. There is another algorithm known as “Stein’s algorithm”.
It only has to calculate if deg(f) < deg(g). For this only one traversal is needed
instead of two.
It is based on the following facts:

gcd(a, b) =

x gcd(a/x, b/x), x | a, b
gcd(a/x, b), x | a, x 6 | b
gcd((a− b)/x, b), x 6 | a, b, deg(a) ≥ deg(b)
gcd(b, a), x 6 | a, b, deg(a) < deg(b)
b, a = 0

From this algorithm 2.7 can be constructed. The invariant from the EEA is already
attached to it. Some cases have been eliminated to make the algorithm more compact.
The algorithm stops at a 6= 1 because we know that gcd(f, p) = 1. So we don’t have
to compute the next step.

16

2.2 Operations in F2n

Algorithm 2.7 f−1 in F2n (Stein’s algorithm)
Require: deg(f), deg(g) < deg(p)
a← f
b← p
u← 1
v ← 0
while a 6= 1 do
if x 6 | a then
if deg(a) < deg(b) then

(a, b)← swap(a, b)
(u, v)← swap(u, v)

end if
a← a+ b
u← u+ v

end if
while x | a do {make a not divisible by x}
a← a/x
if x 6 | u then
u← u+ p

end if
u← u/x

end while
end while
return u

For this to work there are two additional algorithms needed: deg(f) < deg(g) (2.8)
and f/x (2.9).

Algorithm 2.8 deg(f) < deg(g) in F2n

for i = n− 1 to 0 do
if F [i] 6= G[i] and F [i] = 0 then
return true

else if F [i] 6= G[i] and F [i] = 1 then
return false

else if F [i] = G[i] then
return false

end if
end for
return false

17

2 Algorithms

Algorithm 2.9 f/x in F2n

Require: x | f
return F � 1

The swap operation in algorithm 2.7 prevents parallelization because it introduces
a data dependency. This can be eliminated in regard to the implementation in
hardware circuits. This is shown in algorithm 2.10.

Algorithm 2.10 f−1 in F2n (Stein’s algorithm)
Require: deg(f), deg(g) < deg(p)
a← f
b← p
u← 1
v ← 0
while a 6= 1 do
if x 6 | a then
if deg(a) < deg(b) then
b← a+ b
v ← u+ v

else
a← a+ b
u← u+ v

end if
end if
while x | a do {make a not divisible by x}
a← a/x
if x 6 | u then
u← u+ p

end if
u← u/x

end while
while x | b do {make b not divisible by x}
b← b/x
if x 6 | v then
v ← v + p

end if
v ← v/x

end while
end while
return u

Now the variables a/u and b/v can be divided independently. The addition in the
if -part of the loop is just multiplexing instead of copying.

18

2.2 Operations in F2n

To use this algorithm in hardware the while loop has to be eliminated. To do this
we transform the loops into a state machine. For this we write the algorithm more
compact:

Algorithm 2.11 f−1 in F2n (Stein’s algorithm compact)
Require: deg(f), deg(g) < deg(p)
a← f
b← p
u← 1
v ← 0
while a 6= 1 do {1}

(a, b, u, v)← f(a, b, u, v)
while x | a do {2}

(a, u)← g(a, u)
end while
while x | b do {3}

(b, v)← g(b, v)
end while

end while
return u {4}

where

f(a, b, u, v) =

(a, b, u, v), x | a
(a+ b, b, u+ v, v), x6 | a, deg(a) < deg(b)
(a, a+ b, u, u+ v), x 6 | a, deg(a) ≥ deg(b)

g(c, w) =
(c/x, (w + p)/x), x 6 | w

(c/x, w/x), x | w

In algorithm 2.11 four lines are numbered. They are branching nodes inside the
algorithm and are to be transformed into states:

19

2 Algorithms

1 2 3
a≠1 / f

a=1

x∣a /
(a,u) ← g(a,u)

x∣b /
(b,v) ← g(b,v)

x ∤ a

x ∤ b

4

Figure 2.1: State machine for algorithm 2.11

The semantic of this state machine is that the conditions at the transitions are
tested on fixed steps (i.e. a clock). When a transition is taken, the action after the
slash is executed. State 1 is the initial state and 4 is a final state.
Because state 2 and 3 have no data dependency they can be driven in parallel. That

means on each step the transitions which lead back to state 2 and 3 respectively can
be taken in parallel. This idea is shown in figure 2.2.

1

2

3

a≠1 / f

a=1

x∣a /
(a,u) ← g(a,u)

x∣b /
(b,v) ← g(b,v)

x ∤ a

x ∤ b

4

Figure 2.2: State machine for algorithm 2.11 (parallelized)

To use any of the presented inversion algorithms to calculate f
g

= f·g−1 one can
use the result as parameter for a multiplication. But the invariant can also be used
to calculate the result of the division directly. See algorithm 2.12.

20

2.3 Operations in E(F2n)

Algorithm 2.12 f/g in F2n

(a, u, v)← gcd((g, f, 0), (p, 0, 1))
return u

2.3 Operations in E(F2n)

2.3.1 Affine coordinates
The concept of affine points refers to points in the Euclidean plane represented by
a pair of elements from the underlying field. The operations are just the defined
formulas in 1.17.
The only interesting part is the point multiplication. That is the implementation

of definition 1.2 (exponentiation). The addition and point doubling are just direct
implementations of the formulas given in 1.17.
The point multiplication is an implementation of the so called “fast multiplication”.

Algorithm 2.13 aP in E(F2n) (Point multiplication)
if a < 0 then
a← −a
P ← −P

end if
Q←∞
while a 6= 0 do
if 26 | a then
Q← Q+ P

end if
P ← 2P
a← ba/2c

end while
return Q

2.3.2 Projective coordinates
The motivation of using another representation of coordinates is that the operations
on elliptic curves (addition and point doubling) use one inversion in F2n each. Rela-
tively to the multiplication an inversion may be very expensive. This can be seen in
chapter 4.
Using projective coordinates those inversions can be replaced by multiple multi-

plications.

Definition 2.1
Let K be a field and c, d ∈ Z. Now ∼ is an equivalence relation over K3 \ {(0, 0, 0)}

21

2 Algorithms

defined by

(x1, y1, z1) ∼ (x2, y2, z2)⇔ (∃λ ∈ K×) : x1 = λcx2, y1 = λdy2, z1 = λz2 .

The equivalence classes are notated by the coordinates of a representative. That
is (x, y, z) lies in the class

[x : y : z] := {(x′, y′, z′) ∈ K3 \ {(0, 0, 0)} : (x′, y′, z′) ∼ (x, y, z)}
= {(λcx, λdy, λz) : λ ∈ K×}

The quotient space K3 \ {(0, 0, 0)}/ ∼ = {[x : y : z] : (x, y, z) ∈ K3 \ {(0, 0, 0)}} is
denoted as KP 3.

If [x : y : z] ∈ KP 3 every element in it can be used as representative especially
the element [x/zc : y/zd : 1] for some c and d and z 6= 0. That motivates the
following theorem where (KP 3)× = {[x : y : z] : (x, y, z) ∈ K3, z ∈ K×}. Note that
K× = K \ {0} so the only condition for z is z 6= 0.

Theorem 2.2
Let K be a field and f : K2 → (KP 3)× with f((x, y)) = [x : y : 1]. Then f is a
bijection with the inverse π := f−1([x : y : z]) = (x/zc, y/zd), c, d ∈ Z.

Proof. Since a bijective map has an uniquely determined inverse map we only have
to show, that π is the inverse of f . That means showing that π ◦ f = idK2 and
f ◦ π = id(KP 3)× holds.

1. π ◦ f = idK2

π(f((x, y))) = π([x : y : 1]) =
(
x

1c
,
y

1d

)
= (x, y)

2. f ◦ π = id(KP 3)×

f(π([x : y : z]))

= f(
(
x

zc
,
y

zd

)
)

=
[
x

zc
: y
zd

: 1
]

=
[
zc x

zc
: zd y

zd
: z·1

]
by 2.1

= [x : y : z]

Note: The points KP 3 \ (KP 3)× = {[x : y : z] : (x, y, z) ∈ K3, z = 0} are called the
line at infinity. They do not correspond to any point in K2.

22

2.3 Operations in E(F2n)

Now we choose fixed c and d for the mapping and define the elliptic curves and
the corresponding operations. Again this only done for fields of characteristic 2.

Definition 2.3 (López-Dahab projective coordinates, [6])
Let K be a finite field with char(K) = 2 and c = 1, d = 2. Then π : (KP 3)× → K2,
π([x : y : z]) = (x/z, y/z2).
The corresponding EC operations are:

• Inverse −[x1 : y1 : z1] = [x1 : x1z1 + y1 : z1]

• Point doubling 2[x1 : y1 : z1] = [x3 : y3 : z3] where

z3 = z2
1·x2

1,

x3 = x4
1 + b·z4

1 ,

y3 = bz4
1·z3 + x3·(az3 + y2

1 + bz4
1).

• Point adding [x1 : y1 : z1] + [x2 : y2 : z3] = [x3 : y3 : z3] where

A1 = y2·z2
1 , D = B1 +B2, H = C·F,

A2 = y1·z2, E = z1·z2, x3 = C2 +H +G,

B1 = x2·z1, F = D·E, I = D2·B1·E + x3,

B2 = x1·z2, z3 = F 2, J = D2·A1 + x3,

C = A1 + A2, G = D2·(F + aE2), y3 = H·I + z3·J.

In the following lemma the notation E(·) gets an overloaded meaning. E(K2)
and E(KP 3) describe curves with E(K2) ⊆ K2 any E(KP 3) ⊆ KP 3 respectively.
That is we describe the structure of the used coordinates.

Lemma 2.4
With c = 1, d = 2 is

π([x : y : z]) =
(
x

z
,
y

z2

)
an isomorphism from E(KP 3) to E(K2).

Proof. That the in 2.3 defined formulas are correct can be found in [6]. So π is a
homomorphism. By theorem 2.2 π is an isomorphism.

Now we have a transformation which is reversible from affine to projective coordi-
nates. In projective coordinates the operations on elliptic curves do not involve the
division in the underlying field. It is replaced by a some more multiplications. As
we will see this has a lot more potential for parallelization.

23

2 Algorithms

2.4 ECMQV
The last algorithm that is introduced is for the key agreement. The implementation
is taken directly from [4, p.195]. The algorithm is called “Elliptic Curve MQV”
(ECMQV) after it’s inventors Menezes, Qu and Vanstone. In [7] an improved version
is presented which is said to fix some security issues. But as it is relatively new it
has not been as much analyzed as ECMQV.
The protocol does not have much potential for parallelization. It is just presented

for completeness.
The protocol uses the following parameters:

• Cofactor h where |E(F2n)| = ord(P)·h.

• Identifiers for the participants: A and B.

• Key pairs for A and B: (QA, dA) and (QB, dB) respectively.

The used functions and notations are the following:

• KDF (k) – a key derivate function (algorithm 2.16).

• MACk(s) – a message authentication code function (algorithm 2.17).

• P = (x mod 2df/2e) + 2df/2e, where x is the x-coordinate of P interpreted as
integer and f = blog2 nc+ 1 (this is roughly x mod

√
n or halving of bit size).

24

2.4 ECMQV

Protocol 2.14 ECMQV
1. A:

1.1 Select kA ∈ {1, . . . n− 1} and set RA ← kAP .
1.2 Send A and RA to B.

2. B:
2.1 Validate RA (see algorithm 2.15).
2.2 Select kB ∈ {1, . . . n− 1} and set RB ← kBP .
2.3 Set sB ← (kB +RBdB) mod n.
2.4 Set Z = (xZ , yZ)← hsB(RA +RAQA) and verify Z 6=∞.
2.5 Set (k1, k2)← KDF (xZ).
2.6 Set tB ←MACk1(2 ‖ B ‖ A ‖ RB ‖ RA).
2.7 Send B, RB and tB to A.

3. A:
3.1 Validate RB (see algorithm 2.15).
3.2 Set sA ← (kA +RAdA) mod n.
3.3 Set Z = (xZ , yZ)← hsA(RB +RBQB) and verify Z 6=∞.
3.4 Set (k1, k2)← KDF (xZ).
3.5 Set t←MACk1(2 ‖ B ‖ A ‖ RB ‖ RA) and verify t = tB.
3.6 Set tA ←MACk1(3 ‖ A ‖ B ‖ RA ‖ RB).
3.7 Send tA to B.

4. B:
4.1 Set t←MACk1(3 ‖ A ‖ B ‖ RA ‖ RB) and verify t = tA.

In the following the required algorithms are presented. The operation ‖ stands
for the concatenation.

Algorithm 2.15 Validate public key Q = (x, y)
Ensure: Returns true if Q is a valid public key.
if x, y 6∈ F2n then
return false

else if Q =∞ then
return false

else if Q 6∈ E(F2n) then
return false

else
return true

end if

25

2 Algorithms

Algorithm 2.16 KDF (k)
Require: H(s) – hash function with lH bits output
Ensure: Key of l bits returned
m←

⌈
l

lH

⌉
{number of needed hashes}

d← ε {derived key (initially empty)}
for i = 1 to m do
s← s ‖ H(k, i)

end for
return s[0 : l − 1]

Algorithm 2.17 HMACk(m) – MAC based on a hash algorithm ([3, p.193])
Require: H(m) – hash function
Require: ipad = (36)16 and opad = (5c)16
return H ((k ⊕ opad) ‖ H((k ⊕ ipad) ‖ m))

26

3 Parallelization

3.1 Introduction
In this chapter we try to parallelize the algorithms that we introduced in chapter
2. The most interesting part here are the operations on elliptic curves because they
utilize computational costly operations on the underlying field. So the operations
take enough time that having multiple field implementations is legitimated.

3.2 Operations in F2n

Here we have seen a small parallelization inside the loop of the division. More
parallelization is not possible for the chosen algorithms because every step of the loop
depends on the results of the previous step. The same holds for the multiplication.

3.3 Operations in E(F2n)
In the following we draw the operations in E(F2n) as directed acyclic graphs (DAG).
The figures have been generated using dot from the Graphviz suite ([1]).
Each node stands for the result of one operation. Exponentiation (x2, x4 etc.) is

implemented in terms of multiplication. As in this case the exponent is only 2 or 4
the operation is unrolled.
The graphs have four types of nodes: domain parameter (boxes), input parameter

(green ellipses), result nodes (red ellipses) and intermediate results (black ellipses).
An edge (a, b) is added to the graph if there is a dependency of the value of b on the
value of a.
Another “trick” lets us reason about parallelization more easily: the nodes are

ordered by dependencies from top to bottom. That means if there is an edge (a, b)
the node b is drawn on a lower level than a.

3.3.1 Affine coordinates
In affine coordinates two units for operations in F2n could be utilized in parallel.

27

3 Parallelization

a

x₁ + x₂ + a

bx₁

x₁ + x₂

x₁ + x₃

y₁

y₁ + y₂

x₃ + y₁

x₂y₂

λ + x₁ + x₂ + a

λ = (y₁ + y₂)/(x₁ + x₂)

λ(x₁ + x₃)

y₃ = λ(x₁ + x₃) + x₃ + y₁

λ²

x₃ = λ² + λ + x₁ + x₂ + a

Figure 3.1: Data dependencies of the point addition using affine coordinates

28

3.3 Operations in E(F2n)

a

λ + a

bx₁

x₁²

y₁/x₁

λ = x₁ + y₁/x₁

y₁

x₃ = λ² + λ + a

x₁² + x₃

λ²

λx₃

y₃ = x₁² + λx₃ + x₃

Figure 3.2: Data dependencies of the point doubling using affine coordinates

3.3.2 Projective coordinates
In projective coordinates four units for operations in F2n could be utilized in parallel.
Five units would have been possible but the critical path would have been only one
step shorter.
For projective coordinates only addition and multiplication is needed in those units.

Division has to be done only once in the conversion from projective to affine coordi-
nates after all necessary calculation have been done. So the needed space for those
four units should not be very different from those two needed in affine coordinates
(see chapter 4).

29

3 Parallelization

a

aE²

bx₁

B₂ = x₁z₂

y₁

A₂ = y₁z₂²

z₁

z₁²B₁ = x₂z₁ E = z₁z₂

x₂ y₂

A₁ = y₂z₁²

z₂

z₂²

C = A₁ + A₂

D²⋅A₁

D = B₁ + B₂

D²⋅B₁

C²

H = C⋅F

C² + H

D² F = D⋅E

G = D²⋅(F + aE²)

E²

D²⋅B₁⋅E

z₃ = F²F + aE²

z₃⋅J

x₃ = C² + H + G

H⋅I

I = D²⋅B₁⋅E + x₃ J = D²⋅A₁ + x₃

y₃ = H⋅I + z₃⋅J

Figure 3.3: Data dependencies of the point addition using projective coordinates

30

3.3 Operations in E(F2n)

a

az₃

b

bz₁⁴

x₁

x₁²

y₁

y₁²

z₁

z₁²

B = az₃ + y₁² + bz₁⁴

y₁² + bz₁⁴x₃ = x₁⁴ + bz₁⁴bz₁⁴z₃

x₁⁴z₃ = x₁²⋅z₁² z₁⁴

C = x₃⋅B

y₃ = bz₁⁴z₃ + C

Figure 3.4: Data dependencies of the point doubling using projective coordinates

31

4 Results

4.1 Implementation
The implementation which has been used for the measurements consists of two parts.
The operations in F2n have been realized using Verilog and the operations in E(F2n)
in SystemC. ECMQV will be run in Software so it has been realized in SystemC.
The Verilog implementation on the one hand allows a more fine grained measure-

ment of the operations using a concrete technology library. On the other hand the
SystemC implementation allows an easier exploration of the different algorithms and
the parallelization.

4.2 Environment
4.2.1 Testing
To ensure a correct transformation of the theory into programming code a test suite
has been implemented. It consists of hand written tests of special cases and automat-
ically generated test vectors. The test vectors have been randomly generated using
the algebra system Sage ([2]). All tests are based on parameters for for the elliptic
curve “B-163” from [9].
The following table lists the implemented test cases for each module. Where P is

a random point on the curve and Q is the generator chosen.

Finite field Elliptic curve

• 0 + 1 = 1
• 1 + 1 = 0
• 1·x = x

• 0·x = 0
• x/1 = x

• 0/x = 0
• 1000 vectors for +, · and /

• P + (−P) =∞
• 0·P =∞
• 1·P = P

• kP + (−k)P =∞
• ord(Q)·P =∞
• en- and decryption using ElGa-

mal
• P ∈ E(F2n) for a point on the

curve and one not
• 1000 vectors for + and ·

Table 4.1: Test cases for the operations in F2n and E(F2n)

32

4.3 Timings

4.2.2 Measurements
The measurements have been done using ModelSim. It allows a simulation of Sys-
temC and Verilog implementations side by side. To get concrete clock speeds the F2n

operations in Verilog have then been synthesized by a RTL compiler from Cadence
using a technology library for 250nm silicon germanium structures. These are used
in the “SMART” project.
The measured critical path allowed the clock to be run at around 900MHz.
The ratio in size of a unit for finite fields with and without division is about three

(9000 logic blocks to 3000 logic blocks).

4.3 Timings
In table 4.2 different timings are listed for an implementation of operations in E(F2n).
The additional conversion from projective back to affine coordinates has been added
to a separate row. These timings are presented in graphical form in the figures 4.1
and 4.2.

Type Time Addition in NS
(clock cycles)

Time Multiplication
in NS (clock cycles)

Affine Sequential 97,039 (10,782) 4,565,589 (507,288)
Affine Parallelized 96,908 (10,768) 4,561,301 (506,811)
Projective Sequential 21,706 (2,412) 880,817 (97,869)
Projective Seq. + Conversion 224,563 (24,951) 1,084,287 (120,476)
Projective Parallel 10,743 (1194) 430,439 (47,826)
Projective Par. + Conversion 213,599 (23,733) 633,884 (70,432)

Table 4.2: Timings for different implementations of operations in E(F2n)

Looking at these timings one can see that the improvement using parallelization
in affine coordinates is negligible. This is because the operating time is dominated
by a long running division which can’t be parallelized.
On the other hand the operations in projective coordinates are build of a lot of

small operations which can be parallelized very good. Comparing the sequential
implementation of affine coordinates with the parallelized projective coordinates we
see a speedup of around 10. The parallelization makes a speedup of 2.
As expected one addition in projective coordinates with a subsequent conversion

into affine coordinates (involving a division) is slower than the same operation in
plain affine coordinates. Since the ECMQV key agreement protocol uses an addition
only after a multiplication (see protocol 2.14) this is negligible because here only one
conversion has to be done.

33

4 Results

0

5,000

10,000

15,000

20,000

25,000

AS AP PS PP PS+C PP+C

C
lo

ck
 c

yc
le

s

Timing EC Addition

Figure 4.1: Timings for EC addition

34

4.3 Timings

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

550,000

AS AP PS PP PS+C PP+C

C
lo

ck
 c

yc
le

s
Timing EC Multiplication

Figure 4.2: Timings for EC multiplication

To proof that there is a speed up in the ECMQV protocol, it has been measured,
too. The times include all protocol stages on one core. But both participants do
the same work so the ratios should be preserved. The timings are listed in table 4.3.
The necessary conversion from projective to affine coordinates in before sending data
have been included.

Type Running time in µs
Affine Sequential 126,333
Projective Parallel 12,967
Speedup 9.74

Table 4.3: Comparison of timings for ECMQV

So the speedup of the single operations are propagated almost completely through
the protocol.

35

4 Results

4.4 Suggestions for future research
In principal the improvements are very good. Maybe another type of projective
coordinates would scale better in parallelization. The ratio of speedup to the number
of used units is about 1

2 (4.3).
For the project the general running times have to be improved. The cause of the

long running times (12 seconds for one ECMQV pass) is the too much simplified
handling of bit operations. The processing of single bits in algorithm 2.3 and 2.10
costs in the current implementation one clock cycle each. So there is a lot of room
for improvement.
Some more engineering has to be done to transform the EC implementation from

SystemC to Verilog. With this at hand the implementations could be tested on a
FPGA.
Last but not least the parameters for the used elliptic curve have to be chosen.

The parameters used in the tests construct the smallest curve which is suggested by
the NIST ([9]). To have a key space that is big enough not be searched completely
in the future the next larger curve may be used.

36

Bibliography

[1] Graphviz – graph visualization software. http://www.graphviz.org/. 27

[2] Sage: Open source mathematics software. http://www.sagemath.org/. 32

[3] Albrecht Beutelspacher, Heike B. Neumann, and Thomas Schwarzpaul. Kryp-
tographie in Theorie und Praxis. Vieweg+Teubner, Wiesbaden, 2. edition, 2010.
4, 26

[4] Darrel Hankerson, Scott Vanstone, and Alfred J. Menezes. Guide to Elliptic
Curve Cryptography. Springer, Berlin, 1. edition, 2004. 24

[5] Christian Karpfinger and Kurt Meyberg. Algebra: Gruppen - Ringe - Körper.
Spektrum Akademischer Verlag, 1. edition, 2008. 5, 6

[6] Julio López and Ricardo Dahab. Improved Algorithms for Elliptic Curve Arith-
metic in GF (2n). In Stafford Tavares and Henk Meijer, editors, Selected Areas
in Cryptography, Lecture Notes in Computer Science, pages 632–632. Springer
Berlin / Heidelberg, 1999. 23

[7] P. Augustin Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A secure
and efficient authenticated diffie-hellman protocol. Cryptology ePrint Archive,
Report 2009/408, 2009. http://eprint.iacr.org/2009/408. 24

[8] SECG. SEC 1: Elliptic curve cryptography. http://www.secg.org/download/
aid-780/sec1-v2.pdf, September 2000. [Online; accessed 07-June-2010].

[9] SECG. SEC 2: Recommended elliptic curve domain parameters. http:
//www.secg.org/download/aid-784/sec2-v2.pdf, September 2005. [Online;
accessed 07-June-2010]. 32, 36

[10] Dietmar Wätjen. Kryptographie - Grundlagen, Algorithmen, Protokolle. Spek-
trum Akademischer Verlag, 2. edition, 2008. 10

37

http://www.graphviz.org/
http://www.sagemath.org/
http://eprint.iacr.org/2009/408
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-784/sec2-v2.pdf
http://www.secg.org/download/aid-784/sec2-v2.pdf

	Title
	Eidesstattliche Erklärung
	Abstract
	Purpose
	Contents
	List of Figures
	1 Mathematical Background
	1.1 Introduction
	1.2 Groups
	1.3 ElGamal encryption
	1.4 Finite fields
	1.4.1 Polynomial fields

	1.5 Elliptic Curves
	1.5.1 Geometrical operations
	1.5.2 Algebraic operations

	2 Algorithms
	2.1 Introduction
	2.2 Operations in F2n
	2.2.1 Definitions
	2.2.2 Addition
	2.2.3 Substraction
	2.2.4 Multiplication
	2.2.5 Division

	2.3 Operations in E(F2n)
	2.3.1 Affine coordinates
	2.3.2 Projective coordinates

	2.4 ECMQV

	3 Parallelization
	3.1 Introduction
	3.2 Operations in F2n
	3.3 Operations in E(F2n)
	3.3.1 Affine coordinates
	3.3.2 Projective coordinates

	4 Results
	4.1 Implementation
	4.2 Environment
	4.2.1 Testing
	4.2.2 Measurements

	4.3 Timings
	4.4 Suggestions for future research

	Bibliography

