CHAPTER 11

FUNDAMENTAL THEOREMS

Reduction was introduced in order to analyze S-conversion. In part IT we
have seen already several applications of the Church—Rosser theorem and
the standardization theorem. These and other important results on S-reduc-
tion will be proved in this chapter.

11.1. The Church—Rosser theorem

There are many ways to prove the Church—Rosser theorem. In §3.2 a
short proof due to Tait and Martin-Lof was given. In this section a bit
longer but more perspicuous proof is presented. These two proofs will be
compared in §11.2.

In order to prove that —» (i.e. —»,) satisfies the diamond property, it
suffices by lemma 3.2.2 to show that this is so for —. However that is not
true. The following lemma throws some light on the situation.

11.1.1. LeMMA. (i) The relations — and — do not satisfy the diamond

property.
(ii) The relation — satisfies the weak diamond property.

PROOF. (i) Let R— R’ be, say Il > and consider
(Ax.xx)R—>RR

(Ax.xx)R—(Ax.xx)R’.

A common reduct would be R’R’, but this cannot be reached in one step
from RR. Hence — does not satisfy the full diamond property (nor does its
reflexive closure).

(i1) Suppose

M->M,, M->M,
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in order to construct an M, such that
M, —»M;, M,—» M,.

Let (A)):M—>M,, i=1,2, with A;=(Ax,.P;)Q,. The possible relative
positions of A, and A, in M are given in the following table.

A, NnA,=0(.e. A, A, disjoint)
A, =4,
3.)A, CP
®acs, [oDNCh
324, cQ,
@.naA,cp
4 4A,ch, : :
42)A,cQ,
Let A\ = P,[x;:= Q;]
Case 1. Then
M_:_...Al...Az...
My=---A- Ay
M2: .Al...A'z...
Then take
My=---A}---A)

Case 2. Then M, = M, and we can take M;=M,.
Case (3.1).Then M =---(Ax,. -+ A+ )Q,) -+, where- - -A|- - = P,,

M= ((Axy.o Ay --)0,) -+

M, ‘("'Al"')[x23=Q2]"'~

Take
M 3

If

(A ) [x=0,]

Then clearly M, — M, and M,— M, by the substitutivity of B.
Case (3.2). Then M= - .- (Axy,.P))(---A;---))---, where

A =0y,
M= ((Axy.P)(--A}---))- -

Mzz"'(Pz[x2:=(---A,~~-)])---
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Take
M3‘:‘--~(P2[x2:=(---A]-u)]),

then clearly M, — M; and M,— M, by remark 3.1.7 (i).
Cases (4.1) and (4.2) can be treated analogously to cases (3.1) and (3.2).
O

Due to the existence of infinite reduction paths it does not automatically
follow from lemma 11.1.1 that B is CR, i.e. that — satisfies the diamond
lemma (see exercise 3.5.10). The diamond property for — does follow,
however, from the following “strip lemma”, which is a strengthening of
lemma 11.1.1:

The idea of the proof of this lemma is as follows. Suppose M Am ,- If one
keeps track of what happens with A during the reduction M — M,, then by
reducing all “residuals” of A in M, one obtains M;. In order to do the
necessary bookkeeping, it is convenient to mark some redexes. For this it is
sufficient to give an index to the first lambda of a redex. (For applications
later on several indices will be allowed.) For these reasons the following
auxiliary extension of A is introduced.

11.1.2. DEFINITION. (i) A’ is a set of words over the following alphabet

0> Vs - - - variables,
A,Ag Ay, ... lambdas,
(,) parentheses.

(ii) A’ is inductively defined as follows.
xEN,
MeAN=>MA.M)EN,
M,Ne N=(MN)eEN,
M,N e AN=((Ax.M)N)e A forallieN
(x denotes an arbitrary variable).

(i) If M € A’, then |M| € A is obtained from M by leaving out all
indices. For example, |(A,x.x)((A,x.x)(Ax.x))| = I(IN).
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The elements of A’ are called A’-terms. The same conventions are
adopted as for A-terms. The notion of reduction 8 is extended to 8’ on A’
as follows.

11.1.3. DEFINITION. (i) Substitution on A’ is defined in the obvious way. In
particular

(Mix.M)N)[z:=L]=(A;x.M[z:=L])(N[z:=L]).

(i) The notion of reduction B’ on A’ is defined by B’ = 8, U B, where S8,
and B, are defined by the following contraction rules:

Bo:(A\ix. M)N->M[x:=N],
B :(Ax.M)N->M[x:=N],

where iEN and M,Ne A".
(ii1) By remark 3.1.7(ii) the notion B’ generates relations — 4. and —» 4 on
A’: M — N iff for some (indexed) context C[ ] with one hole and some

(P,Q)EP
M=C[P] and N=C(C[Q],

—» g is the reflexive transitive closure of —g..

In the next section the notion of reduction B, will play an important
role. For the purpose of this section the set A’ and the notion B’ could
have been given simpler (using just one index).

11.1.4. DeFINITION. Let M € A’. Define ¢(M) € A by induction on the
structure of M as follows:

P(x)=1x,
o(PQ)=o(P)p(Q) if PENx.P,
o(Ax.P)=Ax.p(P),
?((A;x.P)Q)=o(P)[x:=9(Q)].

In other words, ¢ contracts all the redexes with an index (from the inside
to the outside; in section 11.2 it will be shown that other ways of
contracting all the indexed redexes always lead to the same result).

11.1.5. NOTATION. If |M | =N or ¢(M) = N, then this will be denoted by

M—->N or M>SN
I P
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respectively. This is convenient for a schematical formulation of state-
ments.

11.1.6. LEMMA.

@

M',N' € A",

M,N € A.

(i)

M',N' € A",

M,N € A.

PROOF. (i) First suppose M—»4zN is a one step reduction. Then N is
obtained by contracting a redex in M and N’ can be obtained by
contracting the corresponding redex in M’. The general statement follows
by transitivity.

(ii) Similar but easier: just leave out all indices from a reduction path
from M’ to N'. [

11.1.7. LEMMA. (i) Let M, N € \’. Then
p(M[x:=N])=g(M)[x:=9(N)].
(i)

J:‘—”] MY €A

ProoOF. (1) By induction on the structure of M, using the substitution
lemma in case M = (A,y.P)Q. The conditions for the substitution lemma
may be assumed to hold by the variable convention 2.1.13.

(ii) By induction on the generation of —»4, using (i). [J

11.1.8. LEMMA.

M €A,

(N,LEA).
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ProoF. By induction on the structure of M. []

11.1.9. STRIP LEMMA.

M
B 8 M,M',N,N' € A.
'
M S TN
B\\\ //8
¢
N'

PrOOF. Let M’ be the result of contracting the redex occurrence A in M.
Let M €A’ be obtained from M by indexing A. Then |M|=M and
@(M)=M’'. By lemmas 11.1.6 (i), 11.1.7 (ii) and 11.1.8 we can erect the
following diagram

~o g/ \\\\
NSO / %\ -

\&fk,:‘; N‘
Nl

which proves the strip lemma. [J

11.1.10. CHURCH- ROSSER THEOREM. B is CR. That is,

M /\N M,M' N,N' € A.

ProoF. If M—» M’, then
M=M,>M,—--- SM, =M.

Hence the diamond property follows from the strip lemma and a simple
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diagram chase:

a

In chapter 3 we have proved that Bn is CR. It is instructive to notice that
the proof given for B does not generalize immediately to Bn (see exercise
11.5.4).

11.2. The finiteness of developments

The main theorem in this section states that for each M € A the so
called developments (a special kind of reduction starting with M) are
always finite. This theorem (denoted by FD) has important consequences,
among them being the CR theorem, the conservation theorem for the
restricted theory and the standardization theorem.

FD was first proved by Church and Rosser [1936] for the A I-calculus in
order to prove the CR theorem for that theory. For the full A-calculus FD
was proved by Schroer [1965] and independently by Hyland [1973] and
Hindley [1978]. The proof given below is taken from Barendregt et al.
[1976] and is a simplification of that of Hyland.

One formulation of FD is simply

SN(Bo)-

that is, reductions on A’ contracting only indexed redexes are always finite.
Often this theorem is formulated in terms of “residuals”. It is convenient to
introduce this terminology.

11.2.1. LemMA (Projecting). Let ¢’ be a B’-reduction starting with M’ € A’,
say

N A
o M=M= M|— ---.
% ,



