PROOF. (i) By lemma 6.5.3.

Note that $Y^1 \rightarrow \Theta$.

- 6.5.6. DEFINITION (Gödel numbering). (i) It is easy to define, by standard techniques, an effective one-one map $\sharp: \Lambda \to \mathbb{N}$. In the rest of this book \sharp denotes one such map.
 - (ii) $\sharp M$ is called the Gödel number of M.

The following convention will be used throughout:

6.5.7. Convention. Notions about sets of integers, sequences of integers, etc., are translated to terms via the mapping #.

Examples. (i) A set $\mathcal{C} \subset \Lambda$ is recursive iff $\sharp \mathcal{C} = (\sharp M | M \in \mathcal{C})$ is recursive.

(ii) A sequence of terms M_0, M_1, \ldots is recursive iff $x n. \# M_n$ is a recursive sequence.

In fact the convention was already used in the proof of theorem 6.3.13 where it was shown that $\{(M, N)|\lambda \vdash M = N\}$ is an r.e. set.

6.5.8. NOTATION.
$$\lceil M \rceil \equiv \lceil \sharp M \rceil$$
.

There is little danger of confusion between the $\lceil \rceil$ of definitions 6.2.9 and 6.5.8. The first is defined on \mathbb{N} , the second on Λ .

6.5.9. SECOND FIXED POINT THEOREM.

$$\forall F \exists X \quad F^{\Gamma}X^{\Gamma} = X.$$

PROOF. By the effectiveness of \sharp , there are recursive functions Ap and Num such that Ap $(\sharp M, \sharp N) = \sharp MN$ and Num $(n) = \sharp^{\lceil} n^{\rceil}$. Let Ap and Num be λ -defined by **Ap** and **Num** $\in \Lambda^0$. Then

$$\mathsf{Ap}^{\lceil} M^{\rceil} \lceil N^{\rceil} = \lceil MN^{\rceil}, \qquad \mathsf{Num}^{\lceil} n^{\rceil} = \lceil \lceil n^{\rceil} \rceil ;$$

hence in particular

Num
$$\lceil M \rceil = \lceil \lceil M \rceil \rceil$$
.

Now define

$$W \equiv \lambda x. F(\operatorname{Ap} x(\operatorname{Num} x)), \qquad X \equiv W^{\lceil} W^{\rceil}.$$

Then

$$X \equiv W^{\lceil} W^{\rceil} = F(\operatorname{Ap}^{\lceil} W^{\rceil} (\operatorname{Num}^{\lceil} W^{\rceil}))$$
$$= F^{\lceil} W^{\lceil} W^{\rceil} \rceil \equiv F^{\lceil} X^{\rceil} . \quad \square$$

As for ordinary fixed points one has X woheadrightarrow F superightarrow X superightarrow As for ordinary fixed points one has <math>X woheadrightarrow F superightarrow X superightarrow X

6.5.10. Corollary.
$$\exists \Theta_2 \in \Lambda^0 \ \forall F \in \Lambda^0 \ \Theta_2^{\lceil} F^{\rceil} \rightarrow F^{\lceil} \Theta_2^{\lceil} F^{\rceil \rceil}$$
.

Proof. See exercise 8.5.6. □

6.6. Undecidability results

- 6.6.1. Definition Let $\mathcal{C} \subset \Lambda$.
 - (i) \mathcal{C} is non-trivial if $\mathcal{C} \neq \emptyset$, $\mathcal{C} \neq \Lambda$.
 - (ii) A is closed under equality if

$$\forall M, N \in \Lambda [M \in \mathcal{C} \text{ and } M = N \Rightarrow N \in \mathcal{C}].$$

Recall that two sets of integers \mathcal{C} , \mathcal{B} are recursively separable iff there exists a recursive set \mathcal{C} such that $\mathcal{C} \subset \mathcal{C}$ and $\mathcal{B} \cap \mathcal{C} = \emptyset$.

The following theorem is due to Scott [1963]. It is related to Rice's theorem in recursion theory, cf. Rogers [1967], p. 324.

- 6.6.2. THEOREM. (i) Let $\mathfrak{C}, \mathfrak{B} \subset \Lambda$ be non empty sets closed under equality. Then \mathfrak{C} and \mathfrak{B} are not recursively separable.
- (ii) Let $\mathcal{C} \subset \Lambda$ be a non-trivial set closed under equality. Then \mathcal{C} is not recursive.
- PROOF. (i) Let $M_0 \in \mathcal{C}$, $M_1 \in \mathcal{B}$. Suppose \mathcal{C} is a recursive set such that $\mathcal{C} \subset \mathcal{C}$, $\mathcal{B} \cap \mathcal{C} = \emptyset$. The characteristic function of $\sharp \mathcal{C}$ is recursive and hence λ -defined by some F. Hence

$$M \in \mathcal{C} \Rightarrow F \lceil M \rceil = \lceil 0 \rceil,$$

 $M \notin \mathcal{C} \Rightarrow F \lceil M \rceil = \lceil 1 \rceil.$

Now define

$$G \equiv \lambda x$$
. If **Zero**(Fx) then M_1 else M_0 .

Then

$$M \in \mathcal{C} \Rightarrow G^{\lceil} M^{\rceil} = M_1$$

$$M \notin \mathcal{C} \Rightarrow G^{\lceil} M^{\rceil} = M_0.$$

By the second fixed point theorem, $G \lceil X \rceil = X$ for some X. But then

$$X \in \mathcal{C} \Rightarrow X = G^{\lceil} X^{\rceil} = M_1 \in \mathfrak{B} \Rightarrow X \notin \mathcal{C},$$

$$X \notin \mathcal{C} \Rightarrow X = G^{\lceil} X^{\rceil} = M_0 \in \mathcal{C} \Rightarrow X \in \mathcal{C},$$

a contradiction.

(ii) If $\mathscr{C} \subset \Lambda$ is a nontrivial set closed under equality, then (i) applies to \mathscr{C} and its complement. Hence \mathscr{C} cannot be recursive. \square

Theorem 6.6.2 is false for the λI -calculus. Take $\mathcal{C} = \{M \in \Lambda_I | FV(M) = \{x\}\}$. This set is recursive and in the λI -calculus closed under equality, see lemma 9.1.2(iv). The following relativization of theorem 6.6.2 also holds for the λI -calculus.

6.6.3. DEFINITION. Let $\mathcal{Q} \subset \Lambda^0$. \mathcal{Q} is closed under equality of combinators if

$$\forall M, N \in \Lambda^0 [M \in \mathcal{C} \text{ and } M = N \Rightarrow N \in \mathcal{C}].$$

6.6.4. COROLLARY. Theorem 6.6.2 holds for \mathfrak{C} , $\mathfrak{B} \subset \Lambda^0$ which are closed under equality of combinators.

PROOF. Same as for theorem 6.6.2.

Church [1936] gave one of the first examples of an r.e. set which is not recursive:

6.6.5. THEOREM. $\{M \mid M \text{ has a nf}\}$ is an r.e. set which is not recursive.

PROOF. The set is r.e. since

M has a nf iff
$$\exists N N$$
 is in nf and $\lambda \vdash M = N$.

By theorem 6.6.2 the set is not recursive. \square

A theory $\mathfrak T$ is called *essentially undecidable* iff $\mathfrak T$ is consistent and has no consistent recursive extension. The following was noticed by Grzegorczyk.

6.6.6. Theorem. The λ -calculus (i.e. the theory λ) is essentially undecidable.

PROOF. Suppose \mathfrak{T} is a consistent extension of λ . Then $\{M \mid \mathfrak{T} \vdash M = I\}$ is closed under equality and nontrivial. Hence by theorem 6.6.2 not recursive. Therefore \mathfrak{T} is not recursive. \square

6.7 Digression: Self-referential sentences and the recursion theorem

To conclude this section it will be shown how the constructions of Gödel's self-referential sentence and the recursion theorem can be interpreted as applications of the fixed point combinator.

Let P be first-order Peano arithmetic. If s is a syntactic object of P, then $\sharp s$ is its Gödel number ("code") and $\lceil s \rceil \equiv \lceil \sharp s \rceil$ the corresponding numeral in P.

I. THEOREM (Gödel). Let A(x) be a formula of P with $FV(A(x)) = \{x\}$. Then there exists a sentence B of P such that

$$P \vdash B \leftrightarrow A(\lceil B \rceil).$$

(B says: "I have property A.")

PROOF. Define for $n_1, n_2 \in N$

$$n_1 \sim n_2$$
 iff for some sentences A_1, A_2 of P
 $n_i = \sharp A_i$ and $P \vdash A_1 \leftrightarrow A_2$.

It is sufficient to show that given A(x) one has

(1)
$$\exists n \ n \sim \sharp A(\lceil n \rceil).$$

For then, taking B such that $n = \sharp B$,

$$P \vdash B \leftrightarrow A(\lceil n \rceil) = A(\lceil B \rceil).$$

In order to prove (1) make the following abbreviations.

(i) For a variable x and $n \in \mathbb{N}$

$$\lambda x.n = \langle \sharp x, n \rangle,$$

where \langle , \rangle is a primitive recursive pairing function with inverses $()_0, ()_1.$